首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A chemostat culture technique has been developed for the growth of an unsaturated fatty acid auxotroph of Saccharomyces cerevisiae. Any chosen steady-state cellular unsaturated fatty acid level between 75 and 15% of the total fatty acids could be established and maintained. In all cultures the steady-state glucose concentrations were maintained at levels below that which induces catabolite repression.The efficiency of oxidative phosphorylation as determined from the molar growth yield decreased as the cellular unsaturated fatty acid composition was lowered. The number of moles of ATP produced by oxidative phosphorylation per mole of glucose utilized was 7.2, 4.8, 0.7, and 0.4 for cells in which 75, 50, 44, and 34%, respectively, of the total fatty acids were unsaturated.The lesion in oxidative phosphorylation was a direct result of lowering the membrane unsaturated fatty acid composition as the respiratory activities and cytochrome content of cells and mitochondria were unaffected by a decrease in the cellular unsaturated fatty acid level from the wild-type value of about 75% down to about 34%.In cells which contained lipids with 22–28% unsaturated fatty acids, cyanide-sensitive respiration was absent, and the levels of all mitochondrial cytochromes were less than 10% of normal. The reduction in the levels of cytochromes aa3 and b appeared to be a consequence of a loss of mitochondrial protein synthetic activity in such cells. The level of cytochrome c was also greatly decreased, indicating that the cellular unsaturated fatty acid composition was affecting either the synthesis in the cytoplasm of mitochondrial proteins or the assembly of these proteins in the mitochondria.  相似文献   

2.
1. The fatty acid composition of the membrane lipids of a fatty acid desaturase mutant of Saccharomyces cerevisiae was manipulated by growing the organism in a medium containing defined fatty acid supplements. 2. Mitochondria were obtained whose fatty acids contain between 20% and 80% unsaturated fatty acids. 3. Mitochondria with high proportions of unsaturated fatty acids in their lipids have coupled oxidative phosphorylation with normal P/O ratios, accumulate K(+) ions in the presence of valinomycin and an energy source, and eject protons in an energy-dependent fashion. 4. If the unsaturated fatty acid content of the mitochondrial fatty acids is lowered to 20%, the mitochondria simultaneously lose active cation transport and the ability to couple phosphorylation to respiration. 5. The loss of energy-linked reactions is accompanied by an increased passive permeability of the mitochondria to protons. 6. Free fatty acids uncouple oxidative phosphorylation in yeast mitochondria and the effect is reversed by bovine serum albumin. 7. The free fatty acid contents of yeast mitochondria are unaffected by depletion of unsaturated fatty acids, and free fatty acids are not responsible for the uncoupling of oxidative phosphorylation in organelles depleted in unsaturated fatty acids. 8. It is suggested that the loss of energy-linked reactions in yeast mitochondria that are depleted in unsaturated fatty acids is a consequence of the increased passive permeability to protons, and is caused by a change in the physical properties of the lipid phase of the inner mitochondrial membrane.  相似文献   

3.
The fatty acid composition of yeast lipid was manipulated by using auxotrophic strain of S.cerevisiae, KD115, which requires unsaturated fatty acid (UFA) for its growth. It was possible to specifically enrich the yeast with different fatty acyl residues. As compared to wild type strain (S288C), the uptake of amino acids viz., L-alanine, glycine, L-glutamic acid, L-valine in KD115 was drastically reduced, however, the uptake of L-leucine and L-lysine was not affected by the change in lipid unsaturation. Kinetic studies revealed that KT and Jmax values for L-alanine were altered whereas for L-lysine they remained unaffected by UFA modification. Furthermore, unsaturation index for wild type cells was found to be fairly constant while it was variable in KD115 supplemented with different UFAs. It is observed that the variation in amino acid permeases activity which was affected by fluctuations in fatty acyl composition corresponds more to degree of unsaturation rather than growth stage of KD115.  相似文献   

4.
ATP synthase preparations [complex V, proton-translocatin ATPase (adenosine triphosphatase) and oligomycin-sensitive ATPase ] contain stoicheiometric amounts of lipoic acid residues (up to 6mol of lipoic acid/mol of ATPase complex) and catalyse net ATP synthesis in an uncoupler-and oligomycin-sensitive reaction utilizing dihydrolipoate, oleoyl-CoA and oleic acid, or in a reaction utilizing oleoyl-S-lipoate. The terminal reactions of oxidative phosphorylation are thus analogous to those of substrate-level phosphorylation.  相似文献   

5.
《Autophagy》2013,9(12):2154-2155
Freshly isolated, depolarized rat hepatocytes can repolarize into bile canalicular networks when plated in collagen sandwich cultures. We studied the events underlying this repolarization process, focusing on how hepatocytes restore ATP synthesis and resupply biosynthetic precursors after the stress of being isolated from liver. We found that soon after being plated in collagen sandwich cultures, hepatocytes converted their mitochondria into highly fused networks. This occurred through a combination of upregulation of mitochondrial fusion proteins and downregulation of a mitochondrial fission protein. Mitochondria also became more active for oxidative phosphorylation, leading to overall increased ATP levels within cells. We further observed that autophagy was upregulated in the repolarizing hepatocytes. Boosted autophagy levels likely served to recycle cellular precursors, supplying building blocks for repolarization. Repolarizing hepatocytes also extensively degraded lipid droplets, whose fatty acids provide precursors for β-oxidation to fuel oxidative phosphorylation in mitochondria. Thus, through coordination of mitochondrial fusion, autophagy, and lipid droplet consumption, depolarized hepatocytes are able to boost ATP synthesis and biosynthetic precursors to efficiently repolarize in collagen sandwich cultures.  相似文献   

6.
The influence of the physical state of membrane on L-alanine uptake has been investigated in Saccharomyces cerevisiae KD115, an unsaturated fatty acid auxotrophic mutant. By monitoring the unsaturation index and steady state fluorescence polarization of 1,6 diphenyl hexatriene (DPH), it was observed that at mid log phase the membrane fluidity increased with an increase in the number of double bonds of supplemented fatty acid. Arrhenius plots of the velocities for L-alanine transport in cells grown on palmitoleate, oleate, linoleate and linolenate were biphasic and dependent on supplemented unsaturated fatty acid. Results illustrate a correlation between membrane fluidity and shift in transition points. Further, results confirm the role of fatty acyl milieu in regulation of transport activity of S. cerevisiae.  相似文献   

7.
The unsaturated fatty acid-requiring mutant KD 115 of Saccharomyces cerevisiae secretes a lectin when grown in presence of oleic acid. This lectin is homogeneous on PAGE at pH 8.3, has an approximate molecular weight of 320,000, pI of 4.2 and contains about 60% sugar. It agglutinates chicken and different mammalian erythrocytes, but lyses rabbit red cells only. It is D-galactose-specific. To our knowledge, this is the first report of a hemagglutinin from yeast.  相似文献   

8.
1. The fatty acid composition of the ole-1 and ole-1 petite mutants of Saccharomyces cerevisiae was manipulated by growing the organism in the presence of defined supplements of Tween 80 or by allowing cells that had first been grown in the presence of Tween 80 to deplete their unsaturated fatty acids by sequent growth in the absence of Tween 80. 2. The transition temperature of Arrhenius plots of mitochondrial ATPase (adenosine triphosphatase) increases as the unsaturated fatty acid content is lowered. 3. Cells require larger amounts of unsaturated fatty acids to grow on ethanol at lower temperatures. 4. Cells that stop growing owing to unsaturated fatty acid depletion at low temperatures are induced to grow further by raising the temperature and this results in a further depletion of unsaturated acids. This is due to a higher rate, but not a greater efficiency, of mitochondrial ATP synthesis. 5. Arrhenius plots of the passive permeability of mitochondria to protons between 4 and 37 degrees C are linear. The rate and the Arrhenius activation energy of proton entry increase greatly as the unsaturated fatty acid content is lowered. 6. Unsaturated fatty acid depletion has the same effects on the proton permeability of ole-1 petite mitochondria, indicating that the mitochondrially synthesized subunits of the ATPase are not involved in the enhanced rates of proton entry. 7. The adenylate energy charge of depleted ole-1 cells is greatly decreased by growth on ethanol medium. 8. The adenylate energy charge of isolated mitochondria is also lowered by unsaturated fatty acid depletion. 9. The results confirm that unsaturated fatty acid depletion uncouples oxidative phosphorylation in yeast both in vivo and in vitro, and is a consequence of changes in the lipid part of the membrane.  相似文献   

9.
Mitochondria are the energy-producing organelles of the cell, generating ATP via oxidative phosphorylation mainly by using pyruvate derived from glycolytic processing of glucose. Ketone bodies generated by fatty acid oxidation can serve as alternative metabolites for aerobic energy production. The ketogenic diet, which is high in fat and low in carbohydrates, mimics the metabolic state of starvation, forcing the body to utilize fat as its primary source of energy. The ketogenic diet is used therapeutically for pharmacoresistant epilepsy and for “rare diseases” of glucose metabolism (glucose transporter type 1 and pyruvate dehydrogenase deficiency). As metabolic reprogramming from oxidative phosphorylation toward increased glycolysis is a hallmark of cancer cells; there is increasing evidence that the ketogenic diet may also be beneficial as an adjuvant cancer therapy by potentiating the antitumor effect of chemotherapy and radiation treatment.This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.  相似文献   

10.
Various unsaturated fatty acids had different effectiveness for maintaining the continued replication of functional mitochondria in an unsaturated fatty acid auxotroph of Saccharomyces cerevisiae (KD115). Certain isomers of octadecenoic acid (i.e., cis-9) and eicosatrienoic acid (i.e.,cis-8,11,14) permitted continued replication of mitochondria and provided cultures that contained only 4 to 5% cells that formed petite colonies. On the other hand, cultures grown with cis-12- or cis-13-octadecenoic acid or cis-11,14,17-eicosatrienoic acid, produced a 12- to 16-fold greater frequency of petite mutants (50-60%) after 8 to 10 generations of growth. The production of the petite mutants occurred despite adequate incorporation of these unsaturated fatty acids into cellular phospholipids and an apparently normal ability to undergo the initial steps in the induction of cellular respiration. The evidence suggests that some cellular processes necessary for continued mitochondrial replication depend on the structural features of the fatty acyl chains as well as the overall content of unsaturated fatty acids in membrane phospholipids. Impairment of that process by certain inadequate fatty acids or by an inadequate supply of a suitable fatty acid leads to a permanent loss of the mitochondrial genome from the cells of subsequent generations.  相似文献   

11.
Mitochondria play important roles in animal apoptosis and are implicated in salicylic acid (SA)-induced plant resistance to viral pathogens. In a previous study, we demonstrated that SA induces rapid inhibition of mitochondrial electron transport and oxidative phosphorylation in tobacco cells. In the present study, we report that plant programmed cell death induced during pathogen elicitor-induced hypersensitive response (HR) is also associated with altered mitochondrial functions. Harpin, an HR elicitor produced by Erwinia amylovora, induced inhibition of ATP synthesis in tobacco cell cultures. Inhibition of ATP synthesis occurred almost immediately after incubation with harpin and preceded hypersensitive cell death induced by the elicitor. Diphenylene iodonium, an inhibitor of the oxidative burst, did not block harpin-induced inhibition of ATP synthesis or cell death, suggesting that oxidative burst was not the direct cause for these two harpin-induced processes. Unlike SA, harpin had no significant effect on total respiratory O2 uptake of treated cells. However, respiration of harpin-treated tobacco cells became very sensitive to the alternative oxidase inhibitors salicyl-hydroxamic acid and n-propyl gallate. Thus, harpin treatment resulted in reduced capacity of mitochondrial cytochrome pathway electron transport, which could lead to the observed inhibition of ATP synthesis. Given the recently demonstrated roles of mitochondria in apoptosis, this rapid inhibition of mitochondrial functions may play a role in harpin-induced hypersensitive cell death.  相似文献   

12.
The path of LFA synthesis from acetate in developing castorbean seeds was associated with subcellular 10,000 g particles.Further fractionation of these particles by a stepwise densitygradient method showed the high possibility that the site ofLFA synthesis is the proplastid. A study on cofactor requirementswhen [1-14C]acetate predominantly incorporated into LFAs indicatedthat synthesis would be achieved by acetyl-CoA carboxylation,malonyl-ACP condensation. ATP, CoA, HCO3 and Mg++ orMn++ were essential for synthesis from acetate by the 10,000gparticulate system. Results of inhibhitor experiment suggestedthat the supply of ATP to the LFA synthesizing system is broughtabout by mitochondrial oxidative phosphorylation, when acetateis the sole precursor for LFA synthesis in this system. TheNADPH generating system was contained in the paticles, althoughthe addition of NADP+ and G-6-P increased synthesis. NADH markedlystimulated LFA synthesis from acetate. The primary role of NADHseems to be as a direct reductant in both steps involving thereduction and oxidative desaturation of fatty acid chains; particularly,in the former step, although NADH partially contributes to thesupply of ATP as a respiratory substrate. It is unlikely thatNADH works as a hydrogen donor to NADP+. LFA synthesis by thecastor bean particulate system was not stimulated by light,thus differing from that by leaf chloroplasts. (Received July 23, 1973; )  相似文献   

13.
1. The sterol, unsaturated fatty acid and cytochrome contents of cells of a delta-aminolaevulinate synthase mutant of Saccharomyces cerevisiae are manipulated by growing the organism in media containing defined supplements of delta-aminolaevulinate and other porphyrin intermediates. 2. If unsaturated fatty acids are added to the growth medium as Tween 80, sterol content and respiratory cytochromes alone are manipulated. 3. In the presence of delta-aminolaevulinate (10-50mg/1) cells exhibit moderate to high respiratory activity, but growth yields are low, indicating a loss of oxidative phosphorylation. This is associated with the depletion of membrane lipids, either unsaturated fatty acids and sterols together or sterols alone. 4. Sterol depletion leads to the loss of coupled mitochondrial oxidative phosphorylation in vitro. 5. The lesion in oxidative phosphorylation is associated with an increase in the passive permeability of sterol-depleted mitochondria to protons. 6. Arrhenius plots of mitochondrial permeability to protons indicate that the activation energy for proton entry increases as the sterol content of the membranes decreases. 7. Studies on a cytoplasmic petite mutant isolated from strain ole-3, which lacks a functional membrane-bound protein-translocating adenosine triphosphatase, indicate that proton permeability of the petite mitochondria varies as a function of sterol composition in the same way as that of ole-3 grande mitochondria. This indicates that sterols alone are probably directly responsible for the increased proton entry, owing to a reorganization of the lipid in the membrane. 8. Supplemented ole-3 cells with a normal lipid composition and normal or higher than normal respiratory activities have a growth efficiency only 65% of that of the wild-type, indicating that a further lesion in energy metabolism may be present.  相似文献   

14.
An investigation was made of the influence of mitochondrial unsaturated fatty acid composition on the following mitochondrial parameters: oscillation period, spin label motion (ESR), permeability, and oxidative phosphorylation. Liver mitochondria from rats fed diets deficient in or supplemented with essential fatty acids showed approximately the same total number of unsaturated fatty acids but changed unsaturation levels. Electron microscopy showed that the morphology of the inner membrane compartment was unchanged.

Two differences were correlated with unsaturated fatty acid composition: (1) a slower frequency (or time period) of the oscillatory state of energy-dependent ion transport and (2) a reduction in the motional freedom of each of three spin labels (12NS, 5N10 and 7N14). The increase in oscillation period could arise from a number of rate-limiting processes, including permeability of mitochondria to various anions, cations, and substrate metabolites. However, when the permeability of mitochondria to such substances was tested, no changes were observed in passive or active uptake of these substances or in the efficiency of oxidative phosphorylation under steady-state conditions.

Thus, the two parameters, oscillation period and freedom of spin label motion, which are dependent upon large domains of the mitochondrial membranes, are significantly influenced by the change in unsaturated fatty acid composition in essential fatty acid-depleted mitochondria, even though processes such as permeability of ionic materials and oxidative phosphorylation were not measurably affected by these changes in unsaturated fatty acid composition.  相似文献   


15.
Normal differentiated cells rely primarily on mitochondrial oxidative phosphorylation to produce adenosine triphosphate (ATP) to maintain their viability and functions by using three major bioenergetic fuels: glucose, glutamine and fatty acids. Many cancer cells, however, rely on aerobic glycolysis for their growth and survival, and recent studies indicate that some cancer cells depend on glutamine as well. This altered metabolism in cancers occurs through oncogene activation or loss of tumor suppressor genes in multiple signaling pathways, including the phosphoinositide 3-kinase and Myc pathways. Relatively little is known, however, about the role of fatty acids as a bioenergetic fuel in growth and survival of cancer cells. Here, we report that human glioblastoma SF188 cells oxidize fatty acids and that inhibition of fatty acid β-oxidation by etomoxir, a carnitine palmitoyltransferase 1 inhibitor, markedly reduces cellular ATP levels and viability. We also found that inhibition of fatty acid oxidation controls the NADPH level. In the presence of reactive oxygen species scavenger tiron, however, ATP depletion is prevented without restoring fatty acid oxidation. This suggests that oxidative stress may lead to bioenergetic failure and cell death. Our work provides evidence that mitochondrial fatty acid oxidation may provide NADPH for defense against oxidative stress and prevent ATP loss and cell death.  相似文献   

16.
Because adaptation to physiological changes in cellular energy demand is a crucial imperative for life, mitochondrial oxidative phosphorylation is tightly controlled by ATP consumption. Nevertheless, the mechanisms permitting such large variations in ATP synthesis capacity, as well as the consequence on the overall efficiency of oxidative phosphorylation, are not known. By investigating several physiological models in vivo in rats (hyper- and hypothyroidism, polyunsaturated fatty acid deficiency, and chronic ethanol intoxication) we found that the increase in hepatocyte respiration (from 9.8 to 22.7 nmol of O(2)/min/mg dry cells) was tightly correlated with total mitochondrial cytochrome content, expressed both per mg dry cells or per mg mitochondrial protein. Moreover, this increase in total cytochrome content was accompanied by an increase in the respective proportion of cytochrome oxidase; while total cytochrome content increased 2-fold (from 0.341 +/- 0.021 to 0.821 +/- 0.024 nmol/mg protein), cytochrome oxidase increased 10-fold (from 0.020 +/- 0.002 to 0.224 +/- 0.006 nmol/mg protein). This modification was associated with a decrease in the overall efficiency of the respiratory chain. Since cytochrome oxidase is well recognized for slippage between redox reactions and proton pumping, we suggest that this dramatic increase in cytochrome oxidase is responsible for the decrease in the overall efficiency of respiratory chain and, in turn, of ATP synthesis yield, linked to the adaptive increase in oxidative phosphorylation capacity.  相似文献   

17.
—β-Bungarotoxin, a presynaptically-acting polypeptide neurotoxin, caused an efflux from synaptosomes of previously accumulated γ-aminobutyric acid and 2-deoxy-d -glucose. The toxin-induced efflux of γ-aminobutyric acid occurred by a Na+ -dependent process while that of 2-deoxyglucose was Na+ -independent. These effects were also produced by treating synaptosomes with low molecular weight compounds, including fatty acids, that inhibit oxidative phosphorylation. After incubation with β-bungarotoxin, synaptosomes exhibited increased production of 14CO2 from [U-14C]glucose and decreased ATP levels. β-Bungarotoxin treatment of various subcellular membrane fractions caused the production of a factor that uncoupled oxidative phosphorylation when added to mitochondria. Mitochondria from toxin-treated brain tissue exhibited a limitation in the maximal rate of substrate utilization. We conclude that β-bungarotoxin acts by inhibiting oxidative phosphorylation in the mitochondria of nerve terminals. This inhibition accounts for the observed β-bungarotoxin effects on synaptosomes and at neuromuscular junctions. We suggest that the effects on energy metabolism result from a phospholipase A activity found to be associated with the toxin.  相似文献   

18.
Lipoic acid (1,2-dithiolane-pentanoic acid) is a dithiol which is effective in affording protection against oxidative stress by virtue of its two sulphydryl moieties. It is present in all kinds of eukaryotic and prokaryotic cells. As lipoamide, it functions as a cofactor in the multienzyme complexes that catalyse the oxidative decarboxylation of α-keto acids such as pyruvate, α-ketoglutarate, and branched-chain α-keto acids. The complete enzyme pathway responsible for the de novo synthesis of lipoic acid has not yet been elucidated. Octanoic acid appears to be the precursor for the eight-carbon fatty acid chain, and cysteine the source of sulfur. Lipoic acid is unique, among antioxidants, because it retains powerful antioxidant properties in both its reduced (dihydrolipoic acid) and oxidised (lipoic acid) forms. Both lipoic and dihydrolipoic acids have metal-chelating ability and quench activated oxygen species either in the cytosol or in the hydrophobic domains. Dihydrolipoic acid has more antioxidant properties than lipoic acid, and it plays an important role in the recycling of other oxidised radical scavengers such as glutathione, ascorbate and tocopherol. However, dihydrolipoic acid can also exert pro-oxidant properties both by its iron-reducing ability and by its ability to generate sulfur-containing radicals that can damage proteins. There are few quantitative data on lipoic acid contents in vegetables. It has been found in asparagus, wheat and potatoes, and recently, the presence of both lipoic and dihydrolipoic acids in roots, leaves and in the stroma of wheat has been demonstrated.  相似文献   

19.
20.
Goat mammary-gland microsomal fraction by itself induces synthesis of medium-chain-length fatty acids by goat mammary fatty acid synthetase and incorporates short- and medium-chain fatty acids into triacylglycerol. Addition of ATP in the absence or presence of Mg2+ totally inhibits triacylglycerol synthesis from short- and medium-chain fatty acids, and severely inhibits synthesis de novo of medium-chain fatty acids. The inhibition by ATP of fatty acid synthesis and triacylglycerol synthesis de novo can be relieved by glycerol 3-phosphate. The effect of ATP could not be mimicked by the non-hydrolysable ATP analogue, adenosine 5'-[beta,gamma-methylene]triphosphate and could not be shown to be caused by inhibition of the diacylglycerol acyltransferase by a phosphorylation reaction. Possible explanations for the mechanism of the inhibition by ATP are discussed, and a hypothetical model for its action is outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号