首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
V Dao  R H Guenther  P F Agris 《Biochemistry》1992,31(45):11012-11019
The tDNA(Phe)AC, d(CCAGACTGAAGAU13m5C14U15GG), with a DNA sequence similar to that of the anticodon stem and loop of yeast tRNA(Phe), forms a stem and loop structure and has an Mg(2+)-induced structural transition that was not exhibited by an unmodified tDNA(Phe)AC d(T13C14T15) [Guenther, R. H., Hardin, C. C., Sierzputowska-Gracz, H., Dao, V., & Agris, P. F. (1992) Biochemistry (preceding paper in this issue)]. Three tDNA(Phe)AC molecules having m5C14, tDNA(Phe)AC d(U13m5C14U15), d(U13m5C14T15), and d(T13,5C14U15), also exhibited Mg(2+)-induced structural transitions and biphasic thermal transitions (Tm approximately 23.5 and 52 degrees C), as monitored by CD and UV spectroscopy. Three other tDNA(Phe)AC, d(T13C14T15), d(U13C14U15), and d(A7;U13m5C14U15) in which T7 was replaced with an A, thereby negating the T7.A10 base pair across the anticodon loop, had no Mg(2+)-induced structural transitions and only monophasic thermal transitions (Tm of approximately 52 degrees C). The tDNA(Phe)AC d(U13m5C14U15) had a single, strong Mg2+ binding site with a Kd of 1.09 x 10(-6) M and a delta G of -7.75 kcal/mol associated with the Mg(2+)-induced structural transition. In thermal denaturation of tDNA(Phe)AC d(U13m5C14U15), the 1H NMR signal assigned to the imino proton of the A5.dU13 base pair at the bottom of the anticodon stem could no longer be detected at a temperature corresponding to that of the loss of the Mg(2+)-induced conformation from the CD spectrum. Therefore, we place the magnesium in the upper part of the tDNA hairpin loop near the A5.dU13 base pair, a location similar to that in the X-ray crystal structure of native, yeast tRNA(Phe).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
P Mucha  A Szyk  P Rekowski  P A Weiss  P F Agris 《Biochemistry》2001,40(47):14191-14199
The contributions of the natural modified nucleosides to RNA identity in protein/RNA interactions are not understood. We had demonstrated that 15 amino acid long peptides could be selected from a random phage display library using the criterion of binding to a modified, rather than unmodified, anticodon domain of yeast tRNA(Phe) (ASL(Phe)). Affinity and specificity of the selected peptides for the modified ASL(Phe) have been characterized by fluorescence spectroscopy of the peptides' tryptophans. One of the peptides selected, peptide t(F)2, exhibited the highest specificity and most significant affinity for ASL(Phe) modified with 2'-O-methylated cytidine-32 and guanosine-34 (Cm(32) and Gm(34)) and 5-methylated cytidine-40 (m(5)C(40)) (K(d) = 1.3 +/- 0.4 microM) and a doubly modified ASL(Phe)-Gm(34),m(5)C(40) and native yeast tRNA(Phe) (K(d) congruent with 2.3 and 3.8 microM, respectively) in comparison to that for the unmodified ASL(Phe) (K(d) = 70.1 +/- 12.3 microM). Affinity was reduced when a modification altered the ASL loop structure, and binding was negated by modifications that disfavored hairpin formation. Peptide t(F)2's higher affinity for the ASL(Phe)-Cm(32),Gm(34),m(5)C(40) hairpin and fluorescence resonance energy transfer from its tryptophan to the hypermodified wybutosine-37 in the native tRNA(Phe) placed the peptide across the anticodon loop and onto the 3'-side of the stem. Inhibition of purified yeast phenylalanyl-tRNA synthetase (FRS) catalyzed aminoacylation of cognate yeast tRNA(Phe) corroborated the peptide's binding to the anticodon domain. The phage-selected peptide t(F)2 has three of the four amino acids crucial to G(34) recognition by the beta-structure of the anticodon-binding domain of Thermus thermophilus FRS and exhibited circular dichroism spectral properties characteristic of beta-structure. Thus, modifications as simple as methylations contribute identity elements that a selected peptide specifically recognizes in binding synthetic and native tRNA and in inhibiting tRNA aminoacylation.  相似文献   

4.
Bovine mitochondrial (mt) phenylalanine tRNA (tRNA(Phe)), which lacks the 'conserved' GG and T psi YCG sequences, was efficiently purified by the selective hybridization method using a solid phase DNA probe. The entire nucleotide sequence of the tRNA, including modified nucleotides, was determined and its higher-order structure was investigated using RNaseT2 and chemical reagents as structural probes. The D and T loop regions as well as the anticodon loop region were accessible to RNaseT2, and the N-3 positions of cytidines present in the D and T loops were easily modified under the native conditions in the presence of 10mM Mg2+. On the other hand, the nucleotides present in the extra loop were protected from the chemical modification under the native conditions. From the results of these probing analyses and a comparison of the sequences of mitochondrial tRNA(Phe) genes from various organisms, it was inferred that bovine mt tRNA(Phe) lacks the D loop/T loop tertiary interactions, but does have the canonical extra loop/D stem interactions, which seem to be the main factor for bovine mt tRNA(Phe) to preserve its L-shaped higher-order structure.  相似文献   

5.
Pseudouridine psi 55 alone and both psi 55 and psi 39 in yeast tRNAPhe are selectively modified with fluorescent reagent of 4-bromomethyl-7-methoxycoumarin (BMC). The change of fluorescence intensity was measured as a function of temperature and Mg2+ concentration. Fluorescent quenching shows the stacked and unstacked forms of Y base, dependent on Mg2+ concentration. In contrast, Mg2+ had no effect on psi 55-BMC in T psi C loop at 20 degrees C. Fluorescence on titrating Mg2+ exhibited a kind of Mg2+-induced structural collapse at the corner of L-structure. The melting of psi 55-BMC takes place at 70 degrees C in 10mM Mg2+. At very low Mg2+ concentration, melting takes place at 35 degrees C. The melting of psi 39-BMC, located near the anticodon loop, was observed before the unfolding of the whole structure of tRNAPhe. A conformational transition of the anticodon loop takes place at a lower temperature and it is also expected in the quenching experiment of Y base.  相似文献   

6.
7.
LNA guanine and 2,6-diaminopurine (D) phosphoramidites have been synthesized as building blocks for antisense oligonucleotides (ON). The effects of incorporating LNA D into ON were investigated. As expected, LNA D containing ON showed increased affinity towards complementary DNA (Delta Tm +1.6 to +3.0 degrees C) and RNA (Delta Tm +2.6 to +4.6 degrees C) ON. To evaluate if LNA D containing ON have an enhanced mismatch sensitivity compared to their complementary LNA A containing ON thermal denaturation experiments towards singly mismatched DNA and RNA ON were undertaken. Replacing one LNA A residue with LNA D, in fully LNA modified ON, resulted in higher mismatch sensitivity towards DNA ON (Delta Delta Tm -4 to >-17 degrees C). The same trend was observed towards singly mismatched RNA ON (Delta Delta Tm D-a = -8.7 degrees C and D-g = -4.5 degrees C) however, the effect was less clearcut and LNA A showed a better mismatch sensitivity than LNA D towards cytosine (Delta Tm +5.5 degrees C).  相似文献   

8.
Synthetic RNA stem loops corresponding to positions 28-42 in the anticodon region of tRNA(Phe) bind efficiently in an mRNA-dependent manner to ribosomes, whereas those made from DNA do not. In order to identify the positions where ribose is required, the anticodon stem-loop region of tRNA(Phe) (Escherichia coli) was synthesized chemically using a mixture of 2'-hydroxyl- and 2'-deoxynucleotide phosphoramidites. Oligonucleotides whose ribose composition allowed binding were retained selectively on nitrocellulose filters via binding to 30S ribosomal subunits. The binding-competent oligonucleotides were submitted to partial alkaline hydrolysis to identify the positions that were enriched for ribose. Quantification revealed a strong preference for a 2'-hydroxyl group at position U33. This was shown directly by the 50-fold lower binding affinity of a stem loop containing a single deoxyribose at position U33. Similarly, defective binding of the corresponding U33-2'-O-methyl-substituted stem-loop RNA suggests that absence of the 2'-hydroxyl group, rather than an altered sugar pucker, is responsible. Stem-loop oligoribonucleotides from different tRNAs with U33-deoxy substitutions showed similar, although quantitatively different effects, suggesting that intramolecular rather than tRNA-ribosome interactions are affected. Because the 2'-hydroxyl group of U33 was shown to be a major determinant of the U-turn of the anticodon loop in the crystal structure of tRNA(Phe) in yeast, our finding might indicate that the U-turn conformation in the anticodon loop is required and/or maintained when the tRNA is bound to the ribosomal P site.  相似文献   

9.
Abstract

We synthesized and analyzed DNA hairpin molecules with methylphosphonate linkages of defined stereochemistry in the loop region. Dinucleotide building blocks ApA and TpT (p indicating methylphosphonate linkage with either Rp or Sp configuration) were synthesized, separated into the diastereomers, and incorporated at three positions of the tetraloops 5′-CGCAAAAGCG-3′ and 5′-CGCTTTTGCG-3′. The oligonucleotides were analyzed for their melting behavior. With a Tm of 67.5°C the molecule 5′-CGCAAApAGCG-3′ with a Sp configurated methylphosphonate is distinctly more stable than the Rp configurated one (Tm = 60.5 °C) and the unmodified oligonucleotide (Tm = 64.5 °C). In contrast to double helical DNA where the substitution of a phosphorodiester by a Sp configurated methylphosphonate results in a lower Tm, in DNA hairpin the introduction of Sp and Rp methylphosphonates at specific positions can lead to a stabilization of the structure.  相似文献   

10.
Nucleoside base modifications can alter the structures, dynamics, and metal ion binding properties of transfer RNA molecules and are important for accurate aminoacylation and for maintaining translational fidelity and efficiency. The unmodified anticodon stem-loop from Escherichia coli tRNA(Phe) forms a trinucleotide loop in solution, but Mg(2+) and dimethylallyl modification of A(37) N6 disrupt the loop conformation and increase the mobility of the loop and loop-proximal nucleotides. We have used NMR spectroscopy to investigate the binding and structural effects of multivalent cations on the unmodified and dimethylallyl-modified anticodon stem-loops from E. coli tRNA(Phe). The divalent cation binding sites were probed using Mn(2+) and Co(NH(3))(6)(3+). These ions bind along the major groove of the stem and associate with the anticodon loop on the major groove side in a nonspecific manner. Co(NH(3))(6)(3+) stabilizes the U-turn conformation of the loop in the dimethylallyl-modified molecule, and the chemical shift changes that accompany Co(NH(3))(6)(3+) binding are similar to those observed with the addition of Mg(2+). The base-phosphate and base-2'-OH hydrogen bonds that characterize the UNR U-turn motif lead to spectral signatures in the form of unusual (15)N and (1)H chemical shifts and reduced solvent exchange of the U(33) 2'-OH and N3H protons. The unmodified molecule also displays spectral features of the U-turn fold in the presence of Co(NH(3))(6)(3+), but the loop has additional conformations and is dynamic. The results indicate that charge neutralization by a polyvalent cation is sufficient to promote formation of the U-turn fold. However, base modification is necessary to destabilize competing alternative conformers even for a purine-rich loop sequence that is predicted to have strongly favorable base stacking energy.  相似文献   

11.
Synthetic polycarboxamides consisting of N-methylpyrrole (Py), N-methylimidazole (Im), N-methyl-3-hydroxypyrrole (Hp) and beta-alanine (beta) show strong and sequence-specific interaction with the DNA minor groove when they form hairpin structures with side-by-side antiparallel motifs. In the present paper, new conjugates containing two ligands linked to the same terminal phosphate of DNA strand were constructed. The paper describes optimized synthesis and properties of oligonucleotide-linked polyamide strands that insert into the minor groove of a duplex in a parallel or antiparallel orientation. Strong stabilization of DNA duplexes by two attached minor groove ligands is demonstrated by the thermal denaturation method. The unmodified duplex 5'-CGTTTATTp-3'/5'-AATAAACG-3' melts at 20 degrees C. When one tetra(Py) residue was attached to the first strand of this duplex, denaturation temperature was increased to 46 degrees C; attachment of the second tetra(Py) in a parallel orientation resulted in denaturation temperature of 60 degrees C. It is even higher than in case of "classic" octapyrrole hairpin ligand (Tm = 58 degrees C). Sequence-specific character of stabilization by two conjugated ligands was demonstrated for G:C-containing oligonucleotides attached to tetracarboxamide and octacarboxamide ligands constructed from Py, Im and beta units according to established recognition rules (deltaTm = 20 degrees C). The two-strand parallel minor groove binder constructions attached to addressing oligonucleotides could be considered as site-specific ligands recognizing single- and double-stranded DNA similarly to already described hairpin MGB structures with antiparallel orientation of carboxamide units.  相似文献   

12.
A comparative study of the solution structures of yeast tRNA(Asp) and tRNA(Phe) was undertaken with chemical reagents as structural probes. The reactivity of N-7 positions in guanine and adenine residues was assayed with dimethylsulphate and diethyl-pyrocarbonate, respectively, and that of the N-3 position in cytosine residues with dimethylsulphate. Experiments involved statistical modifications of end-labelled tRNAs, followed by splitting at modified positions. The resulting end-labelled oligonucleotides were resolved on polyacrylamide sequencing gels and analysed by autoradiography. Three different experimental conditions were used to follow the progressive denaturation of the two tRNAs. Experiments were done in parallel on tRNA(Asp) and tRNA(Phe) to enable comparison between the two solution structures and to correlate the results with the crystalline conformations of both molecules. Structural differences were detected for G4, G45, G71 and A21: G4 and A21 are reactive in tRNA(Asp) and protected in tRNA(Phe), while G45 and G71 are protected in tRNA(Asp) and reactive in tRNA(Phe). For the N-7 atom of A21, the different reactivity is correlated with the variable variable loop structures in the two tRNAs; in the case of G45 the results are explained by a different stacking of A9 between G45 and residue 46. For G4 and G71, the differential reactivities are linked to a different stacking in both tRNAs. This observation is of general significance for helical stems. If the previous results could be fully explained by the crystal structures, unexpected similarities in solution were found for N-3 alkylation of C56 in the T-loop, which according to crystallography should be reactive in tRNA(Asp). The apparent discrepancy is due to conformational differences between crystalline and solution tRNA(Asp) at the level of the D and T-loop contacts, linked to long-distance effects induced by the quasi-self-complementary anticodon GUC, which favour duplex formation within the crystal, contrarily to solution conditions where the tRNA is essentially in its free state.  相似文献   

13.
To estimate the effect of modified nucleotide-37, the interaction of two yeast aminoacyl-tRNAs (Phe-tRNAK+YPhe and Phe-tRNAK-YPhe) with the A site of complex [70S.poly(U).deacylated tRNA(Phe) in the P site] was assayed at 0-20 degrees C. As comparisons with native Phe-tRNAK+YPhe showed, removal of the Y base decreased the association constant of Phe-tRNAK-YPhe and the complex by an order of magnitude at any temperature, and increased the enthalpy of their interaction by 23 kJ/mol. When the Y base was present in the anticodon loop of deacylated tRNA(Phe) bound to the P site of the 70S ribosome, twice higher affinity for the A site was observed for Phe-tRNAK-YPhe but not for Phe-tRNAK+YPhe. Thus, the modified nucleotide 3' of the Phe-tRNA(Phe) anticodon stabilized the codon-anticodon interaction both in the A and in the P sites of the 70S ribosome.  相似文献   

14.
Y Hayase  H Inoue  E Ohtsuka 《Biochemistry》1990,29(37):8793-8797
In order to cleave RNA at specific positions in Escherichia coli formylmethionine tRNA, RNase H and complementary chimeric oligonucleotides consisting of DNA and 2'-O-methyl-RNA (Inoue et al. (1987) FEBS Lett. 215, 327] were used. Specific cleavages in the D loop, anticodon loop, T psi C loop, anticodon stem, and acceptor stem were investigated. Virtually unique hydrolyses with RNase H were observed at the T psi C loop, anticodon stem, and acceptor stem when relatively longer chimeric oligonucleotides (20-mer) were used. An efficient cleavage at the anticodon was obtained with a chimeric 13-mer when the higher structure of the tRNA was broken by hybridization with a 20-mer at the acceptor as well as the T psi C stem region. It was found that stabilities of hybrids with chimeric oligonucleotides and the presence of minor nucleosides affect the cleavage of tRNA by this approach.  相似文献   

15.
16.
M E Holtzer  A Holtzer 《Biopolymers》1990,30(9-10):985-993
Circular dichroism (CD) experiments in the backbone (200-240 nm) region are reported for four isolated, excised two-chain, coiled-coil segments whose chains comprise, respectively, residues 11-127, 142-281, 1-189, and 190-284 of the rabbit alpha alpha-tropomyosin (Tm) sequence. The uv and CD spectra for the noncross-linked segments are very similar to those for parent Tm. At 3 degrees C, all have a helix content of 90% or more; moreover, all thermal denaturation curves depend on concentration, as required by mass action, and are completely reversible. At comparable concentrations, solutions show values of T1/2 (the temperature at which the helix content is 50%) following the order of 11Tm127 approximately 1Tm189 greater than 142Tm281 greater than 190Tm284. The thermal unfolding data for 11Tm127, 190Tm284, and 142Tm281 fall on apparently monophasic curves (single inflection point). However, curves for 1Tm189 show a heretofore unknown low temperature transition in which the helix content drops from approximately 90% at 2 degrees C to approximately 73% at 20 degrees C, indicating that this segment has one or more weak sections totaling approximately 50 residues per chain. Since thermal denaturation curves for noncross-linked 11Tm127, 142Tm281, and Tm have no such low temperature transition, i.e., the helix content is not additive, the weak region probably comprises the bulk of the residues between 127 and 189 in 1Tm189, but is somehow stabilized in 142Tm281 and in parent Tm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Fluorophore of proflavine was introduced onto the 3'-terminal ribose moiety of yeast tRNA(Phe). The distance between the fluorophore and the fluorescent Y base in the anticodon of yeast tRNA(Phe) was measured by a singlet-singlet energy transfer. Conformational changes of tRNA(Phe) with binding of tRNA(2Glu), which has the anticodon UUC complementary to the anticodon GAA of tRNA(Phe), were investigated. The distance obtained at the ionic strength of 100 mM K+ and 10 mM Mg2+ is very close to the distance from x-ray diffraction, while the distance obtained in the presence of tRNA(2Glu) is significantly smaller. Further, using a fluorescent probe of 4-bromomethyl-7-methoxycoumarin introduced onto pseudouridine residue psi 55 in the T psi C loop of tRNA(Phe), Stern-Volmer quenching experiments for the probe with or without added tRNA(2Glu) were carried out. The results showed greater access of the probe to the quencher with added tRNA(2Glu). These results suggest that both arms of the L-shaped tRNA structure tend to bend inside with binding of tRNA(2Glu) and some structural collapse occurs at the corner of the L-shaped structure.  相似文献   

18.
Precise detection of target DNA and RNA sequences using chemically modified oligonucleotides is of crucial importance in gene analysis and gene silence. The hybridisation and base discrimination abilities of oligonucleotides containing 2'-O-methyl-2-thiouridine (s(2)Um) in homo- and hetero-duplexes composed of DNA and RNA strands have been studied in detail. When s(2)Um was incorporated into RNA or DNA strands, the hybridisation and base discrimination abilities of the modified RNA or DNA oligomers towards the complementary RNA strands were superior to those of the corresponding unmodified oligomers. On the other hand, their base discrimination abilities towards complementary DNA strands were almost the same as those of the unmodified ones. The base discrimination abilities of 2-thiouracil base-containing oligonucleotide probes on slide glass plates were also studied. These modified probes exhibited efficient detection of mismatched base pairing.  相似文献   

19.
D G Gorenstein  B A Luxon 《Biochemistry》1979,18(17):3796-3804
In a continuation of our studies on structural effects on the 31P chemical shifts of nucleic acids, we present 31P NMR spectra of yeast phenylalanine tRNA in the presence and absence of Mg2+. Superconducting field (146 MHz) and 32-MHz 31P NMR spectra reveal approximately 15 nonhelical diester signals spread over approximately 7 ppm besides the downfield terminal 3'-phosphate monoester. In the presence of 10 mM Mg2+, most scattered and main cluster signals do not shift between 22--66 degrees C, thus supporting our earlier hypothesis that 31P chemical shifts are sensitive to phosphate ester torsional and bond angles. At 70 degrees C, all of the signals merge into a single random coil conformation signal. Similar effects are observed in the absence of Mg2+ except that the transition melting temperature is approximately 20 degrees C lower. Measured spin-lattice and spin-spin relaxation times reveal another lower temperature transition besides the thermal denaturation process. A number of the scattered peaks are shifted (0.2--1.7 ppm) and broadened between 22 and 66 degrees C in the presence of Mg2+ as a result of this conformational transition between two intact tertiary structures. The loss of the scattered peaks in the absence of Mg2+ occurs in the temperature range expected for melting of a tertiary structure. An attempt to simulate the 31P spectra of tRNA Phe based upon the X-ray crystallographically determined phosphate ester torsional agles supports the suggestion that the large shifts in the scattered peaks are due to bond angle distortions in the tertiary structure.  相似文献   

20.
Naturally occurring nucleoside modifications are an intrinsic feature of transfer RNA (tRNA), and have been implicated in the efficiency, as well as accuracy-of codon recognition. The structural and functional contributions of the modified nucleosides in the yeast tRNA(Phe) anticodon domain were examined. Modified nucleosides were site-selectively incorporated, individually and in combinations, into the heptadecamer anticodon stem and loop domain, (ASL(Phe)). The stem modification, 5-methylcytidine, improved RNA thermal stability, but had a deleterious effect on ribosomal binding. In contrast, the loop modification, 1-methylguanosine, enhanced ribosome binding, but dramatically decreased thermal stability. With multiple modifications present, the global ASL stability was mostly the result of the individual contributions to the stem plus that to the loop. The effect of modification on ribosomal binding was not predictable from thermodynamic contributions or location in the stem or loop. With 4/5 modifications in the ASL, ribosomal binding was comparable to that of the unmodified ASL. Therefore, modifications of the yeast tRNA(Phe) anticodon domain may have more to do with accuracy of codon reading than with affinity of this tRNA for the ribosomal P-site. In addition, we have used the approach of site-selective incorporation of specific nucleoside modifications to identify 2'O-methylation of guanosine at wobble position 34 (Gm34) as being responsible for the characteristically enhanced chemical reactivity of C1400 in Escherichia coli 16S rRNA upon ribosomal footprinting of yeast tRNA(Phe). Thus, effective ribosome binding of tRNA(Phe) is a combination of anticodon stem stability and the correct architecture and dynamics of the anticodon loop. Correct tRNA binding to the ribosomal P-site probably includes interaction of Gm34 with 16S rRNA C1400.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号