首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Nuclear factor of activated T cells (NFAT) c1 plays a key role in receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclast differentiation and function via induction of osteoclast-specific target genes including osteoclast-associated receptor (OSCAR), cathepsin K, and tartrate-resistant acid phosphatase. To elucidate which downstream target genes are regulated by NFATc1 during osteoclastogenesis, we used microarray analyses to examine gene expression profiles in the context of bone marrow-derived macrophages overexpressing a constitutively active form of NFATc1. Herein, we demonstrate that MHC class II transactivator (CIITA) is up-regulated downstream of NFATc1. Overexpression of CIITA in osteoclast precursors attenuates RANKL-induced osteoclast formation through down-regulation of NFATc1 and OSCAR. Epigenetic overexpression of CIITA regulates NFATc1 and OSCAR by competing with c-Fos and NFATc1 for CBP/p300 binding sites. Furthermore, silencing of CIITA by RNA interference in osteoclast precursors enhances osteoclast formation as well as NFATc1 and OSCAR expression. Taken together, our data reveal that CIITA can act as a modulator of RANKL-induced osteoclastogenesis.  相似文献   

3.
This is the first report of a novel serine/threonine kinase, rabbit death-associated protein (DAP) kinase-related apoptosis-inducing protein kinase 1 (rDRAK1), involved in osteoclast apoptosis. We searched for osteoclast-specific genes from a cDNA library of highly enriched rabbit osteoclasts cultured on ivory. One of the cloned genes has a high homology with human DRAK1 (hDRAK1), which belongs to the DAP kinase subfamily of serine/threonine kinases. By screening a rabbit osteoclast cDNA library and 5'-RACE (rapid amplification of cDNA ends), we obtained a full length of this cDNA, termed rDRAK1. The sequencing data indicated that rDRAK1 has 88.0, 44.6, 38.7, and 42.3% identity with hDRAK1, DAP kinase, DRP-1, and ZIP (zipper-interacting protein) kinase, respectively. To clarify the role of DRAK1 in osteoclasts, we examined the effect of three osteoclast survival factors (interleukin-1, macrophage colony-stimulating factor, and osteoclast differentiation-inducing factor) on rDRAK1 mRNA expression and the effect of rDRAK1 overexpression on osteoclast apoptosis. The results suggested that these three survival factors were proved to inhibit rDRAK1 expression in rabbit osteoclasts. After transfection of a rDRAK1 expression vector into cultured osteoclasts, overexpressed rDRAK1 was localized exclusively to the nuclei and induced apoptosis. Hence, rDRAK1 may play an important role in the core apoptosis program in osteoclast.  相似文献   

4.
Receptor activator of nuclear factor-kB ligand (RANKL), a well-known membrane-bound molecule expressed on osteoblasts and bone marrow stromal cells, is believed to induce osteoclast differentiation and activation by binding to the receptor activator of nuclear factor-kB (RANK), which is expressed on the surface of osteoclast lineage cells. This induction is inhibited by osteoprotegerin (OPG) that is secreted by osteoblast lineage and acts as a decoy receptor of RANKL. Currently the essential role of the OPG/RANKL/RANK system in the process of osteoclast maturation, as well as activation, has been well established, and the majority of bone resorption regulators control osteoclast formation and activation through their effects on this system and especially on the relative expression levels of RANKL and OPG [1].  相似文献   

5.
Osteoblasts not only control bone formation but also support osteoclast differentiation. Here we show the involvement of Kruppel-like factor 4 (KLF4) in the differentiation of osteoclasts and osteoblasts. KLF4 was down-regulated by 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) in osteoblasts. Overexpression of KLF4 in osteoblasts attenuated 1,25(OH)2D3-induced osteoclast differentiation in co-culture of mouse bone marrow cells and osteoblasts through the down-regulation of receptor activator of nuclear factor κB ligand (RANKL) expression. Direct binding of KLF4 to the RANKL promoter repressed 1,25(OH)2D3-induced RANKL expression by preventing vitamin D receptor from binding to the RANKL promoter region. In contrast, ectopic overexpression of KLF4 in osteoblasts attenuated osteoblast differentiation and mineralization. KLF4 interacted directly with Runx2 and inhibited the expression of its target genes. Moreover, mice with conditional knockout of KLF4 in osteoblasts showed markedly increased bone mass caused by enhanced bone formation despite increased osteoclast activity. Thus, our data suggest that KLF4 controls bone homeostasis by negatively regulating both osteoclast and osteoblast differentiation.  相似文献   

6.
Fibrodysplasia ossificans progressiva (FOP) is a genetic disease characterized by heterotopic ossification (HO). The disease is caused by a mutation in the activin receptor type 1 (ACVR1) gene that enhances this receptor's responsiveness to Activin-A. Binding of Activin-A to the mutated ACVR1 receptor induces osteogenic differentiation. Whether Activin-A also affects osteoclast formation in FOP is not known. Therefore we investigated its effect on the osteoclastogenesis-inducing potential of periodontal ligament fibroblasts (PLF) from teeth of healthy controls and patients with FOP. We used western blot analysis of phosphorylated SMAD3 (pSMAD3) and quantitative polymerase chain reaction to assess the effect of Activin-A on the PLF. PLF-induced osteoclast formation and gene expression were studied by coculturing control and FOP PLF with CD14-positive osteoclast precursor cells from healthy donors. Osteoclast formation was also assessed in control CD14 cultures stimulated by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANK-L). Although Activin-A increased activation of the pSMAD3 pathway in both control and FOP PLF, it increased ACVR1, FK binding protein 12 (FKBP12), an inhibitor of DNA binding 1 protein (ID-1) expression only in FOP PLF. Activin-A inhibited PLF mediated osteoclast formation albeit only significantly when induced by FOP PLF. In these cocultures, it reduced M-CSF and dendritic cell-specific transmembrane protein (DC-STAMP) expression. Activin-A also inhibited osteoclast formation in M-CSF and RANK-L mediated monocultures of CD14+ cells by inhibiting their proliferation. This study brings new insight on the role of Activin A in osteoclast formation, which may further add to understanding FOP pathophysiology; in addition to the known Activin-A-mediated HO, this study shows that Activin-A may also inhibit osteoclast formation, thereby further promoting HO formation.  相似文献   

7.
8.
Osteoclasts, the bone-resorbing cells, are differentiated from hematopoietic precursors via two-step cell–cell interactions. One is the interaction between the osteoclast precursor and the stromal cell to initiate differentiation. The other is the interaction among osteoclast precursors to form multinucleated osteoclasts. Recently, the poliovirus receptor (PVR, CD155, Necl-5) was reported to play important roles in cell adhesion and migration. However, there are no reports of PVR in osteoclastogenesis. In this paper, we examined the expression of PVR and its ligand, DNAX accessory molecule-1 (DNAM-1, CD226), in osteoclast precursors, mature osteoclasts, and stromal cells. We found that the PVR was constitutively expressed in both osteoclast cells and stromal cells. The expression of PVR was not changed at various stages of osteoclast formation. In contrast, the expression of DNAM-1 was observed in mononuclear cells and was down-regulated during osteoclastogenesis. Moreover, multinucleated osteoclast formation was inhibited by treatment with the extracellular domain of DNAM-1 (ED-DNAM-1) as a soluble ligand for PVR, but mononuclear preosteoclast formation was not affected. Especially, during the 7-day cultivation, osteoclast formation was suppressed by the treatment with ED-DNAM-1 on days 6 and 7, when the mononuclear preosteoclasts fused into multinucleated osteoclasts. This suppression was abrogated partially by a small interfering RNA specific for PVR. These results suggest that, at least in part, the binding of PVR with DNAM-1 negatively regulates osteoclast formation. Furthermore, our results indicate that the cellular fusion process may be inhibited by the PVR-mediated signaling.  相似文献   

9.
10.
Cancer chemotherapy has been shown to induce long-term skeletal side effects such as osteoporosis and fractures; however, there are no preventative treatments. This study investigated the damaging effects of anti-metabolite methotrexate (MTX) subcutaneous injections (0.75 mg/kg BW) for five days and the potential protective benefits of daily oral gavage of fish oil at 0.5 mL/100 g BW (containing 375 mg of n-3 PUFA/100 g BW), genistein (2 mg/100 g BW), or their combination in young adult rats. MTX treatment alone significantly reduced primary spongiosa height and secondary spongiosa trabecular bone volume. Bone marrow stromal cells from the treated rats showed a significant reduction in osteogenic differentiation but an increase in adipogenesis ex vivo. Consistently, stromal cells had significantly higher mRNA levels of adipogenesis-related proliferator activator activated receptor-γ (PPAR-γ) and fatty acid binding protein (FABP4). MTX significantly increased the numbers of bone-resorbing osteoclasts and marrow osteoclast precursor cell pool while significantly enhancing the mRNA expression of receptor activator for nuclear factor kappa B ligand (RANKL), the RANKL/osteoprotegerin (OPG) ratio, interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) in the bone. Supplementary treatment with fish oil and/or genistein significantly preserved trabecular bone volume and osteogenesis but suppressed MTX-induced adipogenesis and increases in osteoclast numbers and pro-osteoclastogenic cytokine expression. Thus, Fish oil and/or genistein supplementation during MTX treatment enabled not only preservation of osteogenic differentiation, osteoblast number and bone volume, but also prevention of MTX treatment-induced increases in bone marrow adiposity, osteoclastogenic cytokine expression and osteoclast formation, and thus bone loss.  相似文献   

11.
Acidic extracellular pH promotes osteoporotic bone loss by osteoclast activation. However, the change of osteoclastic cell behavior in acidosis-stimulated bone resorption process is unknown. We found that lowering extracellular pH induced an increase in the survival, adhesion, and migration of mature osteoclasts with a full actin ring, leading to enhanced pit formation on dentine slices. Acidosis upregulated osteopontin, which is an Arg-Gly-Asp (RGD) motif-containing matrix protein secreted from osteoclasts and acts as a common modulator for their survival, adhesion, and migration. A synthetic RGD peptide treatment blocked acidosis-induced osteoclast adhesion and migration, likely by competing with the RGD motif-containing extracellular matrix proteins for cell surface integrin binding. We finally observed that acidosis was associated with activation of osteoclast survival/adhesion/migration-related Pyk2, Cbl-b, and Src signals. Collectively, the findings indicate that extracellular acidosis stimulates bone resorption by extending osteoclast survival and facilitating osteoclast adhesion and migration.  相似文献   

12.
Receptor activator of NF-kappaB ligand (RANKL) plays a crucial role in osteoclast differentiation, function, and survival. RANKL exerts its effect by activating its receptor RANK (receptor activator of NF-kappaB), which recruits various intracellular signaling molecules via specific motifs in its cytoplasmic tail. Previously, we identified three RANK cytoplasmic motifs (Motif 1, 369PFQEP373; Motif 2, 559PVQEET564; and Motif 3, 604PVQEQG609) mediating osteoclast formation and function. Here, we investigated RANK cytoplasmic motifs involved in osteoclast survival. Motif 1, in contrast to its minimal role in osteoclast formation and function, plays a predominant role in promoting osteoclast survival. Moreover, whereas Motif 2 and Motif 3 are highly potent in osteoclast formation and function, they exert a moderate effect on osteoclast survival. We also investigated the role of these motifs in activating Akt/protein kinase B (PKB), which has been implicated in RANKL-induced osteoclast survival. Motif 1, but not Motif 2 or Motif 3, is able to stimulate Akt/PKB activation. Because Akt/PKB has been shown to utilize distinct downstream effectors (glycogen synthase kinase-3beta, FKHR/FOXO1a, BAD, and AFX/FOXO4) to regulate cell survival, we next determined which downstream effector(s) is activated by Akt/PKB to promote osteoclast survival. Our data revealed that RANKL only stimulates AFX/FOXO4 phosphorylation, indicating that AFX/FOXO4 is a key downstream target activated by Akt/PKB to modulate osteoclast survival. Taken together, we conclude that Motif 1 plays a predominant role in mediating osteoclast survival in part by activating Akt/PKB and its downstream effector AFX/FOXO4.  相似文献   

13.
Characterization of sugar binding by osteoclast inhibitory lectin   总被引:1,自引:0,他引:1  
Osteoclast inhibitory lectin (OCIL) is a membrane-bound C-type lectin that blocks osteoclast differentiation and, via binding to its cognate receptor NKRP1D, inhibits natural killer cell-mediated cytotoxicity. OCIL is a member of the natural killer cell receptor C-type lectin group that includes CD69 and NKRP1D. We investigated carbohydrate binding of soluble recombinant human and mouse OCIL in enzyme-linked immunosorbent assay-based assays. OCIL bound immobilized high molecular weight sulfated glycosaminoglycans, including fucoidan, lambda-carrageenan, and dextran sulfate, but not unsulfated dextran or sialated hyaluronic acid. Carbohydrate binding was Ca(2+)-independent. Binding of immobilized low molecular weight glycosaminoglycans, including chondroitin sulfate (A, B, and C forms) and heparin, was not observed. However, the soluble forms of these low molecular weight glycosaminoglycans competed for OCIL binding of immobilized fucoidan (as did soluble fucoidan, dextran sulfate, and lambda-carrageenan), indicating that OCIL does recognize these carbohydrates. Inhibition constants for chondroitin sulfate A and heparin binding were 380 and 5 nm, respectively. Immobilized and soluble monosaccharides did not bind OCIL. The presence of saturating levels of fucoidan, dextran sulfate, and lambda-carrageenan did not affect OCIL inhibition of osteoclast formation. The fucoidan-binding lectins Ulex europaeus agglutinin I and Anguilla anguilla agglutinin did not block osteoclast formation or affect the inhibitory action of OCIL. Although the osteoclast inhibitory action of OCIL is independent of sugar recognition, we have found that OCIL, a lectin widely distributed, but notably localized in bone, skin, and other connective tissues, binds a range of physiologically important glycosaminoglycans, and this property may modulate OCIL actions upon other cells.  相似文献   

14.
We comparatively examined the mechanism by which vitamin K(2) (Menatetrenone, MK4) and its side chain component, geranylgeraniol (GGO), inhibited osteoclast formation in the co-culture system of stromal cells with spleen cells. Both MK4 and GGO inhibited osteoclast formation induced by 1alpha,25-dihydroxyvitamin D3 (1,25(OH)(2)D(3)). MK4, but not GGO, inhibited cyclooxygenase-2 (COX-2) expression and prostaglandin E(2) (PGE(2)) production in the co-culture system. To elucidate the precise mechanism of the inhibitory effect of GGO on osteoclast formation, the co-cultured cells were stimulated with PGE(2). GGO, but not MK4, inhibited osteoclast formation via suppression of the receptor activator of NF-kappaB ligand (RANKL) expression. Moreover, GGO abolished the disruption of osteoclastic actin rings induced by nitrogen-containing bisphosphonate (N-BP), whereas MK4 did not affect it at all. These data suggest that MK4 inhibited osteoclast formation independently of GGO, and that MK4, but not GGO, has no competitive action on the anti-osteoporotic effect of N-BP.  相似文献   

15.
Coenzyme Q10 (CoQ10), selenium, and curcumin are known to be powerful antioxidants. Osteoclasts are capable of resorbing mineralized bone and excessive bone resorption by osteoclasts causes bone loss-related diseases. During osteoclast differentiation, the reactive oxygen species (ROS) acts as a secondary messenger on signal pathways. In this study, we investigated whether antioxidants can inhibit RANKL-induced osteoclastogenesis through suppression of ROS generation and compared the relative inhibitory activities of CoQ10, sodium selenite, and curcumin on osteoclast differentiation. We found that antioxidants markedly inhibited the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells in both bone marrow-derived monocytes (BMMs) and RAW 264.7 cells. Antioxidants scavenged intracellular ROS generation within osteoclast precursors during RANKL-stimulated osteoclastogenesis. These also acted to significantly suppress the gene expression of NFATc1, TRAP, and osteoclast-associated immunoglobulin-like receptor (OSCAR), which are genetic markers of osteoclast differentiation in a dose-dependent manner. These antioxidants also suppressed ROS-induced IκBα signaling pathways for osteoclastogenesis. Specially, curcumin displayed the highest inhibitory effect on osteoclast differentiation when concentrations were held constant. Together, CoQ10, selenite, and curcumin act as inhibitors of RANKL-induced NFATc1 which is a downstream event of NF-κB signal pathway through suppression of ROS generation, thereby suggesting their potential usefulness for the treatment of bone disease associated with excessive bone resorption.  相似文献   

16.
Muramyl dipeptide (MDP) is the minimal essential structural unit responsible for the immunoadjuvant activity of peptidoglycan. As well as bone-resorbing factors such as 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3) and PGE2, LPS and IL-1alpha stimulate osteoclast formation in mouse cocultures of primary osteoblasts and hemopoietic cells. MDP alone could not induce osteoclast formation in the coculture, but enhanced osteoclast formation induced by LPS, IL-1alpha, or TNF-alpha but not 1alpha,25(OH)2D3 or PGE2. MDP failed to enhance osteoclast formation from osteoclast progenitors induced by receptor activator of NF-kappaB ligand (RANKL) or TNF-alpha. MDP up-regulated RANKL expression in osteoblasts treated with LPS or TNF-alpha but not 1alpha,25(OH)2D3. Osteoblasts expressed mRNA of nucleotide-binding oligomerization domain 2 (Nod2), an intracellular sensor of MDP, in response to LPS, IL-1alpha, or TNF-alpha but not 1alpha,25(OH)2D3. Induction of Nod2 mRNA expression by LPS but not by TNF-alpha in osteoblasts was dependent on TLR4 and MyD88. MDP also enhanced TNF-alpha-induced osteoclast formation in cocultures prepared from Toll/IL-1R domain-containing adapter protein (TIRAP)-deficient mice through the up-regulation of RANKL mRNA expression in osteoblasts, suggesting that TLR2 is not involved in the MDP-induced osteoclast formation. The depletion of intracellular Nod2 by small interfering RNA blocked MDP-induced up-regulation of RANKL mRNA in osteoblasts. LPS and RANKL stimulated the survival of osteoclasts, and this effect was not enhanced by MDP. These results suggest that MDP synergistically enhances osteoclast formation induced by LPS, IL-1alpha, and TNF-alpha through RANKL expression in osteoblasts, and that Nod2-mediated signals are involved in the MDP-induced RANKL expression in osteoblasts.  相似文献   

17.
18.
Understanding the molecular mechanisms underlying osteoclast differentiation provides insights into bone loss and even osteoporosis. The specific mechanistic actions of cullin 4A (CUL4A) in osteoclast differentiation and resultant osteoporosis is poorly explored. We developed a mouse model of osteoporosis using bilateral ovariectomy (OVX) and examined CUL4A expression. It was noted that CUL4A expression was increased in the bone marrow of OVX mice. Overexpression of CUL4A promoted osteoclast differentiation, and knockdown of CUL4A alleviated osteoporosis symptoms of OVX mice. Bioinformatic analyses were applied to identify the downstream target genes of microRNA-340-5p (miR-340-5p), followed by interaction analysis. The bone marrow macrophages (BMMs) were isolated from femur of OVX mice, which were transfected with different plasmids to alter the expression of CUL4A, Zinc finer E-box binding homeobox 1 (ZEB1), miR-340-5p, and Toll-like receptor 4 (TLR4). ChIP assay was performed to detect enrichment of ZEB1 promoter by H3K4me3 antibody in BMMs. ZEB1 was overexpressed in the bone marrow of OVX mice. Overexpression of CUL4A mediated H3K4me3 methylation to increase ZEB1 expression, thus promoting osteoclast differentiation. Meanwhile, ZEB1 could inhibit miR-340-5p expression and upregulate HMGB1 to induce osteoclast differentiation. Overexpressed ZEB1 activated the TLR4 pathway by regulating the miR-340-5p/HMGB1 axis to induce osteoclast differentiation, thus promoting the development of osteoporosis. Overall, E3 ubiquitin ligase CUL4A can upregulate ZEB1 to repress miR-340-5p expression, leading to HMGB1 upregulation and the TLR4 pathway activation, which promotes osteoclast differentiation and the development of osteoporosis.  相似文献   

19.
Human osteoclast formation from monocyte precursors under the action of receptor activator of nuclear factor-kappaB ligand (RANKL) was suppressed by granulocyte macrophage colony-stimulating factor (GM-CSF), with down-regulation of critical osteoclast-related nuclear factors. GM-CSF in the presence of RANKL and macrophage colony-stimulating factor resulted in mononuclear cells that were negative for tartrate-resistant acid phosphatase (TRAP) and negative for bone resorption. CD1a, a dendritic cell marker, was expressed in GM-CSF, RANKL, and macrophage colony-stimulating factor-treated cells and absent in osteoclasts. Microarray showed that the CC chemokine, monocyte chemotactic protein 1 (MCP-1), was profoundly repressed by GM-CSF. Addition of MCP-1 reversed GM-CSF suppression of osteoclast formation, recovering the bone resorption phenotype. MCP-1 and chemokine RANTES (regulated on activation normal T cell expressed and secreted) permitted formation of TRAP-positive multinuclear cells in the absence of RANKL. However, these cells were negative for bone resorption. In the presence of RANKL, MCP-1 significantly increased the number of TRAP-positive multinuclear bone-resorbing osteoclasts (p = 0.008). When RANKL signaling through NFATc1 was blocked with cyclosporin A, both MCP-1 and RANTES expression was down-regulated. Furthermore, addition of MCP-1 and RANTES reversed the effects of cyclosporin A and recovered the TRAP-positive multinuclear cell phenotype. Our model suggests that RANKL-induced chemokines are involved in osteoclast differentiation at the stage of multinucleation of osteoclast precursors and provides a rationale for increased osteoclast activity in inflammatory conditions where chemokines are abundant.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号