首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA–protein cross-links are generated by both endogenous and exogenous DNA damaging agents, as intermediates during normal DNA metabolism, and during abortive base excision repair. Cross-links are relatively common lesions that are lethal when they block progression of DNA polymerases. DNA–protein cross-links may be broadly categorized into four groups by the DNA and protein chemistries near the cross-link and by the source of the cross-link: DNA–protein cross-links may be found (1) in nicked DNA at the 3' end of one strand (topo I), (2) in nicked DNA at the 5' end of one strand (pol beta), (3) at the 5' ends of both strands adjacent to nicks in close proximity (topo II; Spo 11), and (4) in one strand of duplex DNA (UV irradiation; bifunctional carcinogens and chemotherapeutic agents). Repair mechanisms are reasonably well-defined for groups 1 and 3, and suggested for groups 2 and 4. Our work is focused on the recognition and removal of DNA–protein cross-links in duplex DNA (group 4).  相似文献   

2.
3.
4.
Replication-competent forms of herpes simplex virus 1 (HSV-1) defective in the viral neurovirulence factor infected cell protein 34.5 (ICP34.5) are under investigation for use in the therapeutic treatment of cancer. In mouse models, intratumoral injection of ICP34.5-defective oncolytic HSVs (oHSVs) has resulted in the infection and lysis of tumor cells, an associated decrease in tumor size, and increased survival times. The ability of these oHSVs to infect and lyse cells is frequently characterized as exclusive to or selective for tumor cells. However, the extent to which ICP34.5-deficient HSV-1 replicates in and may be neurotoxic to normal brain cell types in vivo is poorly understood. Here we report that HSV-1 defective in ICP34.5 expression is capable of establishing a productive infection in at least one normal mouse brain cell type. We show that γ34.5 deletion viruses replicate productively in and induce cellular damage in infected ependymal cells. Further evaluation of the effects of oHSVs on normal brain cells in animal models is needed to enhance our understanding of the risks associated with the use of current and future oHSVs in the brains of clinical trial subjects and to provide information that can be used to create improved oHSVs for future use.Several types of replication-competent neuroattenuated herpes simplex viruses (HSVs) are currently being evaluated in clinical cancer trials for safety and therapeutic activity (32), as well as for vaccine development (20). A critical safety concern associated with the clinical use of these oncolytic HSVs (oHSVs) is their ability to enter, replicate in, and spread to a wide range of cell types in different regions of the nervous system. One potential complication resulting from invasion of the central nervous system by HSV is herpes simplex encephalitis (HSE), an infection that causes lifelong neurological damage or death. A limited number of genes have been demonstrated to contribute to the virus''s ability to trigger HSE. The viral gene γ34.5 encodes the neurovirulence protein infected cell protein 34.5 (ICP34.5) (29). Viruses lacking the γ34.5 gene (e.g., R3616 and 1716) were found to be 5 logs less neurovirulent than wild-type strains of HSV-1 (4, 19, 36), as quantified by the intracranial LD50, i.e., the lethal dose in 50% of mice inoculated intracerebroventricularly with the virus. The basis for this neuroattenuation was initially reported to be the inability of the γ34.5 deletion viruses to infect or replicate in brain cells (4). Subsequent immunohistochemical studies on infected brain tissue of intracerebroventricularly inoculated mice suggested that γ34.5 deletion viruses retained the ability to infect a wide range of brain cell types and to replicate in and, by day 7, destroy ependymal cells (ECs) (16, 21).To create a more neuroattenuated and thus safer virus, the virus G207 was constructed from the γ34.5 deletion virus R3616 by insertional mutagenesis of the UL39 gene (25). The UL39 gene encodes the large subunit of the viral ribonucleotide reductase (vRR) (29). Cellular ribonucleotide reductase is a DNA synthetic enzyme which is of low abundance in quiescent cells but is critical for the synthesis of DNA precursors and is thus abundant in mitotically active cells such as cancer cells. Based on the phenotype of viruses mutated in the vRR alone (13), this double-deletion virus lacking both ICP34.5 and vRR expression is predicted to restrict viral replication to cancer cells expressing cellular RR at levels sufficient to support viral replication (25). In preclinical studies with mice, inoculation with G207 via the intracerebroventricular route failed to destroy the EC layer at 5 days postinoculation (34). These studies supported the concept that a double-deletion virus may be safer in clinical trials than a virus lacking only ICP34.5 expression.To test the hypothesis that productive replication of γ34.5 deletion viruses is restricted to cancer cells, we developed sensitive methods to examine the ability of γ34.5 deletion viruses, with either intact or mutated vRR, to replicate productively in vivo and to complete the multistep process of virion assembly and egress.Common to most models of HSV virion assembly and egress is the observation that capsid proteins translated in the cytoplasm are imported to the nucleus, where a capsid shell is assembled and viral DNA is subsequently packaged. Capsids containing viral DNA are distinguished by an electron-dense (dark) center, whereas capsids lacking viral DNA contain a core protein visible by electron microscopy (EM) often as an inner concentric circle. In subsequent steps, DNA-filled capsids acquire an envelope by budding through the inner nuclear membrane into the perinuclear space. Capsids observed between the inner and outer nuclear membranes have an envelope and tegument and resemble mature extracellular virions (10).Consensus is lacking on the specific sequence of subsequent stages of viral egress, and multiple pathways may exist (3, 18, 24, 30). In the subsequent step of the envelopment-deenvelopment-reenvelopment model (18, 30), enveloped capsids in the perinuclear space lose their envelope by fusion with the outer nuclear membrane as the capsids enter the cytoplasm. In this model, progeny viruses are thus present in the cytoplasm as naked capsids. Cytoplasmic naked capsids acquire their mature envelope as they bud into a cytoplasmic organelle (e.g., a Golgi body).According to an alternative model, enveloped capsids move within the perinuclear space into the endoplasmic reticulum (ER), which is continuous with the perinuclear space (33). From this space, enveloped capsids, individually or in groups, bud off within a vesicle membrane characteristic of the outer nuclear membrane/ER. Within these vesicles, enveloped virions are transported through the cytoplasm. In a final step common to both models, the cytoplasmic vesicle releases mature enveloped virions into the extracellular space by fusing with the cell membrane.ECs are an ideal cell type for these studies due to their distinct morphology and location (described below) and their reported function as neural stem cells (15). We reasoned that since mitotic activity is the reported basis for the productive replication and selectivity of γ34.5 deletion viruses in cancer cells (9, 34), and ECs may be mitotically active, if any normal brain cell type were to support productive replication of γ34.5 deletion viruses, ECs would be the most likely candidate.ECs line the cerebral ventricles, acting as a semipermeable barrier between the brain parenchyma and the cerebrospinal fluid (CSF) in the ventricles (7, 12). Their location thus makes them easily exposed to the virus via intraventricular injections. Their location, combined with their morphologically distinct cuboid shape with kinocilia and microvilli that protrude into the CSF, allows them to be easily excised and recognized under both light microscopy and EM.Here we report the results of a side-by-side comparative study evaluating whether a double-deletion virus similar to G207 and a virus lacking only ICP34.5 expression differ from each other and from a wild-type virus in the ability to infect and replicate productively in ECs of the mouse brain in vivo. The results of these studies are consistent with results of other studies in that they demonstrate that viruses similar to those used in clinical trials (e.g., G207, HSV1716) have a greatly attenuated ability to replicate compared to that of a wild-type virus. However, our data also show very clearly that γ34.5 deletion viruses do replicate productively in infected mouse brain ECs in vivo. These studies suggest that (i) ECs can serve as an exquisitely sensitive model for future evaluations of the ability of oHSVs to replicate productively in normal mouse brain cells and (ii) the potential exists for double-deletion oHSVs to damage normal brain cells. Thus, further comparative studies are warranted to determine whether this risk is sufficiently high to restrict the administration of ICP34.5 deletion viruses in or near the cerebral ventricles in clinical studies.  相似文献   

5.
MicroRNAs have been shown to contribute to a repertoire of host-pathogen interactions during viral infection. Our previous study demonstrated that microRNA-30e* (miR-30e*) directly targeted the IκBα 3′-UTR and disrupted the NF-κB/IκBα negative feedback loop, leading to hyperactivation of NF-κB. This current study investigated the possible role of miR-30e* in the regulation of innate immunity associated with dengue virus (DENV) infection. We found that DENV infection could induce miR-30e* expression in DENV-permissive cells, and such an overexpression of miR-30e* upregulated IFN-β and the downstream IFN-stimulated genes (ISGs) such as OAS1, MxA and IFITM1, and suppressed DENV replication. Furthermore, suppression of IκBα mediates the enhancing effect of miR-30e* on IFN-β-induced antiviral response. Collectively, our findings suggest a modulatory role of miR-30e* in DENV induced IFN-β signaling via the NF-κB-dependent pathway. Further investigation is needed to evaluate whether miR-30e* has an anti-DENV effect in vivo.  相似文献   

6.
With the goal of developing non-viral techniques for exogenous gene delivery into mammalian cells, we have studied receptor-mediated gene transfer using complexes of plasmid DNA and galactosylated poly-L-lysine, poly(L-Lys)Gal. To evaluate the optimal parameters for efficient gene transfer into human hepatoma HepG2 cells by the DNA–poly(L-Lys)Gal complexes, the bacterial reporter genes lacZ and cat were used. Examination of the reporter gene expression level showed that the efficiency of DNA delivery into the cells depends on the structure of DNA–poly(L-Lys)Gal complexes formed at various ionic strength values. The efficiency of DNA transfer into the cells also depends on DNA/poly(L-Lys)Gal molar ratio in the complexes. Plasmid vector carrying human apolipoprotein A-I (apoA-I) gene was injected as its complex with poly(L-Lys)Gal into rat tail vein. Some level of ApoA-I was detected in the serum of the injected rats. Also, the human apoA-I-containing plasmid was found to be captured specifically by the rat liver cells and transported into the cell nuclei, where it can persist as an episome-like structure for at least a week. After repeated injections of DNA–poly(L-Lys)Gal complexes, the level of human ApoA-I in rat serum increases, probably, due to accumulation of functional human apoA-I gene in the liver cell nuclei. The data seem to be useful for the development of non-viral approaches to gene therapy of cardiovascular diseases.  相似文献   

7.
8.
9.
10.
11.
Respiratory syncytial virus (RSV) is a common respiratory viral infection in children which is associated with immune dysregulation and subsequent induction and exacerbations of asthma. We recently reported that treatment of primary human epithelial cells (PHBE cells) with transforming growth factor β (TGF-β) enhanced RSV replication. Here, we report that the enhancement of RSV replication is mediated by induction of cell cycle arrest. These data were confirmed by using pharmacologic inhibitors of cell cycle progression, which significantly enhanced RSV replication. Our data also showed that RSV infection alone resulted in cell cycle arrest in A549 and PHBE cells. Interestingly, our data showed that RSV infection induced the expression of TGF-β in epithelial cells. Blocking of TGF-β with anti-TGF-β antibody or use of a specific TGF-β receptor signaling inhibitor resulted in rescue of the RSV-induced cell cycle arrest, suggesting an autocrine mechanism. Collectively, our data demonstrate that RSV regulates the cell cycle through TGF-β in order to enhance its replication. These findings identify a novel pathway for upregulation of virus replication and suggest a plausible mechanism for association of RSV with immune dysregulation and asthma.Respiratory syncytial virus (RSV) is a single-stranded RNA virus and is a common cause of severe respiratory infections in children. RSV predominantly infects lung epithelial cells, inducing bronchiolitis, and in high-risk individuals it can cause lung fibrosis, airway hyperresponsiveness, mucus secretion, and edema. Interestingly, there is substantial evidence to show that RSV infection induces a dysregulation of the immune response (13, 14, 24, 28, 49). However, the molecular underpinnings of this immune dysregulation are not yet completely understood.It has been established that through its interaction with the immune system, RSV is associated with development and exacerbations of asthma, which is a chronic inflammatory respiratory disease (17, 18, 36, 41). In comparison to healthy individuals, those with asthma have an exaggerated inflammatory response during respiratory virus infections. Despite many studies reporting the involvement of RSV with asthma development and exacerbations, the underlining mechanisms are not yet fully delineated.Previously, we reported that transforming growth factor β (TGF-β) treatment enhanced RSV replication (30). TGF-β is a pleiotropic cytokine with diverse effects on T-cell differentiation and immune regulation and potent anti-inflammatory functions (21, 27, 33, 45). In the lung microenvironment TGF-β inhibits cell proliferation, induces mucus secretion, and regulates airway fibrosis and remodeling (2, 5, 6, 20, 23, 34, 39, 46), all of which are hallmarks of chronic asthma. Specifically, it has been reported that TGF-β expression is elevated in bronchoalveolar lavage fluids and lung tissue of asthmatic patients (9, 32, 48).In addition, genetic studies have found an association between asthma phenotype and TGF-β (19, 26, 38, 43). These studies have identified several single-nucleotide polymorphisms (C509T, T869C, and G915C) in the promoter and coding region of TGF-β that contributed to the increase in gene expression and are significantly associated with childhood wheezing, asthma diagnosis, and asthma severity. Despite this correlation between TGF-β and asthma, the interaction between this key cytokine and respiratory viral infection is poorly understood.A well-known function of TGF-β is the regulation of cell cycle progression. Activation of TGF-β-induced signaling pathways promotes cell cycle arrest in both the G0/G1 and G2/M phases of the cell cycle (7, 8, 25, 29, 40, 42, 44). In the current study, our data showed that TGF-β induction of cell cycle arrest was beneficial to RSV replication. The association of cell cycle arrest with RSV replication was determined by using three different pharmacological inhibitors of cell cycle progression, which enhanced RSV replication. Interestingly, RSV infection alone resulted in secretion of active TGF-β. Treatment of epithelial cells with anti-TGF-β or a specific inhibitor of TGF-β receptor (TGF-βR) signaling resulted in a reduction in RSV replication.In the current study, our data uncover a new pathway for virus regulation of the cell cycle. These findings support our hypothesis that RSV regulates and utilizes TGF-β in lung epithelium to enhance its replication, which may contribute to the physiological changes in the lung leading to immune dysregulation, asthma development, and exacerbations.  相似文献   

12.
13.
Vaccination with autologous cancer cells expressing a potent foreign antigen is promising for immunotherapy of tumors. A construct was obtained to transfect cancer cells with the hemagglutinin–neuraminidase (HN) gene of the Newcastle disease virus (NDV). Specific primers were designed, and the HN cDNA was amplified from RNA isolated from the allantoic fluid of NDV-infected embryonated chicken eggs. The amplified fragment was cloned in pCR2.1, sequenced, and recloned in expression vector pCDNA3.1/Zeo(+). The resulting construct was used to transfect mouse myeloma cells SP2/0. Production of HN was checked by ELISA and by a neuraminidase activity assay. Cell agglutination on ice was proposed as a test for surface HN.  相似文献   

14.
15.
To explore the proteomic changes of placental trophoblastic cells in preeclampsia–eclampsia (PE), placental trophoblastic cells from normally pregnant women and women with hypertension during gestational period were prepared by laser capture microdissection (LCM), and proteins isolated from these cells were subjected to labeling and proteolysis with isotope-coded affinity tag reagent. A qualitative and quantitative analysis of the proteome expression of placental trophoblastic cells was made using two-dimensional liquid chromatography tandem mass spectrometry (2D LC–MS/MS). A total of 831 proteins in placental trophoblastic cells were identified by combined use of LCM technique and 2D LC–MS/MS. The result was superior to that of conventional two-dimensional electrophoresis method. There were marked differences in 169 proteins of placental trophoblastic cells between normally pregnant women and women with PE. Of 70 (41.4 %) proteins with more than twofold differences, 31 proteins were down-regulated, and 39 were up-regulated in placental trophoblastic cells of the woman with PE. Laminin expression in placenta trophoblastic cells of women with PE was significantly down-regulated as confirmed by Western blot analysis. These findings provide insights into the proteomic changes in placental trophoblastic cells in response to PE and may identify novel protein targets associated with the pathogenesis of PE.  相似文献   

16.
17.
18.
ADENOVIRUS infection of human embryonic kidney (HEK) cultures seems to induce cellular RNA synthesis, which is preceded by a transient increase in the activities of the Mg2+-activated and Mn2+-(NH4)2SO4-activated DNA dependent RNA polymerases and in the rate of histone acetylation1. The two polymerase reactions, assayed in isolated cell nuclei, apparently reflect the activities of distinct nucleolar and nucleo-plasmic RNA polymerases2,3. We were therefore prompted to test the effect of a specific inhibitor of the mammalian DNA-dependent RNA polymerase function, α-amanitin, on the multiplication of adenovirus. α-Amanitin is a bicyclic octapeptide isolated from the poisonous mushroom Amanita phalloides4 and which blocks RNA synthesis in intact animals5,6. Nuclei isolated from the livers of such animals show a reduced activity of the RNA polymerases associated with nucleoplasm5,6 and the nucleolus6.  相似文献   

19.
In a search to identify chemical modifications to improve the properties of siRNA, we have investigated the effect of the 2 ′-O-methyl-2-thiouridine modification on the biological activity of siRNA. Our results indicate that judicious placement of 2 ′-O-methyl-2-thiouridine residues could lead to modified siRNA with activity in mammalian cells.  相似文献   

20.
The 2–5A system is an interferon-regulated antiviral RNA decay pathway present in cells of higher vertebrates. Two enzymes are essential, a 2–5A synthetase which produces 5′-phosphorylated, 2′,5′-linked oligoadenylates (2–5A) in response to doublestranded RNA, and the 2–5A-dependent RNase L. To determine if these human proteins would be functional in plants, we expressed the human cDNAs for a 2–5A synthetase and RNase L in separate tobacco plants. Both proteins were enzymatically active in extracts of transgenic plants while such activities were not detected in the control plants. Furthermore, activation by 2–5A of RNase L in the transgenic plant leaves was shown to cause degradation of ribosomal RNA. The requirement for both the synthetase and RNase L for antiviral activity was underscored by the observations that expression of human RNase L alone or 2–5A-synthetase alone was insufficient to protect plants against either tobacco etch virus or tobacco mosaic virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号