首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial symbionts of plants can affect decomposition by altering the quality or quantity of host plant tissue (substrate) or the micro‐environment where decomposition occurs (conditioning). In C3 grasses, foliar fungal endophytes (Clavicipitaceae) can increase plant resistance to drought and/or produce alkaloids that reduce herbivory – effects that may also influence host litter composition and subsequent litter decomposition. We studied the effect of the endophyte Epichloë sp. on litter decomposition in the Great Lakes dunes (USA) using a reciprocal design altering endophyte presence/absence in both American beachgrass Ammophila breviligulata substrate (litter bags) and its conditioning of the decomposition microenvironment. Symbiont treatments were crossed with rain‐out shelters that altered growing season precipitation. The first year of decomposition, senesced leaf substrate from A. breviligulata with Epichloë decomposed 21% faster than endophyte‐free substrate. By the third year, conditioning by live symbiotic plants reduced cumulative decomposition by 33% compared to plots planted with endophyte‐free plants. Of the traits we examined – litter quantity, C:N ratio, mineral composition, fungal colonization, and carbon chemistry – increased litter quantity via greater tiller production was the primary trait shift associated with endophyte symbiosis. Epichloë in A. breviligulata litter also altered litter nitrogen decomposition dynamics, as evidenced by lower nitrogen and protein content in decomposed tissue from plants that hosted the endophyte. Differences in initial litter quality and subsequent colonization by saprotrophic fungi were ruled out as key drivers. Altered precipitation had negligible effects on decomposing processes in the dunes. Grass–Epichloë symbiosis altered nutrient cycling through increasing the rate of litter decomposition when present in the litter and through reducing litter decomposition by conditioning the decomposition microenvironment. Epichloë are widespread symbionts of grasses. Thus, their effects on decomposition could be an important, but often overlooked, driver of nutrient cycling in grass‐dominated ecosystems.  相似文献   

2.
We conducted an experiment on responses of weedy species from an orchard ecosystem to elevated CO2 (700–800 μmol mol−1) under low phosphorus (P) soil in an environment-controlled growth chamber. Twelve local weedy species, Poa annua L., Lolium perenne L., Avena fatua L., Vicia cracca L., Medicago lupulina L., Kummerowia striata (Thunb.) Schindl., Veronica didyma Ten., Plantago virginica L., Gnaphalium affine D.Don., Echinochloa crusgalli var. mitis (L.) Beauv., Eleusine indica (L.) Gaertn. and Setaria glauca (L.) P. Beauv., grouped into four functional groups (C3 grass, C3 forb, legume and C4 grass), were used in the experiment. The total plant biomass, P uptake, and mycorrhizal colonization were measured. The results showed that the total biomass of the 12 weedy species tended to increase under elevated CO2. But changes in the total biomass under elevated CO2 significantly differed among functional groups: legumes showed the greatest increase in the total biomass of all functional groups, following the order C3 forbs > C4 grasses > C3 grasses. Elevated CO2 significantly increased mycorrhizal colonization and P uptake of legumes, C3 forbs and C4 grasses but did not change C3 grasses. Positive correlations between mycorrhizal colonization and shoot P concentration, and between total P uptake and total biomass were found under elevated CO2. The results suggested that the interspecific difference in CO2 response at low P availability was caused by the difference in CO2 response in mycorrhizae and P uptake. These differences among species imply that plant interaction in orchard ecosystems may change under future CO2 enrichment.  相似文献   

3.
Chlorosis-susceptible fruit trees growing on calcareous soils have been observed to recover in the presence of grass cover species. However, the physiological mechanisms behind this phenomenon are only scarcely understood. An investigation was carried out to verify whether citrus plants can use 59Fe solubilized from a sparingly soluble source by the phytosiderophores (PS) released from graminaceous species. Experiments were performed in hydroponics, using two citrus rootstocks differing in their sensitivity to Fe-deficiency in the field (Poncirus trifoliata × Citrus paradisi, citrumelo “Swingle”, highly susceptible, and Citrus aurantium L., moderately tolerant). Barley (Hordeum vulgare L., cv Europa) was used as a model species for PS-releasing graminaceous plants. Fe-deficient citrus plants increased 59Fe-uptake from 59Fe-hydroxide supplied inside a dialysis tube, when Fe-deficient barley plants or PS-containing barley root exudates were present in the uptake solution, this effect being particularly evident for the susceptible rootstock. 59Fe-uptake from 59Fe-hydroxide was also enhanced in Fe-deficient citrumelo “Swingle” in the presence of Fe-deficient Poa pratensis L. and Festuca rubra L., two perennial grasses normally grown in association with fruit trees; no effect was found when Fe-sufficient grasses were employed. The uptake of 59Fe by the susceptible citrus rootstock increased in proportion to the amount of 2′-deoxymugineic acid (DMA), the major PS released by Fe-deficient F. rubra, present in the uptake solution. The beneficial effect of F. rubra or P. pratensis was evident from the leaf re-greening observed when Fe-deficient citrumelo “Swingle” plants were grown in association with the grasses in pots filled with a calcareous soil. Leaf re-greening was not observed when citrumelo “Swingle” plants and yellow stripe 3 (ys3) maize (Zea mays L.) mutant plants, unable to release PS, were co-cultivated in pots filled with calcareous soil, unless exogenous PS were added to the soil. Results indicate that graminaceous cover species can improve the Fe-nutrition of fruit trees grown on calcareous soils by enhancing Fe-availability.  相似文献   

4.
Low-molecular-weight carbohydrates in some salt-stressed plants   总被引:10,自引:0,他引:10  
A study was made of the effects of salinity on the concentrations of free sugars, glycinebetaine, proline and other chemical components of Aster tripolium L., Daucus carota L., Honkenya peploides (L.) Ehr. and Plantago coronopus L. (Dicotyledones); and Carex extensa Good., Eleocharis uniglumis (Link) Schutt., Juncus maritima Lam. and Schoenoplectus tabernaemontani (C. C. Gmel.) Palla (Monocotyledones) grown in the laboratory. In Plantago coronopus the level of the polyol sorbitol increased when the plants were subjected to NaCl stress, while in Honkenya peploides the cyclitol pinitol accumulated. No consistent pattern emerged with respect to the changes in free sugar contents in either the monocotyledonous or dicotyledonous plants, though the monocotyledonous plants generally had higher sugar contents.  相似文献   

5.
Proline accumulation by eight major species of salt marsh halophytes was examined under growth chamber and field conditions. When the plants were exposed to increasing salinities in the growth chamber, they accumulated proline after a threshold salinity had been reached. Three general patterns were apparent. Limonium carolinianum (Walt.) Britt. and Junius roemerianus Scheele began to accumulate proline at 0.25 m NaCl with accumulations up to 63.6 μmoles per gram fresh weight at higher salinities. The C4 grasses, Spartina alterniflora Loisel., Spartina patens (Aiton) Muhl., and Distichlis spicata (L.) Greene, had threshold salinity levels around 0.5 m NaCl and accumulated proline to 27.4 μmoles per gram fresh weight. The succulents, Salicornia bigelovii Torr., Salicornia virginica L., and Borrichia frutescens (L.) DC, did not accumulate proline until very high salinities (0.7 m) were reached. Water stress imposed by polyethylene glycol instead of NaCl caused similar proline accumulation in the species studied, but to different extents. Field measurements of proline content and soil salinities correlated well with the findings from growth chamber experiments. Rates of proline accumulation and breakdown in L. carolinianum were sufficient for osmotic adjustment by the plant to the changes in interstitial salinity in the marsh. The significance of proline accumulation as an adaptation to the salt marsh environment was species specific. We suggest that proline accumulation is of considerable importance in L. carolinianum and J. roemerianus, important to the C4 grasses at certain times and in certain locations in the marsh, and of little importance in the succulents.  相似文献   

6.
Hybrids were produced with relative ease from controlled crosses of Elymus canadensis L. with European Agropyron caninum (L.) Beauv., North American A. trachycaulum (Link) Malte ex H. F. Lewis, and Asian A. striatum Nees ex Steud. All hybrids appeared to be completely sterile and were, for the most part, morphologically intermediate between their parents. The E. canadensis × A. caninum hybrids were exceptionally vigorous and leafy and may have some potential as forage grasses if fertility can be achieved. All parent plants were tetraploid, 2n = 28, and they behaved cytologically as alloploids. Chromosome pairing in the hybrids indicated that both E. canadensis genomes were closely homologous with those of A. trachycaulum and somewhat less homologous with those of A. caninum. Interchanged and inverted chromosome segments apparently constitute the major differences between E. canadensis, A. trachycaulum, and A. caninum genomes; however, cryptic structural differences must also exist. Partial homologies were detected between one A. striatum and E. canadensis genome, but their other genomes were distinctly different. The genome relations between the parent species were expressed in terms of the following genome formulas: E. canadensis, S1S1X1X1; A. trachycaulum, S2S2X2X2; A. caninum, S3S3X3X3 : and A. striatum S4S4YY or X4X4YY, where “S” refers to a genome derived from A. spicatum and “X” and “Y” are genomes of unknown origin.  相似文献   

7.
Ethanol synthesis was induced in stem segments from greenhouse-grown conifer seedlings by placing them in a N2 atmosphere at 30 °C for 24 h. Stems from ponderosa pine,Pinus ponderosa Dougl. ex Laws., sugar pine,Pinus lambertiana Dougl., Pacific silver fir,Abies amabalis Dougl. ex Forbes, and lodgepole pine,Pinus contorta Dougl. ex Loud, produced the highest quantities of ethanol. This group also had the smallest and slowest growing stems. Within each of these species the amount of ethanol produced was inversely related to the stem volume. Stems from western hemlock,Tsuga heterophylla (Raf.) Sarg., grand fir, Abies grandis Dougl. ex Forbes, Douglas-fir,Pseudotsuga menziesii (Mirb.) Franco, and western redcedar,Thuja plicata Donn ex D. Don, all produced equivalent but low ethanol concentrations. These species had the largest and fastest growing stems. In this group only grand fir exhibited an inverse relationship between ethanol concentrations and stem volume. The relative amounts of ethanol synthesized by stems from Douglas-fir, western hemlock and western redcedar seedlings were not the same as subsequently observed in logs from mature trees of the same species under field conditions. Differences in the anaerobic environments for the two stem types could have affected the quantities of ethanol produced. The observed high amounts of ethanol produced by the stems from pine species were discussed in terms of their ability to handle periods of anaerobic stress or hypoxia.  相似文献   

8.
该文首次报道了唇形科5种植物在广西的新记录——簇序属(Craniotome Reichenb.)及簇序草[Craniotome furcata(Link)Kuntze]、西南水苏[Stachys kouyangensis(Vaniot)Dunn]、海南深红鸡脚参[Orthosiphon rubicundus(D.Don)Benth.var.hainanensis Sun ex C.Y.Wu]、黄花香薷[Elsholtzia flava(Benth.)Benth.]、滨海白绒草[Leucas chinensis(Retz.)R.Br.]。引证标本均存放于广西中医药研究院标本馆(GXMI)。  相似文献   

9.
There is increasing interest in the role of wetland plants in the aquatic phytoremediation of toxic metals. In this experiment, we evaluate the Cr removal capacity of four hydrophyte species (Nasturtium officinale L., Veronica beccabunga L., Mentha longifolia L., R.Br., Cardamine uliginosa L.) under varying nutritional conditions (full-strength and half-strength solution cultures), and over a range of Cr concentration (0, 2, 4, 6, and 8 mg L-1). The results indicate that Cr accumulation is affected by both initial Cr concentration and strength of the nutrient solution. Phytoaccumulation increased with initial Cr concentration and plants grown in the full-strength solution accumulated more Cr at the higher initial solution concentration. Cr was predominantly accumulated in the roots, with minimal shoot translocation, which limits the hazard of Cr entering the food chain through ingestion by animals. Accumulation was large and reached up to 6700 mg Cr Kg-1 in the roots of Veronica beccabunga.  相似文献   

10.
报道了2种禾本科植物,曲序黄花茅[Anthoxanthum flexuosum(Hook.f.)Veldkamp]在西藏的新分布,外来物种弗吉尼亚须芒草(Andropogon virginicus L.)在江西的归化,并提供了它们详细的形态学描述、图版、分布及生境等信息。此外,还讨论了弗吉尼亚须芒草的潜在入侵危险。  相似文献   

11.
The pollen content of 31 honey samples from 19 different apiaries of El Hierro (Canary Islands) were subject to qualitative and quantitative melissopalynological analysis. The quantitative analysis demonstrated that 13% of the honey belonged to Maurizio Class I (<2?000?grains), 68% to Class II (2?000–10?000?grains) and 19% to Class III (10?000–50?000?grains). The pollen density ranges from 1?042?grains/g of honey to 24?478?grains/g with an average of 7?471?grains/g. According to the qualitative analysis, six honeys were typified as unifloral and 25 as multifloral. The unifloral honey samples were broken down as follows: two of heather (Erica arborea L.), two of Chamaecytisus proliferus (L. f.) Link‐type (“tagasaste”), one of Fabaceae (Genisteae sp.) and one of Lamiaceae Origanum vulgare L. ssp. virens (Hoffmanns. &; Link) Ietsw.‐type (thyme: Micromeria hyssopifolia Webb &; Berthel.). Honeydew elements were practically absent. Sixty‐nine pollen types were identified belonging to 42 families. The number of pollen types range between 18 and 39 (mean of 27.42). Foeniculum vulgare Mill.‐type pollen is present in all the samples. Galactites tomentosa Moench‐type, Echium plantagineum L., Echium L. sp., Bituminaria bituminosa (L.) C. H. Stirt., Chamaecytisus proliferus ‐type and Origanum vulgare ssp. virens ‐type pollen were found in 96.8% of the samples. The sensorial analysis indicated that honey types are generally of good quality, because 62% were evaluated as very high (16%), high (23%), and good (23%).  相似文献   

12.
Plants with the C4 photosynthetic pathway have predominantly one of three decarboxylation enzymes in their bundle sheath cells. Within the grass family (Poaceae) bundle sheath leakiness to CO2 is purported to be lowest in the nicotinamide adenine dinucleotide phosphate-malic enzyme (NADP-ME, EC 1.1.1.40) group, highest in the NAD-ME (EC 1.1.1.39) group and intermediate in the phosphoenolpyruvate carboxykinase (PCK, EC 4.1.1.32) group. We investigated the hypothesis that growth and photosynthesis of NAD-ME C4 grasses would respond more to elevated CO2 treatment than NADP-ME grasses. Plants were grown in 8-1 pots in growth chambers with ample water and fertilizer for 39 days at a continuous CO2 concentration of either 350 or 700 µl l?1. NAD-ME species included Bouteloua gracilis Lag. ex Steud (Blue grama), Buchloe dactyloides (Nutt.) Engelm. (Buffalo grass) and Panicum virgatum L. (Switchgrass) and the NADP-ME species were Andropogon gerardii Vittman (Big bluestem), Schizachyrium scoparium (Michx.) Nash (Little bluestem), and Sorghastrum nutans (L.) Nash (Indian grass). Contrary to our hypothesis, growth of the NADP-ME grasses was generally greater under elevated CO2 (significant for A. gerardii and S. nutans), while none of the NAD-ME grasses had a significant growth response. Increased leaf total non-structural carbohydrate (TNC) was associated with greater growth responses of NADP-ME grasses. Decreased leaf nitrogen in NADP-ME species grown at elevated CO2 was found to be an artifact of TNC dilution. Assimilation (A) vs intercellular CO2 (Ci) curves revealed that leaf photosynthesis was not saturated at 350 µl l?1 CO2 in any of these C4 grasses. Assimilation of elevated CO2-grown A. gerardii was higher than in plants grown in ambient CO2. In contrast, B. gracilis grown in elevated CO2 displayed lower A, a trait more commonly reported in C3 plants. Photosynthetic acclimation in B. gracilis was not related to leaf TNC or nitrogen concentrations, but A:Ci curves suggest a reduction in activity of both phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39). Some adaptation of stomatal functioning was also seen in B. gracilis and A. gerardii leaves grown in elevated CO2. Our study shows that C4 grasses have the capacity for increased growth and photosynthesis under elevated CO2 even when water and nutrients are non-limiting. While it was the NADP-ME species which had significant responses in the present study, we have previously reported significant growth increases in elevated CO2 for B. gracilis.  相似文献   

13.
The dynamics of metal content in higher aquatic plants (macrophytes) in a small Bugach water reservoir in 1998–2006 was studied. A comparative estimation of the metal content in six macrophyte species (Typha latifolia L., Typha angustifolia L., Polygonium amphibium L., Potamogeton perfoliatus L., Potamogeton pectinatus L., Phragmites australis (Cav) Trin. Ex Steud.) showed that their metal concentrations do not generally exceed those known from the literature. Cluster analysis showed that the macrophyte species under study form two ecological groups with respect to the metal content, i.e., submerged plants (hydrophytes) and emergent aquatic plants (heliophytes).  相似文献   

14.
Phenological observations on shrubs to predict weed emergence in turf   总被引:1,自引:0,他引:1  
Phenology is the study of periodic biological events. If we can find easily recognizable events in common plants that precede or coincide with weed emergences, these plants could be used as indicators. Weed seedlings are usually difficult to detect in turf, so the use of phenological indicators may provide an alternative approach to predict the time when a weed appears and consequently guide management decisions. A study was undertaken to determine whether the phenological phases of some plants could serve as reliable indicators of time of weed emergence in turf. The phenology of six shrubs (Crataegus monogyna Jacq., Forsythia viridissima Lindl., Sambucus nigra L., Syringa vulgaris L., Rosa multiflora Thunb., Ziziphus jujuba Miller) and a perennial herbaceous plant [Cynodon dactylon (L.) Pers.] was observed and the emergence dynamics of four annual weed species [Digitaria sanguinalis (L.) Scop., Eleusine indica (L.) Gaertner, Setaria glauca (L.) Beauv., Setaria viridis (L.) Beauv.] were studied from 1999 to 2004 in northern Italy. A correlation between certain events and weed emergence was verified. S. vulgaris and F. viridissima appear to be the best indicators: there is a quite close correspondence between the appearance of D. sanguinalis and lilac flowering and between the beginning of emergence of E. indica and the end of lilac flowering; emergences of S. glauca and S. viridis were predicted well in relation to the end of forsythia flowering. Base temperatures and starting dates required to calculate the heat unit sums to reach and complete the flowering phase of the indicators were calculated using two different methods and the resultant cumulative growing degree days were compared.  相似文献   

15.
Generalist insect herbivores, such as grasshoppers, may either avoid feeding on exotic plants, potentially enabling these plants to become invasive in the introduced range, or insects may incorporate exotic plants into their diet, contributing to the biotic resistance of native communities and potentially preventing plant invasions. Accurate determination of insect diet preferences with regard to native and exotic plants can be challenging, but this information is critical for understanding the interaction between native herbivores and exotic plants, and ultimately the mechanisms underlying plant invasions. To address this, we combined behavioral and molecular approaches to accurately compare food consumption of the polyphagous red‐legged grasshopper, Melanoplus femurrubrum (De Geer) (Orthoptera: Acrididae), on native [Andropogon gerardii Vitman and Bouteloua curtipendula (Michx.) Torr.] and exotic, potentially invasive grasses [Miscanthus sinensis Andersson and Bothriochloa ischaemum (L.) Keng] (all Poaceae). We found that M. femurrubrum grasshoppers demonstrated strong feeding preferences toward exotic grasses in experiments with intact plants under both field and greenhouse conditions, but they showed no preference in experiments with clipped leaves. Additionally, we sampled the gut contents of M. femurrubrum collected in the field and identified the ingested plant species based on DNA sequences for the non‐coding region of the chloroplast trnL (UAA) gene. We found that exotic plants were prevalent in the gut contents of grasshoppers collected at study sites in Ohio and Maryland, USA. These results suggest that the generalist herbivore M. femurrubrum does not avoid feeding on exotic grasses with which they do not share coevolutionary history. In addition, by demonstrating greater food consumption of exotic plants, these grasshoppers potentially provide biotic resistance should these grasses escape cultivation and become invasive in the introduced range.  相似文献   

16.
The morphological characters used to differentiate species in the genus Labiostrongylus Yorke & Maplestone, 1926, parasitic in macropodid and potoroid marsupials, are discussed. The genus is divided into three subgenera Labiostrongylus (Labiostrongylus), L. (Labiomultiplex) n. subg. and L. (Labiosimplex) n. subg. on the basis of the presence or absence of interlabia and the morphology of the oesophagus. A key to the subgenera is given and a detailed revision of two of the subgenera is presented. Keys to each of the subgenera are given, the species discussed being: L. (L.) labiostrongylus) (type-species) (syn. L. (L.) insularis, L. (L.) grandis, L. (L.) macropodis sp. inq. and L. (L.) nabarlekensis n. sp., in the subgenus Labiostrongylus, and L. (Lm.) eugenii, L. (Lm.) novaeguineae, L. (Lm.) onychogale, L. (Lm.) uncinatus, L. (Lm.) billardierii n. sp., L. (Lm.) constrictis n. sp., L. (Lm.) kimberleyensis n. sp., L. (Lm.) thylogale n. sp., and L. (Lm.) potoroi, n. sp., in the subgenus Labiomultiplex.  相似文献   

17.
The growth inhibitory effect of cucumber (Cucumis sativus L.) plants after crop harvested was investigated. Aqueous methanol extracts of the cucumber plants inhibited the growth of roots and shoots of cress (Lepidium sativum L.), lettuce (Lactuca sativa L.), alfalfa (Medicago sativa L.), ryegrass (Lolium multiflorum L.), timothy (Pheleum pratense L.), crabgrass (Digitaria sanguinalis L.), Echinochloa crus-galli (L.) Beauv and Echinochloa colonum (L.) Link, and increasing the extract concentration increased the inhibition. These results suggest that cucumber plants may possess allelopathic activity. The aqueous methanol extract of cucumber plants was divided into ethyl acetate and aqueous fractions, and the growth inhibitory activity of ethyl acetate fraction was greater than that of aqueous fraction. Thus, ethyl acetate fraction was further purified and a main allopathically active substance in the fraction was isolated and determined as (S)-2-benzoyloxy-3-phenyl-1-propanol by spectral data. This substance inhibited root and shoot growth of cress seedlings at concentrations greater than 10 μM, and the concentration required for 50% inhibition of root and shoot growth was 21 and 23 μM, respectively. These results suggest that (S)-2-benzoyloxy-3-phenyl-1-propanol may contribute to the growth inhibitory effect of cucumber plants and may play an important role in cucumber allelopathy. Thus, cucumber plants may be potentially useful for weed management in a field setting. An erratum to this article can be found at  相似文献   

18.
Plant species differing in susceptibility to 2,4-dichlorophenoxyacetic acid (2,4-D) were examined as to the level of phylloquinone (K) in the leaves. The K level was found to be considerably higher in several plants resistant or moderately resistant to 2,4-D (Aegopodium podagraria L., Galium mollugo L., Lamium album L., Matricaria chamomilla L., Oxalis acetosella L., Stellaria media (L.) Vill., Viola arvensis Murr.) than in Chenopodium album L. and Sinapsis arvensis L. which are susceptible to 2,4-D. Capsella bursa-pastoris (L.) Med. and Plantago major L. (both moderately susceptible) and a few resistant or moderately resistant species (Agropyron repens (L.) PB., Anthriscus silvestris (L.) Hoffm., Triticum aestivum L.) had intermediate K levels. Cirsium arvense (L.) Scop. (susceptible) had a relatively high level of K. It is possible that a high K level in the plant can be of importance in the resistance to 2,4-D.  相似文献   

19.
The leaf construction cost, i.e., the energy expenditure required for the production of plant biomass (CC, g glucose/g dry biomass), is considered to be a major determinant of species success in various habitats. Nitrogen, carbon, and mineral contents in leaves were used to measure leaf CC. The aboveground biomass was sampled from the most abundant plant species (Poa pratensis L., Lolium perenne L., Festuca valida (Uechtr.) Penzes, Trifolium repens L., Taraxacum officinale Weber ex Wigg, Plantago lanceolata L., and Achillea millefolium L.) during the 1997 growing season in an upland grassland dominated by C3 species. Soil samplings were performed in parallel with leaf samplings in order to determine soil inorganic nitrogen. T. repens leaves had the highest nitrogen concentration; grasses had the highest carbon content, while the highest mineral content was observed in the leaves of the forb species. The highest leaf CC was calculated for the legume T. repens followed by the grass F. valida. The grass L. perenne had the cheapest leaves, since it had the lowest CC. A positive correlation between leaf CC and soil inorganic nitrogen was evident for grasses (P. pratensis, L. perenne, F. valida) and P. lanceolata.  相似文献   

20.
A single-step spraying of wheat during shooting under field conditions with solutions of CCC (chlorocholine chloride), CCC and urea, CCC and Aminex (ammonium salt of 4-chloro-2-methylphenoxyacetic acid), or CCC, urea and Aminex caused changes both in numbers and composition of the rhizosphere mycoflora. The numbers both in the rhizosphere of differently treated plants and in the free soil decreased during vegetation. A more pronounced effect in the number of fungi was demonstrated in plants treated only with CCC. The difference was more considerable during first 10 days after the spray. As far as the relative occurrence of individual genera in the rhizosphere soil is concerned, fungi of the generaPenicillium Link ex Fr.,Fusarium Link ex Fr.,Verticillium Nees andTrichoderma Pers were most influenced after the treatment with the used agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号