首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 0 毫秒
1.
Two yeast killer toxins active on spoilage yeasts belonging to the genus Dekkera/Brettanomyces are here described for the first time. The two toxins produced by Pichia anomala (DBVPG 3003) and Kluyveromyces wickerhamii (DBVPG 6077), and named Pikt and Kwkt, respectively, differ for molecular weight and biochemical properties. Interestingly, the fungicidal effect exerted by Pikt and Kwkt against Dekkera bruxellensis is stable for at least 10 days in wine. Thus, a potential application for the two toxins as antimicrobial agents active on Dekkera/Brettanomyces during wine ageing and storage can be hypothesised.  相似文献   

2.
Brettanomyces/Dekkera yeasts have been identified as part of the grape yeast flora. They are well known for colonizing the cellar environmental and spoiling wines, causing haze, turbidity and strong off-flavours in wines and enhancing the volatile acidity. As the general practices applied to combat Brettanomyces/Dekkera yeasts are not particularly appropriate during wine ageing and storage, a biological alternative to curtailing their growth would be welcomed in winemaking. In this study, we investigated the Kluyveromyces wickerhamii killer toxin (Kwkt) that is active against Brettanomyces/Dekkera spoilage yeasts. Purification procedures allowed the identification of Kwkt as a protein with an apparent molecular mass of 72 kDa and without any glycosyl residue. Interestingly, purified Kwkt has fungicidal effects at low concentrations under the physicochemical conditions of winemaking. The addition of 40 and 80 mg L(-1) purified Kwkt showed efficient antispoilage effects, controlling both growth and metabolic activity of sensitive spoilage yeasts. At these two killer toxin concentrations, compounds known to contribute to the 'Brett' character of wines, such as ethyl phenols, were not produced. Thus, purified Kwkt appears to be a suitable biological strategy to control Brettanomyces/Dekkera yeasts during fermentation, wine ageing and storage.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号