首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Propylene oxide (PO) is a direct-acting mutagen and rodent carcinogen. We have studied how PO modifies 2'-deoxynucleosides at pH 7.0-7.5 and 37 degrees C for 10 h. PO reacts as an SN2 alkylating agent by forming the following 2-hydroxypropyl (HP) adducts: N6-HP-dAdo (7% yield), 7-HP-Gua (37%) and 3-HP-dThd (4%). Alkylation at N-3 of dCyd resulted in conversion of the adjacent exocyclic imino group at C-4 to an oxygen (hydrolytic deamination) with the formation of a dUrd adduct, 3-HP-dUrd (14%). Ultraviolet spectroscopy and mass spectrometry were used for the structural determination of these adducts. Confirmation of the unexpected 3-HP-dUrd adduct was provided by an accurate mass measurement technique where diagnostic ions in the mass spectra of 3-HP-dUrd were measured to within 0.0005 atomic mass units of the predicted mass. PO was reacted in vitro with calf thymus DNA (pH 7.0-7.5, 37 degrees C, 10 h) and yielded N6-HP-dAdo (1 nmol/mg DNA), 3-HP-Ade (14 nmol/mg DNA), 7-HP-Gua (133 nmol/mg DNA) and 3-HP-dUrd (13 nmol/mg DNA). A mechanism for the hydrolytic deamination of 3-HP-dCyd to 3-HP-dUrd involving the OH on the HP side chain is proposed. This cytosine to uracil conversion may play a role in the mutagenic and carcinogenic activity of this epoxide.  相似文献   

2.
Reaction of the rodent carcinogen acrylonitrile (AN) at pH 5.0 and/or pH 7.0 for 10 and/or 40 days with 2'-deoxyadenosine (dAdo), 2'-deoxycytidine (dCyd), 2'-deoxyguanosine (dGuo), 2'-deoxyinosine (dIno), N6-methyl-2'-deoxyadenosine (N6-Me-dAdo) and thymidine (dThd) resulted in the formation of cyanoethyl and carboxyethyl adducts. Adducts were not detected after 4 h. The adducts isolated were 1-(2-carboxyethyl)-dAdo (1-CE-dAdo), N6-CE-dAdo, 3-CE-dCyd, 7-(2-cyanoethyl)-Gua (7-CNE-Gua), 7,9-bis-CNE-Gua, imidazole ring-opened 7,9-bis-CNE-Gua, 1-CNE-dIno, 1-CE-N6-Me-dAdo and 3-CNE-dThd. Structures were assigned on the basis of UV spectra and electron impact (EI), chemical ionization (CI), desorption chemical ionization (DCI) and Californium-252 fission fragment ionization mass spectra. Evidence is presented which strongly suggests that N6-CE-dAdo was formed by Dimroth rearrangement of 1-CE-dAdo during the reaction between AN and dAdo. The carboxyethyl adducts resulted from initial cyanoethylation (by Michael addition) at a ring nitrogen adjacent to an exocyclic nitrogen atom followed by rapid hydrolysis of the nitrile moiety to a carboxylic acid. It was postulated that the facile hydrolysis is an autocatalyzed reaction resulting from the formation of a cyclic intermediate between nitrile carbon and exocyclic nitrogen. AN was reacted with calf thymus DNA (pH 7.0, 37 degrees C, 40 days) and the relative amounts of adducts isolated were 1-CE-Ade (26%), N6-CE-Ade (8%), 3-CE-Cyt (1%), 7-CNE-Gua (26%), 7,9-bis-CNE-Gua (4%), imidazole ring-opened 7,9-bis-CNE-Gua (19%) and 3-CNE-Thy (16%). Thus a carcinogen once adducted to a base in DNA was shown to be subsequently modified resulting in a mixed pattern of cyanoethylated and carboxyethylated AN-DNA adducts. Three of the adducts (1-CE-Ade, N6-CE-Ade and 3-CE-Cyt) were identical to adducts previously reported by us to be formed following in vitro reaction of the carcinogen beta-propiolactone (BPL) and calf thymus DNA. The results demonstrate that AN can directly alkylate DNA in vitro at a physiological pH and temperature.  相似文献   

3.
Isopropyl methanesulfonate (IPMS), an SN1 alkylating agent, is a direct-acting mutagen in bacteria. We recently reported that s.c. and topical administration of IPMS to mice resulted in the rapid induction of thymic lymphomas. Thymic lymphoma induction was not observed following administration of the SN2 alkylating agents methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS). We have studied the reactions of IPMS with dAdo, dCyd, dGuo and dThd at pH 6.5 to 7.5 and 37 degrees C for 3 h. IPMS formed the following isopropyl (IP) adducts: 7-IP-Gua (4% yield), O6-IP-Gua (8%), O2-IP-Cyt (1%), O2-IP-dThd (2%), 3-IP-dThd (1%), and O4-IP-dThd (0.4%). Adducts were characterized from UV and mass spectra. IPMS was reacted in vitro with calf thymus DNA (pH 6.5 to 7.5, 37 degrees C, 3 h) and yielded (nmol/mg DNA): 7-IP-Gua (22) O6-IP-dGuo (11), O2-IP-Cyt (9), O2-IP-dThd (2), O4-IP-dThd (2), 3-IP-Ade (0.2) and 3-IP-dThd (0.2). The relatively greater alkylation of exocyclic oxygen atoms in DNA by IPMS compared to values for MMS and EMS reported by others, may play a role in the induction of thymic lymphomas in mice by IPMS and the lack of such activity by MMS and EMS.  相似文献   

4.
Reaction of acrylic acid (AA) at pH 7.0 and 37 degrees C for 40 days with 2'-deoxyadenosine (dAdo), 2'-deoxycytidine (dCyd), 2'-deoxyguanosine (dGuo) and thymidine (dThd) resulted in the formation of 2-carboxyethyl (CE) adducts via Michael addition. The alkylated 2'-deoxynucleoside adducts isolated (percent yield after 40 days) were 1-CE-dAdo (5%), N6-CE-dAdo (11%) (via Dimroth rearrangement of 1-CE-dAdo), 3-CE-dCyd (7.5%), 7-CE-Gua (4%), 7,9-bis-CE-Gua (0.9%) (formed by reaction of AA with depurinated 7-CE-Gua during the course of the reaction) and 3-CE-dThd (0.5%). The products isolated following in vitro reaction of AA with calf thymus DNA at pH 7.0 and 37 degrees C for 40 days were (nmol/mg DNA) 1-CE-Ade (9.9), N6-CE-Ade (8.2), 7-CE-Gua (7.2) and 3-CE-Thy (1.9). Compound 3-CE-Cyt was not detected. Thus the adducts formed following in vitro reaction of AA with DNA are identical to those formed by in vitro reaction of the carcinogen beta-propiolactone (BPL) with DNA as reported in an earlier paper. Structures were assigned on the basis of identical UV spectra, Rf values on paper chromatograms and Rt values on HPLC as marker compounds prepared from reactions of BPL with 2'-deoxynucleosides and 2'-deoxynucleotides-5'-monophosphoric acids. AA was assayed for carcinogenic activity by s.c. injection (20 mumol, once a week for 52 weeks) in female Hsd: (ICR)Br mice. Two mice with sarcomas at the site of application were observed out of 30 mice. Malignancies were not observed in solvent and no-treatment controls. The bioassay results reported in this paper and elsewhere in the same strain of mice suggest that AA is a weak carcinogen in female Hsd:(ICR)Br mice.  相似文献   

5.
The reaction between 2'-deoxycytidine and styrene 7,8-oxide (SO) resulted in alkylation at the 3-position and at the O(2)-position through the alpha- and beta-carbons of the epoxide but at the N(4)-position only through the alpha-carbon. The 3-alkylated adducts were found to deaminate to the corresponding 2'-deoxyuridine adducts (37 degrees C, pH 7.4) with half-lives of 6 min and 2.4 h for the alpha- and beta-isomers, respectively. The N(4)-alkylated products were stable at neutral pH. The O(2)-alkylated products were unstable being prone to depyrimidation and to isomerisation between alpha- and beta-isomers. In SO-treated double-stranded DNA, enzymatic hydrolysis allowed the identification of the beta3-deoxyuridine and alphaN(4)-deoxycytidine adducts (1.9 and 0.5% of total alkylation, respectively), in addition to the previously identified DNA-adducts. The 3-substituted uracil may have implications for the mutagenicity of SO.  相似文献   

6.
Catechol quinones of estrogens react with DNA by 1,4-Michael addition to form depurinating N3Ade and N7Gua adducts. Loss of these adducts from DNA creates apurinic sites that can generate mutations leading to cancer initiation. We compared the reactions of the catechol quinones of the leukemogenic benzene (CAT-Q) and N-acetyldopamine (NADA-Q) with 2′-deoxyguanosine (dG) or DNA. NADA was used to prevent intramolecular cyclization of dopamine quinone. Reaction of CAT-Q or NADA-Q with dG at pH 4 afforded CAT-4-N7dG or NADA-6-N7dG, which lost deoxyribose with a half-life of 3 h to form CAT-4-N7Gua or 4 h to form NADA-6-N7Gua. When CAT-Q or NADA-Q was reacted with DNA, N3Ade adducts were formed and lost from DNA instantaneously, whereas N7Gua adducts were lost over several hours. The maximum yield of adducts in the reaction of CAT-Q or NADA-Q with DNA at pH 4 to 7 was at pH 4. When tyrosinase-activated CAT or NADA was reacted with DNA at pH 5 to 8, adduct levels were much higher (10- to 15-fold), and the highest yield was at pH 5. Reaction of catechol quinones of natural and synthetic estrogens, benzene, naphthalene, and dopamine with DNA to form depurinating adducts is a common feature that may lead to initiation of cancer or neurodegenerative disease.  相似文献   

7.
Butadiene monoepoxide (BMO) alkylated guanine N7 and adenine N 6 adducts were prepared and enriched by solid phase extraction and HPLC. The purified adducts were analysed by a modified 32P-postlabelling assay, which utilized one dimensional TLC chromatography and a subsequent HPLC analysis with UV and radioactivity detectors. In vitro with Ct-DNA the formation of N7-dGMP and N 6-dAMP adducts were linear at a concentration range of 44 to 870 nmol of BMO per mg DNA at physiological pH. N7- dGMP and N 6-dAMP adducts were formed in a ratio of 200:1. In dGMP and in dAMP 48 % and 86 % of adducts were covalently bound to the C-2 carbon of BMO. CD-1 mice were inhalation exposed to butadiene for 5 days and 6 h per day. The N7-dGMP adduct level in lung samples of animals exposed to 200, 500 and 1300 ppm was 2.8 +/- 0.9 fmol, 11 +/- 2.0 fmol and 30 +/- 6.7 fmol in 10 mug DNA, respectively. The level of N 6-dAMP adducts in lung samples after 500 ppm and 1300 ppm exposure was 0.09 +/- 0.06 fmol and 0.11 +/- 0.05 fmol in 10 mug DNA. At 200 ppm the adduct level was below the detection limit. A sub-group of animals exposed to 1300 ppm was killed 3 weeks after the last exposure. N7-dGMP adducts were not detected but the level of N 6-dAMP adducts was not affected. N7-dGMP adducts were formed in a clear stereospecific manner in vivo. S -BMO adducts were the main product and represented 77 % (n = 4, SD = 2%) of total BMO adducts. No clear conclusion can be drawn about the enantiospecific DNA binding at the N 6 position of dAMP, because of the poor separation of the enantiomers. However, we could separate regioisomeric adducts which indicated that C-2 adducts represented 69 +/- 3 % of the total N 6 adducts formed in mice lung DNA. This observation is supported by the data derived from in vitro DNA experiments but is different to our previously published data, which indicates the 2:1 (C-1:C-2) ratio in regioisomer formation in nucleotides or nucleosides. We suggest that the data presented in this communication indicate a different mechanism between nucleotides and DNA in BMO-derived adduct formation- Dimroth rearrangement dominates in nucleotides, but in double stranded DNA a direct alkylation is probably the major mechanism of adduct formation.  相似文献   

8.
Butadiene monoepoxide (BMO) alkylated guanine N7 and adenine N 6 adducts were prepared and enriched by solid phase extraction and HPLC. The purified adducts were analysed by a modified 32P-postlabelling assay, which utilized one dimensional TLC chromatography and a subsequent HPLC analysis with UV and radioactivity detectors. In vitro with Ct-DNA the formation of N7-dGMP and N 6-dAMP adducts were linear at a concentration range of 44 to 870 nmol of BMO per mg DNA at physiological pH. N7- dGMP and N 6-dAMP adducts were formed in a ratio of 200:1. In dGMP and in dAMP 48 % and 86 % of adducts were covalently bound to the C-2 carbon of BMO. CD-1 mice were inhalation exposed to butadiene for 5 days and 6 h per day. The N7-dGMP adduct level in lung samples of animals exposed to 200, 500 and 1300 ppm was 2.8 +/- 0.9 fmol, 11 +/- 2.0 fmol and 30 +/- 6.7 fmol in 10 mug DNA, respectively. The level of N 6-dAMP adducts in lung samples after 500 ppm and 1300 ppm exposure was 0.09 +/- 0.06 fmol and 0.11 +/- 0.05 fmol in 10 mug DNA. At 200 ppm the adduct level was below the detection limit. A sub-group of animals exposed to 1300 ppm was killed 3 weeks after the last exposure. N7-dGMP adducts were not detected but the level of N 6-dAMP adducts was not affected. N7-dGMP adducts were formed in a clear stereospecific manner in vivo . S -BMO adducts were the main product and represented 77 % ( n = 4, SD = 2%) of total BMO adducts. No clear conclusion can be drawn about the enantiospecific DNA binding at the N 6 position of dAMP, because of the poor separation of the enantiomers. However, we could separate regioisomeric adducts which indicated that C-2 adducts represented 69 +/- 3 % of the total N 6 adducts formed in mice lung DNA. This observation is supported by the data derived from in vitro DNA experiments but is different to our previously published data, which indicates the 2:1 (C-1:C-2) ratio in regioisomer formation in nucleotides or nucleosides. We suggest that the data presented in this communication indicate a different mechanism between nucleotides and DNA in BMO-derived adduct formation- Dimroth rearrangement dominates in nucleotides, but in double stranded DNA a direct alkylation is probably the major mechanism of adduct formation.  相似文献   

9.
Exocyclic alkylamino purine adducts, including N(2)-ethyldeoxyguanosine, N(2)-isopropyldeoxyguanosine, and N(6)-isopropyldeoxyadenosine, occur as a consequence of reactions of DNA with toxins such as the ethanol metabolite acetaldehyde, diisopropylnitrosamine, and diisopropyltriazene. However, there are few data addressing the biological consequences of these adducts when present in DNA. Therefore, we assessed the mutagenicities of these single, chemically synthesized exocyclic amino adducts when placed site-specifically in the supF gene in the reporter plasmid pLSX and replicated in Escherichia coli, comparing the mutagenic potential of these exocyclic amino adducts to that of O(6)-ethyldeoxyguanosine. Inclusion of deoxyuridines on the strand complementary to the adducts at 5' and 3' flanking positions resulted in mutant fractions of N(2)-ethyldeoxyguanosine and N(2)-isopropyldeoxyguanosine-containing plasmid of 1.4+/-0.5% and 5.7+/-2.5%, respectively, both of which were significantly greater than control plasmid containing deoxyuridines but no adduct (p=0.04 and 0.003, respectively). The mutagenicities of the three exocyclic alkylamino purine adducts tested were of smaller magnitude than O(6)-ethyldeoxyguanosine (mutant fraction=21.2+/-1.2%, p=0.00001) with the N(6)-isopropyldeoxyadenosine being the least mutagenic (mutant fraction=1.2+/-0.5%, p=0.13). The mutation spectrum generated by the N(2)-ethyl and -isopropyldeoxyguanosine adducts included adduct site-targeted G:C-->T:A transversions, adduct site single base deletions, and single base deletions three bases downstream from the adduct, which contrasted sharply with the mutation spectrum generated by the O(6)-ethyldeoxyguanosine lesion of 95% adduct site-targeted transitions. We conclude that N(2)-ethyl and -isopropyldeoxyguanosine are mutagenic adducts in E. coli whose mutation spectra differ markedly from that of O(6)-ethyldeoxyguanosine.  相似文献   

10.
In vitro reactions of glycidol with pyrimidine bases in calf thymus DNA   总被引:1,自引:0,他引:1  
The 3-carbon epoxide glycidol (GLC) was reacted with dCyd and dThd at pH 7.0 to 7.5 and 37 degrees C for 10 h. The only product detected from the reaction with dCyd was 3-(2,3-dihydroxypropyl)-dUrd (3-DHP-dUrd) whose structure was established from UV spectra, isobutane chemical ionization (CI) mass spectra together with accurate mass measurements and synthesis of 3-DHP-dUrd from reactions of GLC with dUrd. Reaction of GLC with dThd gave a single product, 3-DHP-dThd, whose structure was established from UV spectra and CI mass spectra together with accurate mass measurements. The compounds, 3-DHP-dUrd and 3-DHP-dThd, were identified and quantitated following in vitro reaction of GLC with calf thymus DNA at pH 7.0 to 7.5 and 37 degrees C for 10 h. The amounts of 3-DHP-dUrd and 3-DHP-dThd formed were 10 and 1 nmol/mg DNA respectively. Alkylation at the N-3 position of Cyt resulted in a rapid hydrolytic deamination of Cyt to form a Ura adduct. This phenomena was previously reported by us following reaction of propylene oxide (PO) with dCyd and following in vitro reaction of PO with calf thymus DNA under identical conditions. The rapid hydrolytic deamination of Cyt to Ura may be a general occurrence following alkylation of N-3 of Cyt by 3-carbon epoxides and is postulated to be related to the presence of a C-2 hydroxyl group on the 3-carbon propyl side chain. The implications of this newly discovered lesion in DNA in terms of the mutagenicity of GLC (and PO) remain to be elucidated.  相似文献   

11.
Ethylene oxide (EO) is a direct-acting SN2 alkylating agent and a rodent and probable human carcinogen. In vitro reactions of EO with calf thymus DNA in aqueous solution at neutral pH and 37 degrees C for 10 h resulted in the following 2-hydroxyethyl (HE) adducts (nmol/mg DNA): 7-HE-Gua (330), 3-HE-Ade (39), 1-HE-Ade (28), N6-HE-dAdo (6.2), 3-HE-Cyt (3.1), 3-HE-Ura (0.8) and 3-HE-dThd (2.0). Reference (marker) compounds were synthesized from reactions of EO with 2'-deoxyribonucleosides and DNA bases, isolated by paper and high performance liquid chromatography and characterized on the basis of chemical properties and UV, NMR and mass spectra. In agreement with our earlier studies with propylene oxide (PO) (Chem.-Biol. Interact., 67 (1988) 275-294) and glycidol (Cancer Biochem. Biophys., 11 (1990) 59-67), alkylation at N-3 of dCyd by EO under physiological conditions resulted in the rapid hydrolytic deamination of 3-HE-dCyd to 3-HE-dUrd. The hydroxyl group on the alkyl side chain which forms after epoxide alkylation is mechanistically involved in this rapid hydrolytic deamination. These results may provide important insights into the mechanisms of mutagenicity and carcinogenicity exhibited by EO and other SN2 aliphatic epoxides.  相似文献   

12.
Metabolism of ochratoxin A by primary cultures of rat hepatocytes.   总被引:5,自引:4,他引:1       下载免费PDF全文
Association of ochratoxin A with cultured rat hepatocytes occurs at 4 degrees C, and the saturation level in the medium is 0.3 mM ochratoxin A, with maximal binding after 60 min. At 37 degrees C the level of cell-associated ochratoxin A increased up to 6 h and remained at 2 nmol of toxin per mg of cell protein for 30 h. With increasing concentrations of ochratoxin A, increasing amounts of the toxin accumulated in the cells; saturation occurred at a concentration of 0.3 mM. Ochratoxin A was metabolized by hepatocytes at 37 degrees. (4R)-4-Hydroxyochratoxin A appeared in the medium at a maximal level (about 30 nmol/mg of cell protein) at an ochratoxin A concentration of 0.25 mM after 48 h of incubation. Small amounts of (4S)-4-hydroxyochratoxin A were detected only after incubation for 22 h or longer.  相似文献   

13.
The production of phytase and associated feed enzymes (phosphatase, xylanase, CMCase, alpha-amylase and beta-glucosidase) was determined in a thermotolerant fungus Mucor indicus MTCC 6333, isolated from composting soil. Solid-substrate culturing on wheat bran and optimizing other culture conditions (C and N sources, level of N, temperature, pH, culture age, inoculum level), increased the yield of phytase from 266 +/- 0.2 to 513 +/- 0.4 nkat/g substrate dry mass. The culture extract also contained 112, 194, 171, 396, and 333 nkat/g substrate of phosphatase, xylanase, CMCase, beta-glucosidase and alpha-amylase activities, respectively. Simple 2-step purification employing anion exchange and gel filtration chromatography resulted in 21.9-fold purified phytase. The optimum pH and temperature were pH 6.0 and 70 degrees C, respectively. The phytase was thermostable under acidic conditions, showing 82% residual activity after exposure to 60 degrees C at pH 3.0 and 5.0 for 2 h, and displayed broad substrate specificity. The Km was 200 nmol/L and v(lim) of 113 nmol/s per mg protein with dodecasodium phytate as substrate. In vitro feed trial with feed enzyme resulted in the release of 1.68 g inorganic P/kg of feed after 6 h of incubation at 37 degrees C.  相似文献   

14.
Covalent DNA adducts of the antitumor antibiotic CC-1065 and its analogues undergo a retrohomologous Michael reaction in aqueous/organic solvent mixtures to regenerate the initial cyclopropylpyrroloindole (CPI) structure and, presumably, intact DNA. This reaction, which at higher temperatures competes with depurination of the N3-alkylated adenine, also occurs to a significant extent at 37 degrees C in neutral aqueous solution. Tritium-labeled adozelesin, covalently bonded to a 3-kilobase DNA restriction fragment which was exhaustively extracted to remove unbonded drug, was efficiently transferred to a 1-kilobase fragment upon coincubation for 20 h at 37 degrees C in aqueous buffer. Covalent adducts of adozelesin, but not CC-1065, on calf thymus DNA were cytotoxic to L1210 cells after incubation for 3 days at 37 degrees C, indicating that reversal of DNA alkylation can mediate potent cellular effects for simplified CC-1065 analogues.  相似文献   

15.
When O-acetyl-4-(hydroxyamino)quinoline 1-oxide (Ac-4HAQO) reacts with double-stranded DNA at 37 degrees C the major products, N2-guanine, C8-guanine, and N6-adenine adducts, are formed in the proportions of 5:3:2, respectively. When the reaction is carried out with single-stranded DNA at 0 degree C, the products are found in the ratio 1:7:2. Unique 174-bp DNA fragments were modified in these ways and used as substrates for the 3'-5' exonuclease activity of T4 DNA polymerase. The results obtained showed that the exonuclease is blocked by the N2-guanine adduct but not the other two adducts. Interpretation of the cleavage patterns suggested that the enzyme stopped 2 nucleotides before the N2-guanine adduct. The N2-guanine adduct lies in the minor groove of the DNA double helix, while the other two adducts are found in the major groove. Apparently, only the former hinders progression of the enzyme.  相似文献   

16.
The rodent carcinogens dimethylcarbamyl chloride (DMCC) and diethylcarbamyl chloride (DECC) react with dGuo (pH 7.0–7.5, 37°C, 4 h) to form the O6-acyl derivatives 6-dimethylcarbamyloxy-2′-deoxyguanosine (6-DMC-dGuo) and 6-diethylcarbamyloxy-2′-deoxyguanosine (6-DEC-dGuo), respectively. Reaction of DMCC with dThd under identical conditions yielded 4-dimethylamino-thymidine (4-DMA-dThd). Compounds 6-DMC-dGuo and 6-DEC-dGuo undergo a nucleophilic aromatic substitution reaction with dimethylamine (DMA) to form 6-dimethylamino-2′-deoxyguanosine (6-DMA-dGuo) via displacement of the C-6 dialkylcarbamyloxy moiety. The substitution reaction did not take place when diethylamine or NH3 were substituted for DMA. The structures of the new compounds 6-DMC-dGuo, 6-DEC-dGuo, 4-DMA-dThd and 6-DMA-dGuo were deduced from chemical analyses and syntheses, UV and nuclear magnetic resonance (NMR) spectra and electron impact, isobutane chemical ionization and source insertion isobutane chemical ionization mass spectra. It was postulated that 4-DMA-dThd was formed following reaction of the transient intermediate 4-DMC-dThd with DMA formed by hydrolysis of DMCC. Calf thymus DNA was reacted in vitro with DMCC (pH 7.0–7.5, 37°C, 4 h) and the modified DNA hydrolyzed enzymatically to 2′-deoxynucleosides. Compounds 6-DMC-dGuo, 4-DMA-dThd and 6-DMA-dGuo were identified in the hydrolysate by high-pressure liquid chromatography (HPLC). In an indentical manner 6-DEC-dGuo was identified following in vitro reaction of DECC with calf thymus DNA. Compounds 6-DEC-dGuo and 6-DMC-dGuo possess novel structures with respect to the types of adducts known to be formed between carcinogens and bases in DNA. The implications of these findings with respect to chemical mutagenesis and carcinogenesis is discussed. The structural relationship between N4-dimethyl-5-methylcytosine (4-dimethylamino-Thy) formed in DNA following in vitro reaction with DMCC and 5-methylcytosine, the only modified base found in vertebrate DNA is noted.  相似文献   

17.
The possible carcinogenicity of styrene is believed to be related to the DNA-binding properties of styrene 7,8-oxide (SO). In order to compare the intrinsic reactivity of the different nucleophilic sites in DNA towards SO and to evaluate the candidates for human biomonitoring we have determined the second-order rate constants and stabilities of several SO-adducts in double-stranded DNA. These include alpha- and beta-isomers of N7-substituted and alphaN(2)-substituted guanines, alpha- and betaN3-substituted and alphaN(6)-substituted adenines as well as betaN3- and alphaN(4)-substituted cytosines. The highest rate constants were found for the spontaneously depurinating N7-guanines being ca. 3-15-fold higher than those for the stable adducts. When the relative proportions of different alkylation products were determined in course of time, after a single addition of SO, the labile N7-guanines and N3-adenines were the major products at early time points. After 144 h of incubation at 37 degrees C, alphaN(6)-SO-adenine and alphaN(2)-SO-guanine as well as betaN3-SO-uracil were the major adducts. Regarding human biomonitoring, the N7-substituted guanines should be one of the main targets because of the high reactivity of the N7-atom of guanine. However, in the case of chronic styrene exposures the chemically more stable DNA adducts may become important.  相似文献   

18.
The conformation of adducts derived from the reactions and covalent binding of the (+) and (-) enantiomers of 7 beta, 8 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9,10-tetrahydrobenzo(a)pyrene (anti-BaPDE) with double-stranded calf thymus DNA in vitro were investigated utilizing the electric linear dichroism technique. The linear dichroism and absorption spectra of the covalent DNA complexes are interpreted in terms of a superposition of two types of binding sites. One of these conformations (site I) is a complex in which the plane of the pyrene residue is close to parallel (within 30 degrees) to the planes of the DNA bases (quasi-intercalation), while the other (site II) is an external binding site; this latter type of adduct is attributed to the covalent binding of anti-BaPDE to the exocyclic amino group of deoxyguanine (N2-dG), while site I adducts are attributed to the O6-deoxyguanine and N6-deoxyadenine adducts identified in the product analysis of P. Brookes and M.R. Osborne (Carcinogenesis (1982) 3, 1223-1226). Site II adducts are dominant (approximately 90% in the covalent complexes derived from the (+) enantiomer), but account for only 50 +/- 5% of the adducts in the case of the (-)-enantiomer. The orientation of site II complexes is different by 20 +/- 10 degrees in the adducts derived from the binding of the (+) and the (-) enantiomers to DNA, the long axis of the pyrene chromophore being oriented more parallel to the axis of the DNA helix in the case of the (+) enantiomer. These findings support the proposals by Brookes and Osborne that the difference in spatial orientation of the N2-dG adducts of (-)-anti-BaPDE together with their lower abundance may account for the lower biological activity of the (-) enantiomer. The external site II adducts, rather than site I adducts, appear to be correlated with the biological activity of these compounds.  相似文献   

19.
漆酶在磁性壳聚糖微球上的固定及其酶学性质研究   总被引:5,自引:0,他引:5  
以磁性壳聚糖微球为载体,戊二醛为交联剂,共价结合制备固定化漆酶。探讨了漆酶固定化的影响因素,并对固定化漆酶的性质进行了研究。确定漆酶固定化适宜条件为:50 mg磁性壳聚糖微球,加入10mL 0.8mg/mL 漆酶磷酸盐缓冲液(0.1mol/L,pH 7.0),在4℃固定2h。固定化酶最适pH为3.0, 最适温度分别为10℃和55℃,均比游离酶降低5℃。在pH 3.0,温度37℃时,固定化酶对ABTS的表观米氏常数为171.1μmol/L。与游离酶相比,该固定化漆酶热稳定性明显提高,并具有良好的操作和存储稳定性。  相似文献   

20.
Exocyclic adducts of DNA bases, such as etheno- and hydroxyalkano- ones, are generated by a variety of bifunctional agents, including endogenously formed products of lipid peroxidation. In this work we selectively modified cytosines in the 5'-d(TTT TTT CTT TTT CTT TTT CTT TTT T)-3' oligonucleotide using: chloroacetaldehyde to obtain 3,N(4)-alpha-hydroxyethano- (HEC) and 3,N(4)-etheno- (epsilonC), acrolein to obtain 3,N(4)-alpha-hydroxypropano- (HPC) and crotonaldehyde to obtain 3,N(4)-alpha-hydroxy-gamma-methylpropano- (mHPC) adducts of cytosine. The studied adducts are alkali-labile which results in oligonucleotide strain breaks at the sites of modification upon strong base treatment. The oligonucleotides carrying adducted cytosines were studied as substrates of Escherichia coli Mug, human TDG and fission yeast Thp1p glycosylases. All the adducts studied are excised by bacterial Mug although with various efficiency: epsilonC >HEC >HPC >mHPC. The yeast enzyme excises efficiently epsilonC>HEC>HPC, whereas the human enzyme excises only epsilonC. The pH-dependence curves of excision of eC, HEC and HPC by Mug are bell shaped and the most efficient excision of adducts occurs within the pH range of 8.6-9.6. The observed increase of excision of HEC and HPC above pH 7.2 can be explained by deprotonation of these adducts, which are high pK(a) compounds and exist in a protonated form at neutrality. On the other hand, since epsilonC is in a neutral form in the pH range studied, we postulate an involvement of an additional catalytic factor. We hypothesize that the enzyme structure undergoes a pH-induced rearrangement allowing the participation of Lys68 of Mug in catalysis via a hydrogen bond interaction of its epsilon-amino group with N(4) of the cytosine exocyclic adducts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号