首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The TolB protein interacts with the porins of Escherichia coli.   总被引:1,自引:0,他引:1       下载免费PDF全文
TolB is a periplasmic protein of the cell envelope Tol complex. It is partially membrane associated through an interaction with the outer membrane lipoprotein PAL (peptidoglycan-associated lipoprotein), which also belongs to the Tol system. The interaction of TolB with outer membrane porins of Escherichia coli was investigated with a purified TolB derivative harboring a six-histidine tag. TolB interacted with the trimeric porins OmpF, OmpC, PhoE, and LamB but not with their denatured monomeric forms or OmpA. These interactions took place both in the presence and in the absence of lipopolysaccharide. TolA, an inner membrane component of the Tol system, also interacts with the trimeric porins via its central periplasmic domain (R. Dérouiche, M. Gavioli, H. Bénédetti, A. Prilipov, C. Lazdunski, and R. Lloubès, EMBO J. 15:6408-6415, 1996). In the presence of the purified central domain of TolA (TolAIIHis), the TolB-porin complexes disappeared to form TolAIIHis-porin complexes. These results suggest that the interactions of TolA and TolB with porins might take place in vivo and might be concomitant events participating in porin assembly. They also suggest that the Tol system as a whole may be involved in porin assembly in the outer membrane.  相似文献   

2.
TolA central domain interacts with Escherichia coli porins.   总被引:3,自引:0,他引:3       下载免费PDF全文
TolA is an inner membrane protein with three domains: a transmembrane N-terminus and periplasmic central and C-terminal domains. The interaction of TolA with outer membrane porins of Escherichia coli was investigated. Western blot analyses of cell extracts with anti-TolA antibodies indicated that TolA forms high molecular weight complexes specifically with trimeric OmpF, OmpC, PhoE and LamB, but not with OmpA. The interaction of purified TolA domains with purified porins was also studied. TolA interacted with OmpF, PhoE and LamB porins via its central domain, but not with either their denatured monomeric forms or OmpA. Moreover, the presence or absence of lipopolysaccharides associated with trimeric porins did not modify the interactions. These results suggest that the specific interaction of TolA with outer membrane porins might be relevant to the function of Tol proteins.  相似文献   

3.
The synthesis of a membrane-bound MalE β-galactosidase hybrid protein, when induced by growth of Escherichia coli on maltose, leads to inhibition of cell division and eventually a reduced rate of mass increase. In addition, the relative rate of synthesis of outer membrane proteins, but not that of inner membrane proteins, was reduced by about 50%. Kinetic experiments demonstrated that this reduction coincided with the period of maximum synthesis of the hybrid protein (and another maltose-inducible protein, LamB). The accumulation of this abnormal protein in the envelope therefore appeared specifically to inhibit the synthesis, the assembly of outer membrane proteins, or both, indicating that the hybrid protein blocks some export site or causes the sequestration of some limiting factor(s) involved in the export process. Since the MalE protein is normally located in the periplasm, the results also suggest that the synthesis of periplasmic and outer membrane proteins may involve some steps in common. The reduced rate of synthesis of outer membrane proteins was also accompanied by the accumulation in the envelope of at least one outer membrane protein and at least two inner membrane proteins as higher-molecular-weight forms, indicating that processing (removal of the N-terminal signal sequence) was also disrupted by the presence of the hybrid protein. These results may indicate that the assembly of these membrane proteins is blocked at a relatively late step rather than at the level of primary recognition of some site by the signal sequence. In addition, the results suggest that some step common to the biogenesis of quite different kinds of envelope protein is blocked by the presence of the hybrid protein.  相似文献   

4.
The outer membrane protects Gram-negative bacteria against a harsh environment. At the same time, the embedded proteins fulfil a number of tasks that are crucial to the bacterial cell, such as solute and protein translocation, as well as signal transduction. Unlike membrane proteins from all other sources, integral outer membrane proteins do not consist of transmembrane alpha-helices, but instead fold into antiparallel beta-barrels. Over recent years, the atomic structures of several outer membrane proteins, belonging to six families, have been determined. They include the OmpA membrane domain, the OmpX protein, phospholipase A, general porins (OmpF, PhoE), substrate-specific porins (LamB, ScrY) and the TonB-dependent iron siderophore transporters FhuA and FepA. These crystallographic studies have yielded invaluable insight into and decisively advanced the understanding of the functions of these intriguing proteins. Our review is aimed at discussing their common principles and peculiarities as well as open questions associated with them.  相似文献   

5.
The bacterial cytoplasmic membrane is a principal site of protein translocation, lipid and peptidoglycan biogenesis, signal transduction, transporters and energy generating components of the respiratory chain. Although 25–30% of bacterial proteomes consist of membrane proteins, a comprehensive understanding of their influence on fundamental cellular processes is incomplete. Here, we show that YciB and DcrB, two small cytoplasmic membrane proteins of previously unknown functions, play an essential synergistic role in maintaining cell envelope integrity of Escherichia coli. Lack of both YciB and DcrB results in pleiotropic cell defects including increased levels of lipopolysaccharide, membrane vesiculation, dynamic shrinking and extension of the cytoplasmic membrane accompanied by lysis and cell death. The stalling of an abundant outer membrane lipoprotein, Lpp, at the periplasmic face of the inner membrane leads to lethal inner membrane–peptidoglycan linkages. Additionally, the periplasmic chaperone Skp contributes to yciB dcrB mutant cell death by possibly mistargeting stalled porins into the inner membrane. Consistent with the idea of a compromised envelope in the yciB dcrB mutant, multiple envelope stress response systems are induced, with Cpx signal transduction being required for growth. Taken together, our results suggest a fundamental role for YciB and DcrB in cell envelope biogenesis.  相似文献   

6.
Proteins destined for either the periplasm or the outer membrane of Escherichia coli are translocated from the cytoplasm by a common mechanism. It is generally assumed that outer membrane proteins, such as LamB (maltoporin or lambda receptor), which are rich in beta-structure, contain additional targeting information that directs proper membrane insertion. During transit to the outer membrane, these proteins may pass, in soluble form, through the periplasm or remain membrane associated and reach their final destination via sites of inner membrane-outer membrane contact (zones of adhesion). We report lamB mutations that slow signal sequence cleavage, delay release of the protein from the inner membrane, and interfere with maltoporin biogenesis. This result is most easily explained by proposing a soluble, periplasmic LamB assembly intermediate. Additionally, we found that such lamB mutations confer several novel phenotypes consistent with an abortive attempt by the cell to target these tethered LamB molecules. These phenotypes may allow isolation of mutants in which the process of outer membrane protein targeting is altered.  相似文献   

7.
Escherichia coli cells lacking the OmpF and OmpC proteins, porin proteins of the outer membrane, are often unstable and easily revert to strains which either have regained one or both of these proteins or contain a new outer membrane protein. The structural importance of porin proteins in the cell surface was studied in the present work. Tris-hydrochloride buffer at a concentration of 120 mM caused deformation of the cell surface of a strain lacking these porins; the undulated appearance of the negatively stained cell surface changed to a smooth and expanded form. The Tris-induced deformation was seldom observed with either the wild-type strain or a pseudorevertant that possessed the OmpF protein. The role of the OmpF protein in stabilizing the cell surface against Tris treatment could be slightly taken over by the LamB protein, which shares a number of unique properties with the former proteins. The deformation of the cell surface by Tris-hydrochloride buffer was accompanied by a loss of viability, the lethal damage being especially significant when the cells lacked porins. Upon induction with maltose, cells with the undulated appearance could absorb lambda phages, whereas the deformed cells could not. These results suggest that the instability of cells lacking porins is primarily due to a structural defect of the outer membrane.  相似文献   

8.
Abstract Plasmid pBCP 68 carrying the lamB gene of Escherichia coli was introduced and expressed in Yersinia enterocolitica cells. The presence of LamB protein in the outer membrane of the wild-type strain of Y. enterocolitica coincided with the loss of the OmpC and OmpF porins. Western blot analysis showed that LamB in Y. enterocolitica cells co-migrated with authentic monomeric LamB, indicating that its signal peptide was recognized and cleaved by Y. enterocolitica and properly integrated into the outer membrane. The expression of LamB made Y. enterocolitica sensitive to phage λ.  相似文献   

9.
10.
The folding mechanisms for β-barrel membrane proteins present unique challenges because acquisition of both secondary and tertiary structure is coupled with insertion into the bilayer. For the porins in Escherichia coli outer membrane, the assembly pathway also includes association into homotrimers. We study the folding pathway for purified LamB protein in detergent and observe extreme hysteresis in unfolding and refolding, as indicated by the shift in intrinsic fluorescence. The strong hysteresis is not seen in unfolding and refolding a mutant LamB protein lacking the disulfide bond, as it unfolds at much lower denaturant concentrations than wild type LamB protein. The disulfide bond is proposed to stabilize the structure of LamB protein by clasping together the two sides of Loop 1 as it lines the inner cavity of the barrel. In addition we find that low pH promotes dissociation of the LamB trimer to folded monomers, which run at about one third the size of the native trimer during SDS PAGE and are much more resistant to trypsin than the unfolded protein. We postulate the loss at low pH of two salt bridges between Loop 2 of the neighboring subunit and the inner wall of the monomer barrel destabilizes the quaternary structure.  相似文献   

11.
The suppression of some envelope proteins, localized in both the periplasm and the outer and inner membranes was shown in phoB and phoM phoR mutants of E. coli. Among these proteins are the proteins of the phosphate regulon and also those not pertaining them. As a result of phoB and phoM phoR mutations, the cytoplasmic membrane was found to be lacking in minor protein of 28,000 Mr, which belongs to the phosphate regulon. Besides, the phoM phoR mutation leads to the loss of protein of 55,000 Mr of the outer membranes, whereas phoB mutation causes loss of protein 37 000 Mr, identified as outer membrane protein OmpT. A damage in the phoB mutant of the protein proteolytic modification, probably determining the suppression of the biosynthesis of E. coli envelope secreted proteins is suggested.  相似文献   

12.
Signal transduction pathways that communicate information from the cell envelope to the cytoplasm of bacteria are crucial to maintain cell envelope homeostasis. In Escherichia coli, one of the key pathways that ensures the integrity of the cell envelope during stress and normal growth is controlled by the alternative sigma factor sigmaE. Recent studies have elucidated the signal transduction pathway that activates sigmaE in response to misfolded outer membrane porins. Unfolded porins trigger the degradation of the sigmaE-specific antisigma factor RseA by the sequential action of two inner membrane proteases, leading to release of sigmaE from RseA, and induction of the stress response. This mechanism of signal transduction, regulated intramembrane proteolysis, is used in transmembrane signaling pathways from bacteria to humans.  相似文献   

13.
14.
Reversion analysis has been employed to isolate suppressors that restore export of a unique LamB signal sequence mutant. The mutation results in a substitution of Arg for Met at position 19, which prevents LamB export to the outer membrane and leads to a Dex- phenotype. Unlike other LamB signal sequence mutants utilized for reversion analysis, LamB19R becomes stably associated with the inner membrane in an export-specific manner. In this study, Dex+ revertants were selected and various suppressors were isolated. One of the extragenic suppressors, designated prlZ1, was chosen for further study. prlZ1 maps to 69 min on the Escherichia coli chromosome. The suppressor is dominant and SecB dependent. In addition to its effect on lamB19R, prlZ1 suppresses the export defect of signal sequence point mutations at positions 12, 15, and 16, as well as several point mutations in the maltose-binding protein signal sequence. prlZ1 does not suppress deletion mutations in either signal sequence. This pattern of suppression can be explained by interaction of a helical LamB signal sequence with the suppressor.  相似文献   

15.
A synthetic peptide corresponding to the signal sequence of wild type Escherichia coli lambda-receptor protein (LamB) inhibits in vitro translocation of precursors of both alkaline phosphatase and outer membrane protein A into E. coli membrane vesicles (half-maximal inhibition at 1-2 microM). By contrast, the inhibitory effect was nearly absent in a synthetic peptide corresponding to the signal sequence from a mutant strain that harbors a deletion mutation in the LamB signal region and displays an export-defective phenotype for this protein in vivo. Two peptides derived from pseudorevertant strains that arose from the deletion mutant and exported LamB in vivo were found to inhibit in vitro translocation with effectiveness that correlated with their in vivo export ability. Controls indicated that these synthetic signal peptides did not disrupt the E. coli membrane vesicles. These results can be interpreted to indicate that the presequences of exported proteins interact specifically with a receptor either in the E. coli inner membrane or in the cytoplasmic fraction. However, biophysical data for the family of signal peptides studied here reveal that they will spontaneously insert into a lipid membrane at concentrations comparable to those that cause inhibition. Hence, an indirect effect mediated by the lipid bilayer of the membrane must be considered.  相似文献   

16.
The regulation of synthesis and export of outer membrane proteins of Escherichia coli was examined by overexpressing ompC in multicopy either from its own promoter or from an inducible promoter in an expression vector. Overexpression of OmpC protein resulted in a nearly complete inhibition of synthesis of the OmpA and LamB outer membrane proteins but had no effect on synthesis of the periplasmic maltose-binding protein. Immunoprecipitation of labeled proteins showed no evidence of accumulation of uncleaved precursor forms of OmpA or maltose-binding protein following induction of OmpC overexpression. The inhibition of OmpA and LamB was tightly coupled to OmpC overexpression and occurred very rapidly, reaching a high level within 2 min after induction. OmpC overexpression did not cause a significant decrease in expression of a LamB-LacZ hybrid protein produced from a lamB-lacZ fusion in which the fusion joint was at the second amino acid of the LamB signal sequence. There was no significant decrease in rate of synthesis of ompA mRNA as measured by filter hybridization of pulse-labeled RNA. These results indicate that the inhibition is at the level of translation. We propose that cells are able to monitor expression of exported proteins by sensing occupancy of some limiting component in the export machinery and use this to regulate translation of these proteins.  相似文献   

17.
Selection for suppressors of defects in the signal sequence of secretory proteins has led most commonly to identification of prlA alleles and less often to identification of prlG alleles. These genes, secY/prlA and secE/prlG, encode integral membrane components of the protein translocation system of Escherichia coli. We demonstrate that an outer membrane protein, LamB, that lacks a signal sequence can be exported with reasonable efficiency in both prlA and prlG suppressor strains. Although the signal sequence is not absolutely required for export of LamB, the level of export in the absence of prl suppressor alleles is exceedingly low. Such strains are phenotypically LamB-, and functional LamB can be detected only by using sensitive infectious-center assays. Suppression of the LamB signal sequence deletion is dependent on normal components of the export pathway, indicating that suppression is not occurring through a bypass mechanism. Our results indicate that the majority of the known prlA suppressors function by an identical mechanism and, further, that the prlG suppressors work in a similar fashion. We propose that both PrlA and PrlG suppressors lack a proofreading activity that normally rejects defective precursors from the export pathway.  相似文献   

18.
Translational control of exported proteins in Escherichia coli   总被引:5,自引:4,他引:1       下载免费PDF全文
We recently described the suppression of export of a class of periplasmic proteins of Escherichia coli caused by overproduction of a C-terminal truncated periplasmic enzyme (GlpQ'). This truncated protein was not released into the periplasm but remained attached to the inner membrane and was accessible from the periplasm. The presence of GlpQ' in the membrane strongly reduced the appearance in the periplasm of some periplasmic proteins, including the maltose-binding protein (MBP), but did not affect outer membrane proteins, including the lambda receptor (LamB) (R. Hengge and W. Boos, J. Bacteriol., 162:972-978, 1985). To investigate this phenomenon further we examined the fate of MBP in comparison with the outer membrane protein LamB. We found that not only localization but also synthesis of MBP was impaired, indicating a coupling of translation and export. Synthesis and secretion of LamB were not affected. The possibility that this influence was exerted via the level of cyclic AMP could be excluded. Synthesis of MBP with altered signal sequences was also reduced, demonstrating that export-defective MBP which ultimately remains in the cytoplasm abortively enters the export pathway. When GlpQ' was expressed in a secA51(Ts) strain, the inhibition of MBP synthesis caused by GlpQ' was dominant over the precursor accumulation usually caused by secA51(Ts) at 41 degrees C. Therefore, GlpQ' acts before or at the level of recognition by SecA. For LamB the usual secA51(Ts) phenotype was observed. We propose a mechanism by which GlpQ' blocks an yet unknown membrane protein, the function of which is to couple translation and export of a subclass of periplasmic proteins.  相似文献   

19.
This study led to the extension and refinement of our current model for the global response of Pseudomonas putida KT2440 to phenol by getting insights into the adaptive response mechanisms involving the membrane proteome. A two-dimensional gel electrophoresis based protocol was optimized to allow the quantitative comparison of membrane proteins, by combining inner and outer membrane fractionation with membrane protein solubilization using the detergent dodecylmaltoside. Following phenol exposure, a coordinate increased content of protein subunits of known or putative solvent efflux pump systems (e.g. TtgA, TtgC, Ttg2A, Ttg2C, and PP_1516-7) and a decreased content of porins OprB, OprF, OprG and OprQ was registered, consistent with an adaptive response to reduce phenol intracellular concentration. This adaptive response may in part be mediated by post-translational modifications, as suggested by the relative content of the multiple forms identified for a few porins and efflux pump subunits. Results also suggest the important role of protein chaperones, of cell envelope and cell surface and of a more active respiratory chain in the response to phenol. All these mechanistic insights may be extended to Pseudomonas adaptation to solvents, of possible impact in biodegradation, bioremediation and biocatalysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号