首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Loss of quantum yield in extremely low light   总被引:2,自引:0,他引:2  
Kirschbaum MU  Ohlemacher C  Küppers M 《Planta》2004,218(6):1046-1053
It has generally been assumed that the photosynthetic quantum yield of all C3 plants is essentially the same for all unstressed leaves at the same temperature and CO2 and O2 concentrations. However, some recent work by H.C. Timm et al. (2002, Trees 16:47–62) has shown that quantum yield can be reduced for some time after leaves have been exposed to darkness. To investigate under what light conditions quantum yield can be reduced, we carried out a number of experiments on leaves of a partial-shade (unlit greenhouse)-grown Coleus blumei Benth. hybrid. We found that after leaves had been exposed to complete darkness, quantum yield was reduced by about 60%. Only very low light levels were needed for quantum yield to be fully restored, with 5 mol quanta m–2 s–1 being sufficient for 85% of the quantum yield of fully induced leaves to be achieved. Leaves regained higher quantum yields upon exposure to higher light levels with an estimated time constant of 130 s. It was concluded that the loss of quantum yield would be quantitatively important only for leaves growing in very dense understoreys where maximum light levels might not exceed 5 mol quanta m–2 s–1 even in the middle of the day. Most leaves, even in understorey conditions, do, however, experience light levels in excess of 5 mol quanta m–2 s–1 over periods where they obtain most of their carbon so that the loss of quantum yield would affect total carbon gain of those leaves only marginally.Abbreviations FBPase Fructose-1,6-bisphosphatase - RuBP Ribulose-1,5-bisphosphate - Rubisco RuBP carboxylase/oxygenase  相似文献   

2.
UVirradiation of dissolved organic carbon (DOC) in the laboratory can producesmall, labile organic compounds utilizable by microbes, but few studies haveattempted to document this process in situ. 13Cnuclear magnetic resonance (NMR) was used to examine the bulk chemicalcomposition of natural and laboratory-irradiated high-molecular-weight DOC(HMW-DOC) from shaded (150 mol m–2s–1 average light in surface water) and open (1500mol m–2 s–1) field sitesoverone and a half years. 13C NMR revealed only small differences incarbon functional groups between laboratory irradiated and non-irradiatedHMW-DOC. However, bacterial protein productivity per cell (BPP) was enhanced innaturally irradiated samples of HMW-DOC in a field mesocosm experiment (p <0.05), suggesting that bacterial growth was enhanced by photochemicalproductionof labile DOC substrates. Absorbance characteristics such as spectral slope,absorbance at 350 nm, and the absorbance ratio 250nm/365 nm revealed that HMW-DOC was photoreactive,yetno differences in these values were found between samples irradiated with andwithout UV-B. In experiments conducted with simulated solar radiation in thelaboratory and with natural light in the field mesocosm experiment, UV-A(320–400 nm) and photosynthetically active radiation (PAR;400–700 nm) were more effective than UV-B (280–320nm) in HMW-DOC photolysis.  相似文献   

3.
The contribution of potential export of materials from bottom sedimentsand salt marshes into the water column of a shallow estuarine system of Ria deAveiro to the observed high bacterial productivity in the mid section of thisestuary was evaluated. Vertical profiles of physical, chemical and bacterialvariables were studied in the marine and brackish water zones, and oftransversal profiles in the brackish zone only. Although the concentrations ofseston (17–241 mg l–1), particulate organiccarbon (3–15.5 mg l–1) and chlorophyll(1.2–7.0 g l–1) varied widely, thevertical and transversal profiles were without much variation. Total bacterialnumber (0.2–8.5 × 109 cellsl–1) and the number of particle-attached bacteria(0.02–2.50 × 109 cellsl–1)along vertical and transversal profiles did not differ much, but the rate ofbacterial production (0.05–14.2 g C l–1h–1) and dissolved organic carbon concentration(6.0–69.2 mg l–1) were frequently highernear the salt marsh margin at the brackish water transect. The increase inproductivity could not be associated with runoff of particulate matter butcoincided with the inputs of dissolved organic carbon. The results of verticaland transversal profiles point to a minor role of particulate matter additionsfrom the salt marsh area or from bed sediments.  相似文献   

4.
High intensity ultrasound waves coupled with other form of energy obviously were initiators of pre-biochemical reactions; these reactions occurred in the water masses of the primordial Earth.Essential biological substances like formaldehyde, ammonia, hydrocyanic acid, and amino acids compounds similar to carbohydrates by their properties were synthesized in the field of ultrasound waves in model experiments.The main partners of these reactions are water and gases of reductional atmosphere: hydrogen, carbon monoxide, methane, nitrogen and argon.Formation of amino acids takes place in aqueous solutions of formaldehyde and hydroxylamine. The sonication yielded alanine and glycine, 2.0×10–7 and 1.8×10–7 molecules per 100 eV respectively.  相似文献   

5.
E. Chauvet  A. Fabre 《Hydrobiologia》1990,192(2-3):183-190
Water contents of suspended matter, algal pigments, particulate organic carbon and particulate phosphorus were measured in the rivers Garonne (2 sites) and Ariège (1 site) throughout an annual cycle. The general trend of the parameters was similar at the three sites. Depending on the sites, the period of algal growth (chlorophyll a + phaeopigments > 25 µg l–1), lasted from two to six weeks in August–September. The algal peaks reached 50 to 90 µg 1–1 of total pigments. High contents of particulate organic carbon (> 2 mg 1–1) occurred at the end of summer (coinciding with algal growth), and during the November and May floods. In summer 50–75 % of the suspended matter was organic, in spring this was 10 times less. The high linear correlation between particulate organic carbon and pigment contents (r = 0.87; P = 0.0001) suggested an algal origin of at least part of the particulate carbon. Algal carbon was minor in the annual fluxes of particulate carbon (25 to 39% depending on the sites), but relatively high in comparison with other rivers. The mean particulate phosphorus content calculated over the year was 24 µg l–1 ; it varied from 15 µg l–1 during the high water period to 28 µg 1–1 during the low water period. Likewise the percentage of particulate phosphorus in the suspended matter varied from 0.17 to 0.40. A negative linear correlation existed between particulate phosphorus content and specific discharge (r = – 0.46; P = 0.0001).The very marked seasonal trend of the parameters and the interactions led us to differentiate two modes of the rivers' functioning: a hydrologic phase and a biological phase. The hydrologic phase (high water) was dominated by the processes of erosion and transfer over the whole catchment area and the flood plain, while the biological phase was characterized by a high primary production in the river bed.  相似文献   

6.
In this study we investigated the basis for the reduction in the quantum yield of carbon assimilation in maize (Zea mays L. cv. LG11) caused by chilling in high light. After chilling attached maize leaves at 5° C for 6 h at high irradiance (1000 mol photons·m–2·s–1) chlorophyll fluorescence measurements indicated a serious effect on the efficiency of photochemical conversion by photosystem II (PSII) and measurements of [14C]atrazine binding showed that the plastoquinone binding site was altered in more than half of the PSII reaction centres. Although there were no direct effects of the chilling treatment on coupling-factor activity, ATP-formation capacity was affected because the photoinhibition of PSII led to a reduced capacity to energize the thylakoid membranes. In contrast to chilling at high irradiance, no photoinhibition of PSII accompanied the 20% decrease in the quantum yield of carbon assimilation when attached maize leaves were chilled in low light (50 mol photons·m–2·s–1). Thus it is clear that photoinhibition of PSII is not the sole cause of the light-dependent, chillinduced decrease in the quantum yield of carbon assimilation. During the recovery of photosynthesis from the chilling treatment it was observed that full [14C]atrazinebinding capacity and membrane-energization capacity recovered significantly more slowly than the quantum yield of carbon assimilation. Thus, not only is photoinhibition of PSII not the sole cause for the decreased quantum yield of carbon assimilation, apparently an appreciable population of photoinhibited PSII centres can be tolerated without any reduction in the quantum yield of carbon assimilation.Abbreviations and Symbols PPFD photosynthetically active photon flux density - PSII photosystem II - Fv/Fm ratio of variable to maximal fluorescence - quantum yield of carbon assimilation This work was supported in part by grants from the UK Agricultural and Food Research Council (AG 84/5) to N.R.B. and from the U.S. Department of Agriculture (Competitive Research Grant 87-CRCR-1-2381) to D.R.O. G.Y.N. was the recipient of a British Council scholarship and N.R.B. received a fellowship from the Organization for Economic Co-operation and Development (Project on Food Production and Preservation).  相似文献   

7.
The organic carbon cycle of a shallow, tundra lake (mean depth 1.45 m) was followed for 5 weeks of the open water period by examining CO2 fluxes through benthic respiration and anaerobic decomposition, photosynthesis of benthic and phytoplankton communities and gas exchange at the air-water interface. Total photosynthesis (as consumption of carbon dioxide) was 37.5 mmole C m–2 d–1, 83% of which was benthic and macrophytic. By direct measurement benthic respiration exceeded benthic photosynthesis by 6.6 mmole C m–2 d–1. The lake lost 1.4 × 106 moles C in two weeks after ice melted by degassing C02, and 6.8 mmole C m–2 d–1 (1.5 × 106 moles) during the remainder of the open water period; 2.2 mmole C m2 d–1 of this was release Of CO2 stored in the sediments by cryoconcentration the previous winter. Anaerobic microbial decomposition was only 4% of the benthic aerobic respiration rate of 38 mmole C m–2 d–1. An annual budget estimate for the lake indicated that 50% of the carbon was produced by the benthic community, 20% by phytoplankton, and 30% was allochthonous material. The relative contribution of allochthonous input was in accordance with measurement of the 15N of sedimented organic matter.  相似文献   

8.
Summary The nonsporulating extreme thermophile Thermus thermophilus was grown in continuous culture at dilution rates up to 2.65 h–1 at 75°C and pH 6.9 on complex medium. Concomitantly very low yield (Y=0.12 g cell dry weight g–1 utilized organic carbon) and incomplete substrate utilization (always less than 45%) were found. In batch cultures T. thermophilus could be grown with max =h–1, in shake flasks only with max =h–1 with the same low yield and incomplete substrate utilization. Stable steady states at 84C and 45°C were realized at a dilution rate of 0.3 h–1 whereas at 86°C and 40°C no growth could be detected. Artefacts arising from wall growth (in bioreactors) or improper materials must be ruled out. Inhibition of growth by organic substrates was demonstrated at low concentrations: a decrease in the yield obtained was found when more than 0.7 gl–1 of meat extract were supplied in the medium. The maintenance requirement for oxygen is potentially very high and was determined to be 10 to 15 mmol g–1 h–1.  相似文献   

9.
Bonanni  P.  Caprioli  R.  Ghiara  E.  Mignuzzi  C.  Orlandi  C.  Paganin  G.  Monti  A. 《Hydrobiologia》1992,235(1):553-568
The Orbetello lagoon is now highly eutrophic and has experienced increasing incidence of anoxia causing serious economic damage. A multidisciplinary study was commenced in March 1987 to investigate the part played by the lagoon sediments and interstitial water in recycling nutrients and contributing to the observed anoxia. Eleven undisturbed cores were collected and sub-sampled at 2 cm intervals. Interstitial water was obtained by centrifugation and analyzed for pH, Eh, nutrients, major and some minor elements. Differential fluxes from the sediments of 0.2–10 g cm–2 day–1 of ammonia and 0.02–0.7 g cm–2 day–1 of orthophosphate were obtained depending on the season, temperature of the sediments and the sampling location. A highly significant linear correlation (r 2 = 0.86) was found between bicarbonate and ammonia concentrations in the interstitial waters, due to the release of these compounds during the degradation organic matter. A diagenetic model was developed to predict the alkalinity of interstitial water from the theoretical reactions involved in the decomposition of organic matter. The predicted values for bicarbonate and ammonia agreed well with the experimental results.  相似文献   

10.
This study gives an insight into the source of organic carbon and nitrogen in the Godavari river and its tributaries, the yield of organic carbon from the catchment, seasonal variability in their concentration and the ultimate flux of organic and inorganic carbon into the Bay of Bengal. Particulate organic carbon/particulate organic nitrogen (POC/PON or C/N) ratios revealed that the dominant source of organic matter in the high season is from the soil (C/N = 8–14), while in the rest of the seasons, the river-derived (in situ) phytoplankton is the major source (C/N = l–8). Amount of organic materials carried from the lower catchment and flood plains to the oceans during the high season are 3 to 91 times higher than in the moderate and low seasons. Large-scale erosion and deforestation in the catchment has led to higher net yield of organic carbon in the Godavari catchment when compared to other major world rivers. The total flux of POC, and dissolved inorganic carbon (DIC) from the Godavari river to the Bay of Bengal is estimated as 756 × 109 and 2520 × 109 g yr–1, respectively. About 22% of POC is lost in the main channel because of oxidation of labile organic matter, entrapment of organic material behind dams/sedimentation along flood plains and river channel; the DIC fluxes as a function of alkalinity are conservative throughout the river channel. Finally, the C/N ratios (12) of the ultimate fluxes of particulate organic carbon suggest the dominance of refractory/stable soil organic matter that could eventually get buried in the coastal sediments on a geological time scale.  相似文献   

11.
Data concerning concentrations and fluxes of dissolved organic compounds (DOC) from marine and lacustrine environments are reviewed and discussed. Dissolved free amino acids and carbohydrates comprised the main fraction in the labile organic carbon pool. Dissolved free amino acids in marine waters varied between 3–1400 nM and those of freshwaters between 2.6–4124 nM. Dissolved free carbohydrates varied between 0.4–5000 nM in marine systems and between 14–1111 nM in freshwaters. The turnover times of both substrate pools varied in marine waters between 1.4 hours and 948 days and in freshwaters between 2 hours and 51 days. Measurements of stable12/13C-ratio and14C-isotope dating in ocean deep water samples revealed DOC turnover times between 2000–6000 years. Studies on carbon flows within the aquatic food webs revealed that about 50% of photosynthetically fixed carbon was channelled via DOC to the bacterioplankton. Excreted organic carbon varied between 1–70% of photosynthetically fixed carbon in marine waters and between 1–99% in freshwaters. The labile organic carbon pool represented only 10–30% of the DOC. The majority (70–90%) of the DOC was recalcitrant to microbial assimilation. Only 10–20% of the DOC could be easily chemically identified. Most of the large bulk material represented dissolved humic matter and neither the chemical structure nor the ecological function of the DOC is as yet clearly understood.Abbreviations ATP Adenosine Tri-Phosphate - AMS Accelerated Mass Spectrometry - BSA Bovine Serum Albumin - GlAse GlucosidAse activity - DAA Dissolved Amino Acids - DCAA Dissolved Combined Amino Acids - DFAA Dissolved Free Amino Acids - DTAA Dissolved Total Amino Acids - DCHO Dissolved Carbohydrates - DCCHO Dissolved Combined Carbohydrates - DFCHO Dissolved Free Carbohydrates - DTCHO Dissolved Total Carbohydrates - DLCFaAc Dissolved Long Chain Fatty Acids - DSCFaAc Dissolved Short Chain Fatty Acids - DOC Dissolved Organic Carbon - DOM Dissolved Organic Matter - DHM Dissolved Humic Matter - DTPhOH Dissolved Total Phenolic compounds - DCPhOH Dissolved Combined Phenolic compounds - DFPhOH Dissolved Free Phenolic conpounds - EOC Excreted Organic Carbon - HS Humic Substances - HPLC High Performance Liquid Chromatography - HTCO High-Temperature Catalytic Oxidation - (Kt+Sn) Transport Constant + Natural Substrate from Michaelis Menten Kinetics - LOCP Labile Organic Carbon Pool - OM Organic Matter - MEE Microbial Extracellular Enzymes - PER Percent of Extracellular Release - PhDOC Photosynthetically derived Dissolved Organic Carbon - POC Particulate Organic Carbon - ROCP Recalcitrant Organic Carbon Pool - Tt Turnover time - UDOC Utilizable Dissolved Organic Carbon - Vmax Maximum Uptake Velocity - WCO Wet Chemical Oxidation Dedicated to Prof. Drs. J. Overbeck on the occasion of his 70th birthday  相似文献   

12.
Incorporation of [14C]leucine into proteins of bacteria was studied in a temperate mesohumic lake. The maximum incorporation of [14C] leucine was reached at a concentration of 30 nm determined in dilution cultures. Growth experiments were used to estimate factors for converting leucine incorporation to bacterial cell numbers or biomass. The initially high conversion factors calculated by the derivative method decreased to lower values after the bacteria started to grow. Average conversion factors were 7.09 × 1016 cells mol–1 and 7.71 × 1015 m3 mol–1, if the high initial values were excluded. Using the cumulative method, the average conversion factor was 5.38 × 1015 m–3 mol–1 I . The empirically measured factor converting bacterial biomass to carbon was 0.36 pg C m–3 or 33.1 fg C cell–1. Bacterial production was highest during the growing season, ranging between 1.8 and 13.2 g C liter–1 day–1, and lowest in winter, at 0.2–2.9 g C liter–1 day–1. Bacterial production showed clear response to changes in the phytoplankton production, which indicates that photosynthetically produced dissolved compounds were used by bacteria. In the epilimnion bacterial production was, on average, 19–33% of primary production. Assuming 50% growth efficiency for bacteria, the allochthonous organic carbon could have also been an additional energy and carbon source for bacteria, especially in autumn and winter. In winter, a strong relationship was found between temperature and bacterial production. The measuring of [14C]leucine incorporation proved to be a simple and useful method for estimating bacterial production in humic water. However, an appropriate amount of [14C]leucine has to be used to ensure the maximum uptake of label and to minimize isotope dilution.  相似文献   

13.
The effects of light intensity, oxygen concentration, and pH on the rates of photosynthesis and net excretion by metalimnetic phytoplankton populations of Little Crooked Lake, Indiana, were studied. Photosynthetic rates increased from 1.42 to 3.14 mg C·mg–1 chlorophylla·hour–1 within a range of light intensities from 65 to 150E·m–2·sec–1, whereas net excretion remained constant at 0.05 mg C·mg–1 chlorophylla·hour–1. Bacteria assimilated approximately 50% of the carbon released by the phytoplankton under these conditions. Excreted carbon (organic compounds either assimilated by bacteria or dissolved in the lake water) was produced by phytoplankton at rates of 0.02–0.15 mg C·mg–1 chlorophylla·hour–1. These rates were 6%–13% of the photosynthetic rates of the phytoplankton. Both total excretion of carbon and bacterial assimilation of excreted carbon increased at high light intensities whereas net excretion remained fairly constant. Elevated oxygen concentrations in samples incubated at 150E· m–2·sec–1 decreased rates of both photosynthesis and net excretion. The photosynthetic rate increased from 3.0 to 5.0 mg C·mg–1 chlorophylla· hour–1 as the pH was raised from 7.5 to 8.8. Net excretion within this range decreased slightly. Calculation of total primary production using a numerical model showed that whereas 225.8 g C·m–2 was photosynthetically fixed between 12 May and 24 August 1982, a maximum of about 9.3 g C·m–2 was released extracellularly.  相似文献   

14.
The chemical compositions of ground water and organic matter in sediments were investigated at a sandy shore of Tokyo Bay, Japan to determine the fate of ground water NO3 . On the basis of Cl distribution in ground water, the beach was classified into freshwater (FR)-, transition (TR)-, and seawater (SW)-zones from the land toward the shoreline. The NO3 and N2O did not behave conservatively with respect to Cl during subsurface mixing of freshwater and seawater, suggesting NO3 consumption and N2O production in the TR-zone. Absence of beach vegetation indicated that NO3 assimilation by higher plants was not as important as NO3 sink. Low NH4 + concentrations in ground water revealed little reduction of NO3 to NH4 +. These facts implied that microbial denitrification and assimilation were the likely sinks for ground water NO3 . The potential activity and number of denitrifiers in water-saturated sediment were highest in the low-chlorinity part of the TR-zone. The location of the highest potential denitrification activity (DN-zone) overlapped with that of the highest NO3 concentration. The C/N ratio and carbon isotope ratio (13C) of organic matter in sediment (< 100 -m) varied from 12.0 to 22.5 and from –22.5 to –25.5, respectively. The 13C value was inversely related to the C/N ratio (r 2 = 0.968, n = 11), which was explained by the mixing of organic matters of terrestrial and marine origins. In the DN-zone, the fine sediments were rich in organic matters with high C/N ratios and low 13C values, implying that dissolved organic matters of terrestrial origin might have been immobilized under slightly saline conditions. A concurrent supply of NO3 and organic matter to the TR-zone by ground water discharge probably generates favorable conditions for denitrifiers. Ground water NO3 discharged to the beach is thus partially denitrified and fixed as microbial biomass before it enters the sea. Further studies are necessary to determine the relative contribution of these processes for NO3 removal.  相似文献   

15.
Elevated concentrations of Al have been observed in acidic surface waters. An assessment of the chemistry of aqueous Al is of interest because of its role as a toxicant to aquatic organisms, a pH buffer, and an adsorbent of orthophosphate and organic carbon. In this investigation we evaluated the spatial and temporal fluctuations of Al forms in an acidic drainage lake.High concentrations of NO 3 (51.0 ± 11 mol l–1), H+ (14.9 ± 3.5 mol l–1), and Al (19.6 ± 3.5 mol l–1) were introduced to Dart's Lake through drainage water during the snowmelt period. During low flow periods microbially mediated depletions of nitrate served to neutralize H+ and aluminum base neutralizing capacity. Thus in Dart's Lake, NO 3 transformations were extremely important in regulating short-term changes in pH and subsequent changes in the inorganic forms of Al. During stratification periods Al appeared to be non-conservative within the lake system. Although we know very little about the character and transformations of alumino-organic solutes, these substances were correlated with dissolved organic carbon (DOC) concentrations. Alumino-organic substances appear to be introduced to the lake from both drainage water and sediments.  相似文献   

16.
Iris Werner 《Polar Biology》2005,28(4):311-318
The under-ice habitat and fauna were studied during a typical winter situation at three stations in the western Barents Sea. Dense pack ice (7–10/10) prevailed and ice thickness ranged over <0.1–1.6 m covered by <0.1–0.6 m of snow. Air temperatures ranged between –1.8 and –27.5°C. The ice undersides were level, white and smooth. Temperature and salinity profiles in the under-ice water (0–5 m depth) were not stratified (T=–1.9 to –2.0°C and S=34.2–34.7). Concentrations of inorganic nutrients were high and concentrations of algal pigments were very low (0.02 g chlorophyll a l–1), indicating the state of biological winter. Contents of particulate organic carbon and nitrogen ranged over 84.2–241.3 and 5.3–16.4 g l–1, respectively, the C/N ratio over 11.2–15.5 pointing to the dominance of detritus in the under-ice water. Abundances of amphipods at the ice underside were lower than in other seasons: 0–1.8 ind. m–2 for Apherusa glacialis, 0–0.7 ind. m–2 for Onisimus spp., and 0–0.8 ind. m–2 for Gammarus wilkitzkii. A total of 22 metazoan taxa were found in the under-ice water, with copepods as the most diverse and numerous group. Total abundances ranged over 181–2,487 ind. m–3 (biomass: 70–2,439 g C m–3), showing lower values than in spring, summer and autumn. The dominant species was the calanoid copepod Pseudocalanus minutus (34–1,485 ind. m–3), contributing 19–65% to total abundances, followed by copepod nauplii (85–548 ind. m–3) and the cyclopoid copepod Oithona similis (44–262 ind. m–3). Sympagic (ice-associated) organisms occurred only rarely in the under-ice water layer.  相似文献   

17.
A model primitive gas containing a mixture of N2, CO and water vapor over a water pool (300 mL, 37 °C) was subjected to electric discharges. The discharge vessel (7 L in volume) was equipped with a CO2 absorber (The CO2 being formed during the discharge), thus simulating possible absorption of CO2 in the primitive ocean. The vessel also has a cold trap ( –15 °C), which protects the primary products against the further decomposition in the discharge phase by enabling these products to adhere to the trap. Since the partial pressures of CO and N2 decreased at rates of 1.5–1.7 cmHg day–1 and 0.1–0.2 cmHg day–1, respectively, the gases were added at regular intervals. The solution was analyzed at regular intervals for HCN, HCHO and urea, and maximum concentrations of about 50, 2, and 140 mM were observed. The discharge phase was continued for 6 months. In the solution, glycine (5.6% yield based on the carbon), glycylglycine (0.64%), orotic acid (0.004%) and small amounts of the other amino acids were found.  相似文献   

18.
Photosynthetic activity by phytoplankton was measured during the ice-free seasons of 1984, 1985 and 1987 using the 14C radioassay in high altitude Emerald Lake (California). Relative quantum yield (B) and light-saturated chlorophyll-specific carbon uptake (Pm B) were calculated from the relationship of light and photosynthesis fitted to a hyperbolic tangent function. Temporal changes in Pm B showed no regular pattern. Seasonal patterns of B generally had peaks in the summer and autumn. Phytoplankton biomass (as measured by chlorophyll a) and light-saturated carbon uptake (Pm) had peaks in the summer and autumn which were associated with vertical mixing. Estimates of mean daily carbon production were similar among the three years: 57 mg C m–2 2 d–1 in 1984, 70 mg C m–2 2 d–1 in 1985 and 60 mg C m–2 d–1 in 1987. Primary productivity in Emerald Lake is low compared to other montane lakes of California and similar to high-altitude or high-latitude lakes in other regions.  相似文献   

19.
This study describes the 0.1–3 m particle size fraction in a Precambrian Shield lake (37-ha Lake 382 in the Experimental Lakes Area, northwestern Ontario) receiving experimental additions of cadmium to determine fate and effects of low cadmium loading. This size fraction is important in binding cadmium in water. The study examined the feasibility of using near-infrared reflectance spectrophotometry (NIRS) for quantifying carbon, nitrogen, and phosphorus in this size fraction in 20-fold concentrated water samples from the lake and from a limnocorral experiment exploring the effect of fertilization on sedimentation of cadmium from the water column. NIRS was also used for detecting and characterizing organic matter in this size fraction associated with cadmium. Aliquots (1.5 ml) of the concentrated samples were applied to pre-ashed Whatman GF/C glass fibre filters. The filters containing 40–150 g carbon, 1–21 g nitrogen, 1–10 g phosphorus, and 0.21–2.21 ng cadmium, were scanned by NIRS, then analyzed by traditional methods for carbon, nitrogen, and phosphorus. Cadmium was determined in the concentrated samples by atomic absorption spectrophotometry. Coefficients of determination,r 2, between chemically-measured and NIRS-predicted values were 0.921 for carbon, 0.852 for nitrogen, 0.869 for phosphorus, and 0.752 for cadmium. Several lines of evidence suggested that the organic material associated with cadmium was predominantly algae <3 m. NIRS is useful for measuring organic matter in this size fraction and is potentially useful for characterizing organic matter that binds metals.  相似文献   

20.
A bloom of the unicellular green alga Dunaliella parva (up to 15 000 cells m1–1) developed in the upper 5 m of the water column of the Dead Sea in May-June 1992. This was the first mass development of Dunaliella observed in the lake since 1980, when another bloom was reported (up to 8800 cells m1–1). For a bloom of Dunaliella to develop in the Dead Sea, two conditions must be fulfilled: the salinity of the upper water layers must become sufficiently low as a result of dilution with rain floods, and phosphate must be available. During the period 1983–1991 the lake was holomictic, hardly any dilution with rainwater occurred, and no Dunaliella cells were observed. Heavy rain floods in the winter of 1991–1992 caused a new stratification, in which the upper 5 m of the water column became diluted to about 70% of their former salinity. Measurements of the isotopic composition of inorganic carbon in the upper water layer during the bloom (13C = 5.1) indicate a strong fractionation when compared with the estimated –3.4 prior to the bloom. The particulate organic carbon formed was highly enriched in light carbon isotopes ( 13 C = – 13.5). The algal bloom rapidly declined during the months June–July, probably as a result of the formation of resting stages, which sank to the bloom. A smaller secondary bloom (up to 1850 cells m1–1) developed between 6 and 10 m depth at the end of the summer. Salinity values at this deep chlorophyll maximum were much beyond those conductive for the growth of Dunaliella, and the factors responsible for the development of this bloom are still unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号