首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pectoral fins of Acipenseriformes possess endoskeletons with elements homologous to both the fin radials of teleosts and the limb bones of tetrapods. Here we present a study of pectoral fin development in the North American paddlefish, Polyodon spathula, and the white sturgeon, Acipenser transmontanus, which reveals that aspects of both teleost and tetrapod endoskeletal patterning mechanisms are present in Acipenseriformes. Those elements considered homologous to teleost radials, the propterygium and the mesopterygial radials, form via subdivision of an initially chondrogenic plate of mesenchymal cells called the endoskeletal disc. In Acipenseriformes, elements homologous to the sarcopterygian metapterygium develop separately from the endoskeletal disc as an outgrowth of the endoskeletal shoulder girdle that extends into the posterior margin of the finbud. As in tetrapods, the elongating metapterygium and the metapterygial radials form in a proximal to distal order as discrete condensations from initially nonchondrogenic mesenchyme. Patterns of variation seen in the Acipenseriform fin also correlate with putative homology: all variants from the "normal" fin bauplan involved the metapterygium and the metapterygial radials alone. The primary factor distinguishing Polyodon and Acipenser fin development from each other is the composition of the endoskeletal extracellular matrix. Proteoglycans (visualized with Alcian Blue) and Type II collagen (visualized by immunohistochemistry) are secreted in different places within the mesenchymal anlage of the fin elements and girdle and at different developmental times. Acipenseriform pectoral fins differ from the fins of teleosts in the relative contribution of the endoskeleton and dermal rays. The fins of Polyodon and Acipenser possess elaborate endoskeletons overlapped along their distal margins by dermal lepidotrichia. In contrast, teleost fins generally possess relatively small endoskeletal radials that articulate with the dermal fin skeleton terminally, with little or no proximodistal overlap.  相似文献   

2.
Among osteichthyans, basal actinopterygian fishes (e.g. paddlefish and bowfins) have paired fins with three endoskeletal components (pro-, meso- and metapterygia) articulating with polybasal shoulder girdles, while sarcopterygian fishes (lungfish, coelacanths and relatives) have paired fins with one endoskeletal component (metapterygium) articulating with monobasal shoulder girdles. In the fin–limb transition, the origin of the sarcopterygian paired fins triggered new possibilities of fin articulation and movement, and established the proximal segments (stylopod and zeugopod) of the presumptive tetrapod limb. Several authors have stated that the monobasal paired fins in sarcopterygians evolved from a primitive polybasal condition. However, the fossil record has been silent on whether and when the inferred transition took place. Here we describe three-dimensionally preserved shoulder girdles of two stem sarcopterygians (Psarolepis and Achoania) from the Lower Devonian of Yunnan, which demonstrate that stem sarcopterygians have polybasal pectoral fin articulation as in basal actinopterygians. This finding provides a phylogenetic and temporal constraint for studying the origin of the stylopod, which must have originated within the stem sarcopterygian lineage through the loss of the propterygium and mesopterygium.  相似文献   

3.
4.
5.
Fish fingers: digit homologues in sarcopterygian fish fins   总被引:2,自引:0,他引:2  
A defining feature of tetrapod evolutionary origins is the transition from fish fins to tetrapod limbs. A major change during this transition is the appearance of the autopod (hands, feet), which comprises two distinct regions, the wrist/ankle and the digits. When the autopod first appeared in Late Devonian fossil tetrapods, it was incomplete: digits evolved before the full complement of wrist/ankle bones. Early tetrapod wrists/ankles, including those with a full complement of bones, also show a sharp pattern discontinuity between proximal elements and distal elements. This suggests the presence of a discontinuity in the proximal-distal sequence of development. Such a discontinuity occurs in living urodeles, where digits form before completion of the wrist/ankle, implying developmental independence of the digits from wrist/ankle elements. We have observed comparable independent development of pectoral fin radials in the lungfish Neoceratodus (Osteichthyes: Sarcopterygii), relative to homologues of the tetrapod limb and proximal wrist elements in the main fin axis. Moreover, in the Neoceratodus fin, expression of Hoxd13 closely matches late expression patterns observed in the tetrapod autopod. This evidence suggests that Neoceratodus fin radials and tetrapod digits may be patterned by shared mechanisms distinct from those patterning the proximal fin/limb elements, and in that sense are homologous. The presence of independently developing radials in the distal part of the pectoral (and pelvic) fin may be a general feature of the Sarcopterygii.  相似文献   

6.
《Journal of morphology》2017,278(12):1716-1725
The dorsal fin is one of the most varied swimming structures in Acanthomorpha, the spiny‐finned fishes. This fin can be present as a single contiguous structure supported by bony spines and soft lepidotrichia, or it may be divided into an anterior, spiny dorsal fin and a posterior, soft dorsal fin. The freshwater fish family Percidae exhibits especially great variation in dorsal fin spacing, including fishes with separated fins of varying gap length and fishes with contiguous fins. We hypothesized that fishes with separated dorsal fins, especially those with large gaps between fins, would have stiffened fin elements at the leading edge of the soft dorsal fin to resist hydrodynamic loading during locomotion. For 10 percid species, we measured the spacing between dorsal fins and calculated the second moment of area of selected spines and lepidotrichia from museum specimens. There was no significant relationship between the spacing between dorsal fins and the second moment of area of the leading edge of the soft dorsal fin.  相似文献   

7.
In teleosts, the embryonic fin fold consists of a peridermis, an underlying epidermis and a small number of mesenchymal cells. Beginning from such a simple structure, the fin skeletons, including the proximal and distal radials and lepidotrichia (finrays), develop in the dorsal fin fold at the larval stage. Their process of skeletogenesis and embryonic origin are unclear. Using flounder larvae, we report the differentiation process for chondrocytes and scleroblasts prior to fin skeletogenesis and the effects of retinoic acid (RA) on it. In early larvae, the mesenchymal cells grow between the epidermis and spinal cord to form a line of periodical condensations, which are proximal radial primordia, to produce chondrocytes. The prescleroblasts, which ossify the proximal radial cartilages, differentiate in the mesenchymal cells remaining between the cartilages. Then, mesenchymal condensations occur between the distal ends of the proximal radials, forming distal radial primordia, to produce chondrocytes. Simultaneously, condensations occur between the distal radial primordia and peridermis, which are lepidotrichia primordia, to produce prescleroblasts. Exogenous RA specifically inhibits the mesenchymal condensation prior to the proximal radial formation together with the down-regulation of sonic hedgehog (shh) and patched (pta) expression, resulting in the loss of proximal radials. Thus, it was indicated that differentiation of the precursor cells of radials and lepidotrichia begins in the proximal part of the fin fold and that the initial mesenchymal condensation prior to the proximal radial formation is highly susceptible to the effects of RA. Lepidotrichia formation does not occur where proximal radials are absent, indicating that lepidotrichia differentiation requires interaction with the radial cartilages. To examine the suggestion that neural crest cells contribute to the medial fin skeletons, we localized the HNK-1 positive cells in flounder embryos and slug and msxb-positive cells in pufferfish, Fugu rubripes, embryos. That the positive cells commonly arrive at the proximal part of the fin fold does not contradict the suggestion, but their final destiny as radial chondrocytes or lepidotrichia scleroblasts, should be further investigated.  相似文献   

8.
The pectoral fin girdle was the first element of the fins to develop in Sparus aurata. By 3·1mm L N (notochord length) the cleithrum was ossified and the cartilaginous caracoid-scapula was present. The fin was fully developed at 11·6 mm L S (standard length) and by 16·0 mm L S most elements of the fin were ossified. The pelvic fins were the last pair to develop and rudiments of these were first detected at 7·9 mm L S. The pelvic fin and girdle were completely formed and ossified at 16·0 mm L S. The development of dorsal and anal fins began at c. 6·5–7·0 mm L S with the formation of 10 cartilaginous dorsal proximal radials and eight cartilaginous ventral proximal radials. The three cartilaginous predorsals (supraneurals) appeared at 7·7 mm L S and the ossification of dorsal and anal proximal and distal radials began, respectively, at 10·5 mm L S and 11·3 mm L S. Ossified structures in the fins were also classified according to their origin, as being either dermal or endochondral. Finally the chronology of appearance of fin structures in S. aurata was compared with that reported for other Sparidae, Engraulidae and Haemulidae.  相似文献   

9.
In this study, we illustrate an exceptionally well-preserved Haikouichthys ercaicunensis from the Lower Cambrian Chengjiang fauna that displays complete single dorsal, ventral and caudal fins. This 530-million-year old vertebrate is fish-shaped and characterized by a single median fin-fold, which is an essential trait of the initial vertebrate chordates. The radially orientated ray-like structures in its dorsal fin somewhat resemble but are probably not real radials seen in basal vertebrates, such as hagfishes and lampreys. The unique design of primitive fins and fin structures provides additional insights into the early evolution of vertebrates.  相似文献   

10.
The present study was undertaken to establish the normal, healthy features of morphological structures at various developmental stages as achieved under well-defined environmental culture conditions (temperature between 16 and 21°C, salinity 36 ppt, pH around 7.6, and oxygen saturation over 95%) common in aquaculture of the species. The pectoral fin supports began to develop at 2.90 mm total length (TL), followed by those of dorsal fins at 5.5 mm TL, caudal fins at 5.6 mm TL, pelvic fins at 5.9 mm TL and anal fins at 6.0 mm TL. The pelvic fins appeared fully at 7.4 mm TL. Development of dorsal lepidotrichia was first observed at 6.9 mm TL, attaining their final number at 7.6 mm TL. The dorsal spines first appeared at 6.5 mm TL and were complete at 7.4 mm TL. The anal lepidotrichia appeared during the development phase from 6.8 to 8.6 mm TL. At 5.6 mm TL, the upward flexion of the urostyle was initiated. The caudal lepidotrichia formed within the primordial fin at 5.6 mm TL and reached the final count at 7.4 mm TL. The caudal dermatotrichia first appeared at 7.3 mm TL and all forms were observed by 15.5 mm TL. The development pattern of fin supports found in Pagrus pagrus is quite similar to that described for other Sparid species.  相似文献   

11.
The skeleton of adult zebrafish fins comprises lepidotrichia, which are dermal bones of the rays, and actinotrichia, which are non-mineralized spicules at the distal margin of the appendage. Little is known about the regenerative dynamics of the actinotrichia-specific structural proteins called Actinodins. Here, we used immunofluorescence analysis to determine the contribution of two paralogous Actinodin proteins, And1/2, in regenerating fins. Both proteins were detected in the secretory organelles in the mesenchymal cells of the blastema, but only And1 was detected in the epithelial cells of the wound epithelium. The analysis of whole mount fins throughout the entire regenerative process and longitudinal sections revealed that And1-positive fibers are complementary to the lepidotrichia. The analysis of another longfin fish, a gain-of-function mutation in the potassium channel kcnk5b, revealed that the long-fin phenotype is associated with an extended size of actinotrichia during homeostasis and regeneration. Finally, we investigated the role of several signaling pathways in actinotrichia formation and maintenance. This revealed that the pulse-inhibition of either TGFβ/Activin-βA or FGF are sufficient to impair deposition of Actinodin during regeneration. Thus, the dynamic turnover of Actinodin during fin regeneration is regulated by multiple factors, including the osteoblasts, growth rate in a potassium channel mutant, and instructive signaling networks between the epithelium and the blastema of the regenerating fin.  相似文献   

12.
The Rhizodontida are an extinct order of large, predatory, lobe-finned fishes, found world-wide in Devonian and Carboniferous freshwater deposits. They are thought to be basal members of the tetrapod lineage. In this paper the pectoral fin skeleton of Rhizodus hibberti , a derived member of the group, is described in detail for the first time. It shows that muscular processes of the humerus (the deltoid and supinator processes) may have appeared later in tetrapod evolution than previously thought. The rhizodontids share an unusual fin-ray morphology, with highly elongated basal hemisegments, overlapping extensively with the endoskeleton. This morphology raises the possibility that segmentation and endoskeletal overlap share some common upstream genetic control during lepidotrichial development. The relative size of the lepidotrichia and the complexity of the endoskeleton does not fit with a 'clockface' model of limb developmental evolution.  相似文献   

13.
Phenotypic integration and modularity describe the strength and pattern of interdependencies between traits. Integration and modularity have been proposed to influence the trajectory of evolution, either acting as constraints or facilitators. Here, we examine trends in the integration and modularity of pectoral fin morphology in teleost fishes using geometric morphometrics. We compare the fin shapes of the highly diverse radiation of acanthomorph fishes to lower teleosts. Integration and modularity are measured using two‐block partial least squares analysis and the covariance ratio coefficient between the radial bones and lepidotrichia of the pectoral fins. We show that the fins of acanthomorph fishes are more tightly integrated but also more morphologically diverse and faster evolving compared to nonacanthomorph fishes. The main pattern of shape covariation in nonacanthomorphs is concordant with the main trajectory of evolution between nonacanthomorphs and acanthomorphs. Our findings support a facilitating role for integration during the acanthomorph diversification. Potential functional consequences and developmental mechanisms of fin integration are discussed.  相似文献   

14.
Meunier F.J. and Laurin M. 2012. A microanatomical and histological study of the fin long bones of the Devonian sarcopterygian Eusthenopteron foordi. —Acta Zoologica (Stockholm) 93 : 88–97. A paleohistological study of the endoskeletal bones of the dorsal and pelvic fins shows that Eusthenopteron foordi had true long bones that grew in length and thickness through endochondral and periosteal ossification, respectively. Endochondral ossification required cartilaginous epiphyses with a growth plate system whose presence is confirmed by both calcified cartilage and thin endochondral bony trabeculae that overlaid the erosive bays located in hypertrophic calcified cartilage. Articulations between axial mesomeres in paired fins were diarthroses. This microanatomical organization, i.e. longitudinal growth of diaphysis and articulations between epiphyses, can be considered an exaptation for terrestrial locomotion as it can produce skeletal elements able to support strong mechanical stress.  相似文献   

15.
A vertebral column consisting of a persistent notochord and ossified arcocentra is the primitive condition for Gnathostomata; it still persists in primitive actinopterygians and sarcopterygians. Advanced actinopterygians and sarcopterygians develop numerous types of centra that include, among others, the presence of holocentrum, chordacentrum, and autocentrum. The chordacentrum, a mineralization or calcification of the fibrous sheath of the notochord, is only found in actinopterygians, whereas an autocentrum is a synapomorphy of teleosts above Leptolepis coryphaenoides. The chordacentrum, formed by migration of cartilaginous cells from the arches into the fibrous sheath of the notochord and usually covered by a thin calcification, is a unique feature of chondrichthyans. The actinopterygian chordacentrum and the chondrichthyan chordacentrum are not homologous. The postcaudal cartilaginous centrum is only known in postcaudal vertebrae of living dipnoans. The holocentrum is present in certain fossil dipnoans and actinopterygians, where it has been independently acquired. It is formed by proliferation of cartilage cells around the elastica externa of the notochord. These cells later ossify, forming a compact centrum. A vertebral column formed by a persistent notochord without vertebral centra is the primitive pattern for all vertebrates. The formation of centra, which is not homologous among vertebrate groups, is acquired independently in some lineages of placoderms, most advanced actinopterygians, and some dipnoans and rhipidistians. Several series of structures are associated with the vertebral column such as the supraneurals, interhaemals, radials, and ribs. In living dipnoans median neural spine, "supraneural," and dorsal radial result from growth and distal differentiation of one median cartilage into two or three median bones during ontogeny. The median neural spine articulates with the neural arch and fuses with it in the caudal vertebrae early in ontogeny. Two bones differentiate in the anterior abdominal vertebrae, i.e., the proximal neural spine and the distal "supraneural." Three bones differentiate in front of the dorsal fin, i.e., the proximal neural spine, the middle "supraneural", and the distal radial; the same pattern is observed in front of the anal fin (the proximal haemal spine, the middle interhaemal, and the distal radial). Considering that the three dorsal (and also the three ventral) bones originate from growth of only one cartilage, they cannot be serial homologs of the neural spines, or "supraneural." They are linear homologs of the median neural cartilage in living dipnoans. The development of these elements differs within osteichthyans from sarcopterygians to actinopterygians, in which the neural spine originates as a continuation of the basidorsal arcualia and in which the supraneural and radial originate from independent cartilages that appear at different times during early ontogeny. The ribs of living dipnoans are unique in that they are not articulated with parapophyses, like in primitive fossil dipnoans, but a remnant of the ventral arcuale surrounded by a small arcocentrum remains at its base. A true caudal fin is absent in living dipnoans. The postcaudal cartilages extend to the caudal tip of the body separating dorsal and ventral rays (or the camptotrichia). Actinotrichia are present in young dipnoans. They are also known in extant actinistians and actinopterygians. They probably represent the primitive state for teleostomes. In contrast, the camptotrichia are unique for extant dipnoans (and probably Carboniferous and younger dipnoans). Lepidotrichia apparently developed many times among osteichthyans.  相似文献   

16.
17.
Transition from sarcopterygians to tetrapods is analyzed based on new paleontological, ontogenetic, and molecular data. It is shown that transformation of skeletal fin elements into the tetrapod limb followed the patterns of divergent, parallel, and mosaic development. Morphogenetic plasticity and autonomy of these processes as well as the same developmental bauplan for the limbs of Urodela and Anura are proposed. Variations observed in these processes are regarded as a result of larval adaptations and heterochronies. The latter excludes recapitulation of successive archetypical states (transformation-development of the fish fin into tetrapod limb). The idea that the digits are a novelty relative to the distal radials of the fin is supported.  相似文献   

18.
In Polyodon spathula, the pectoral fin radials, with the exception of the metapterygium, are derived from the decomposition of a single continuous cartilage fin plate that is continuous with the scapulocoracoid. This cartilage sheet develops two interior splits to form three precursor pieces, and these decompose in a predictable way to generate the propterygium and radials. The metapterygium is an extension of the scapulocoracoid that segments off of it during early development. To our knowledge, this has not been reported for acipenserids or other basal actinopterygians. In teleosts, the proximal radials also develop from the "break up" of an initially continuous paddle-like sheet of cartilage along the posterior edge of the scapulocoracoid, and in Polypterus and sharks a similar pattern holds. Thus, the pattern observed in Polyodon may represent the basal developmental condition for the gnathostome pectoral fin. The process underlying development of the superficially similar cartilages of the pelvic and pectoral fins is different. In the pectoral fin, the metapterygium is segmented off of the scapulocoracoid and other radials form from the decomposition of the cartilage plate. In contrast, individual rod-like basipterygial elements form in a close one-to-one correspondence with the middle radials of the pelvic fin, but later fuse to form an anterior element that is branched in appearance. To evaluate further claims of similarity among the pectoral and pelvic fin elements of various fishes, the course of the development of these structures must be observed. The pectoral fin and girdle in Polyodon ossifies in a different sequence than that proposed as ancestral (and highly conserved) for actinopterygians: the supracleithrum ossifies significantly before the cleithrum. The later ossification of the cleithrum in Polyodon may be related to the primary use of the caudal fin vs. the pectoral fins in their locomotion.  相似文献   

19.
20.
《Comptes Rendus Palevol》2013,12(4):203-210
The present comparative histological study of the pectoral, caudal and anal fins of the polypterid Polypterus senegalus reveals the presence of a layer of dentine identified between the superficial ganoine patches and the bony part of the lepidotrichia in the three fins. Its extent varies depending on the fins. Similarly, the ganoine layer present at the surface of the proximal lepidotrichia shows fin-dependent differences in extent and distribution. The dentine layer is crossed by a system of thin worm-like vascular canaliculi that reach the ganoine layer and even penetrate within it as in the scales. In the lepidotrichia, the dentine lays directly on bone, which differs from the scales where dentine lies on isopedine, a plywood-like structure. Another difference between scales and lepidotrichia is the presence of actinotrichia that are unmineralised, fusiform rods of elastoidine located at the tip of the fins. Ontogenesis with differentiation of actinotrichia has no equivalent in scale formation. Although structural features are shared by lepidotrichia and scales in P. senegalus, observations on the scales and lepidotrichia support the hypothesis of Schaeffer (1977) that “scales and lepidotrichia are somewhat differently shaped manifestations of the same morphogenetic system”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号