首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell signalling for insulin may include insulin receptor tyrosine kinase catalysing the phosphorylation of one or more cell proteins. Since temporally the insulin receptor will encounter plasma membrane protein first, we have studied the in vitro phosphorylation of purified plasma membrane preparations. Two proteins were immunoprecipitated with anti-phosphotyrosine antibody from rat liver, muscle, heart and brain membranes and from human placenta membranes: the insulin receptor (detected as a phosphorylated-β-subunit) and a 180,000 molecular weight protein (pp180). pp180 is a monomeric glycoprotein that in the absence of dithiothreitol migrated in denaturing gels like a 150,000 molecular weight protein. pp180 was a substrate for the insulin receptor: (i) receptor and pp180 phosphorylation followed a similar insulin dose-response, although fold-stimulation of autophosphorylation was greater; and (ii) removal of insulin receptors with monoclonal antibodies prevented subsequent pp180 phosphorylation. Insulin-activated receptors increased the extent, but not the rate, of pp180 phosphorylation; the increased phosphate was incorporated into tyrosine and appeared to do so in three or four of pp180's 12 tryptic phosphopeptides. Some data suggest that pp180 is the same protein in each of the tested tissues. The occurrence of pp180, an insulin receptor substrate, in plasma membranes of several insulin responsive tissues suggests that it has a role in insulin signalling.  相似文献   

2.
Wheat germ agglutinin-purified non-diabetic and diabetic human placenta membranes were or were not depleted of EGF receptor with monoclonal anti-EGF receptor antibody B1D8, and subsequently phosphorylated. Phosphorylated insulin receptor beta-subunit was lower and pp180 was higher in diabetic placenta membranes than in non-diabetic membranes. Phosphorylated-beta-subunit was also lower in diabetic (streptozotocin-induced) rat liver whereas the amount of pp180 was dependent on membrane protein concentration. When rat liver tyrosine-phosphorylated proteins were incubated 30 min, 4 degrees C with EDTA-terminated 32P-phosphorylation reaction mixtures of wheat germ agglutinin-purified rat liver proteins, less phosphorylated proteins were immunoprecipitated with antiphosphotyrosine. The decrease in tyrosine-phosphorylated products suggested that pp180 was a protein tyrosine phosphatase. Taken together, the results suggest that diabetic plasma membranes contain more tyrosine phosphatase than non-diabetic membranes.  相似文献   

3.
Lectin-purified human placenta plasma membrane proteins were phosphorylated in vitro. Mixing the reaction mixture with IgGsorb and incubation of the resultant pellet with p-nitrophenyl phosphate demonstrated the presence of phosphorylated-insulin receptor beta-subunit and a phosphorylated-180 kDa protein in acrylamide gel electrophoresis. The same two proteins were detected in the electrophoretic analyses of anti-phosphotyrosine immunoprecipitated phosphorylation reaction mixtures. In the absence of antibody, the amount of phosphorprotein in the IgGsorb pellet was dependent on the amount of IgGsorb added. IgGsorb did not precipitate 125I-labeled lectin-purified human placenta protein. Further, 10 mM O-phosphotyrosine completely inhibited the precipitation of phosphorylated human placenta proteins. These data suggest that IgGsorb specifically bound and precipitated phosphotyrosine-containing proteins in soluble human placenta plasma membranes.  相似文献   

4.
The beta-subunit of the insulin receptor contains a tyrosine-specific protein kinase. Insulin binding activates this kinase and causes phosphorylation of the beta-subunit of the insulin receptor. It is believed that phosphorylation of other proteins might transmit the insulin signal from the receptor to the cell. In the present study we used a polyclonal anti-phosphotyrosine antibody to detect other proteins that become tyrosine phosphorylated upon insulin stimulation. Glycoproteins from human placenta membranes were enriched by wheat germ agglutinin chromatography and phosphorylation was studied with [gamma-32P]ATP and insulin in vitro. Phosphorylated proteins were immunoprecipitated by antibodies against the insulin receptor and by serum containing the anti-phosphotyrosine antibody. Beside the insulin-stimulated phosphorylation of the 95 kDa beta-subunit of the insulin receptor, an insulin-stimulated phosphorylation of a 180 kDa protein was found. The phosphorylation of both proteins occurred only on tyrosine residues. Insulin increased 32P incorporation into the 180 kDa band 2.7-fold (S.E.M. +/- 0.3, n = 5). The 180 kDa protein was not precipitated by antibodies against the insulin receptor. H.p.l.c. chromatograms of tryptic fragments of the phosphorylated 180 kDa protein and of the beta-subunit of the insulin receptor revealed different patterns for both proteins. Insulin-stimulated phosphorylation of the 180 kDa protein was also detectable in unfractionated detergent-solubilized membranes. The phosphorylation of the 180 kDa protein was stimulated by insulin with the same dose-response curve as the phosphorylation of the beta-subunit, suggesting that this protein might be another endogenous substrate of the insulin receptor kinase.  相似文献   

5.
Coated vesicles are involved in the intracellular transport of membrane proteins between a variety of membrane compartments. The coats of bovine brain coated vesicles contain at least six polypeptides in addition to an 180,000-dalton polypeptide called clathrin. In this report we show that the 54,000- and 56,000-dalton coated vesicle polypeptides are alpha- and beta-tubulin, determined by immunoblotting and two-dimensional gel electrophoresis. An affinity-purified tubulin antiserum can precipitate coated vesicles. The tubulin polypeptides are tightly associated with a 50,000-dalton coated vesicle polypeptide, which is phosphorylated. The phosphorylated 50,000-dalton polypeptide appears to be related to brain microtubule-associated tau proteins since it can be specifically immunoprecipitated by an affinity-purified antiserum directed against these proteins. In addition, gel filtration experiments indicate that at least a fraction of the 50,000-dalton polypeptide may associate with the 100,000-dalton coated vesicle polypeptide. Since brain is a tissue rich in tubulins, liver coated vesicles were analyzed for the presence of alpha- and beta-tubulin. Like brain coated vesicles, liver coated vesicles also contain an endogenous kinase activity, which phosphorylates polypeptides of the same molecular weights and isoelectric points as the brain coated vesicle 50,000-dalton, tau-like polypeptide, and alpha- and beta-tubulin. The phosphorylated 50,000-dalton polypeptide may link the membrane and contents of coated vesicles with components of the cytoskeleton.  相似文献   

6.
The clathrin assembly lymphoid myeloid leukemia (CALM) gene encodes a putative homologue of the clathrin assembly synaptic protein AP180. Hence the biochemical properties, the subcellular localization, and the role in endocytosis of a CALM protein were studied. In vitro binding and coimmunoprecipitation demonstrated that the clathrin heavy chain is the major binding partner of CALM. The bulk of cellular CALM was associated with the membrane fractions of the cell and localized to clathrin-coated areas of the plasma membrane. In the membrane fraction, CALM was present at near stoichiometric amounts relative to clathrin. To perform structure-function analysis of CALM, we engineered chimeric fusion proteins of CALM and its fragments with the green fluorescent protein (GFP). GFP-CALM was targeted to the plasma membrane-coated pits and also found colocalized with clathrin in the Golgi area. High levels of expression of GFP-CALM or its fragments with clathrin-binding activity inhibited the endocytosis of transferrin and epidermal growth factor receptors and altered the steady-state distribution of the mannose-6-phosphate receptor in the cell. In addition, GFP-CALM overexpression caused the loss of clathrin accumulation in the trans-Golgi network area, whereas the localization of the clathrin adaptor protein complex 1 in the trans-Golgi network remained unaffected. The ability of the GFP-tagged fragments of CALM to affect clathrin-mediated processes correlated with the targeting of the fragments to clathrin-coated areas and their clathrin-binding capacities. Clathrin-CALM interaction seems to be regulated by multiple contact interfaces. The C-terminal part of CALM binds clathrin heavy chain, although the full-length protein exhibited maximal ability for interaction. Altogether, the data suggest that CALM is an important component of coated pit internalization machinery, possibly involved in the regulation of clathrin recruitment to the membrane and/or the formation of the coated pit.  相似文献   

7.
When quiescent rat glioblasts were stimulated by glia maturation factor (GMF), their intrinsic Ca2+-dependent phosphorylation of proteins, especially that of Mr 100 k protein, increased. The phosphorylation of Mr 100 k protein in the homogenate started rising 13 h (S phase) after GMF stimulation and reached the maximal level (8-fold greater than the control) at 26 h. Phosphorylation was also detected in intact cells by the use of [32P]orthophosphate. Calmodulin augmented and W-7 (calmodulin inhibitor) slightly inhibited the phosphorylation, suggesting that Ca2+/calmodulin-dependent protein kinase may partly be involved in phosphorylation of the Mr 100 k protein. Subcellular fractionation experiments revealed that both Mr 100 k protein and its kinase were localized exclusively in the cytosol. We also found marked phosphorylation of Mr 100 k protein in neural tumor cell lines, mouse neuroblastoma (Neuro2a and NAs-1) and glioma (C6 and 354A). Since the peptide maps of 32P-labeled peptides obtained by chemical cleavage from Mr 100 k protein of the cells were identical to those of glioblasts, the Mr 100 k proteins, regardless of cell origin, may be closely related in structure. Growth inhibitors, W-7 (50 μM), puromucin (2 μM), spongoadenosine (50 μM), diphenylhydantoin (0.3 mM), -sialosyl cholesterol (20 μg/ml) and protein kinase inhibitor, K252a (50 nM), lowered the phosphorylation of the Mr 100 k protein in the cell homogenate derived from glioblasts pretreated with the drugs for 24 h.

Mr 100 k protein of glioblasts and C6 cells was immunoprecipitated by anti-elongation factor-2 (EF-2) antiserum indicating an identity or similarity in structure between the protein and EF-2. These findings provide a possibility that cell growth may be brought about through a phosphorylation of Mr 100 k protein as one of the signal transduction processes subsequent to a mitogen stimulation.  相似文献   


8.
Boar seminal plasma proteins were separated by gel chromatography on Sephadex G-75 into five fractions (I–V). Serine proteinase inhibitors were found mainly in the protein fraction with relative molecular weight 5–25 kDa. Small amounts of these inhibitors were also found in the high molecular weight protein fraction (Mr>100 kDa). The protein fraction containing most of the proteinase inhibitory activity was further separated by RP HPLC. Isolated proteins were characterized by SDS electrophoresis and immunoblotting, N-terminal amino acid sequencing and by determination of the proteinase inhibitory activity. In the fraction containing proteinase inhibitors, also β-microseminoprotein (β-MSP), AQN 1 and lactoferrin were identified. The possible existence of complexes of protein components in the fraction with relative molecular weight 5–25 kDa was studied in detail using gel chromatographic separation on Sephadex G-50. A part of proteinase inhibitors with Mr 8 kDa was eluted together with AQN 1 spermadhesin. An interaction of isolated spermadhesin AQN 1 and proteinase inhibitor was shown.  相似文献   

9.
Structural characterization of labeled clathrin and coated vesicles   总被引:1,自引:0,他引:1  
Clathrin (8 S) and coated vesicles have been covalently labeled by using the sulfhydryl-labeling fluorescent probe N-(1-anilinonaphthalene)maleimide. A large increase in energy transfer from Trp to anilinonaphthalene (AN) residues was observed in clathrin in the pH range approximately 6.5-6.0, where the rate of clathrin self-association increased rapidly. The change in energy transfer was indicative of a conformational rearrangement, which could be responsible for the initiation of the clathrin self-association reaction to form coat structure. The AN label was found in both the coat and membrane proteins after dissociation of coated vesicles at pH 8.5. The labeled coat and membrane proteins readily recombined to form coated vesicles after reducing the pH to 6.5, indicating that the labeling did not interfere with the ability of clathrin to self-associate and interact with uncoated vesicles to form coat structure. A comparison of the AN fluorescence with the Coomassie blue pattern after electrophoresis in sodium dodecyl sulfate-gels revealed that a 180,000-Da protein (clathrin) was mainly labeled in coated vesicles, while a 110,000-Da protein was also strongly labeled in uncoated vesicles. AN-labeled baskets and coated vesicles have been prepared. Trypsin digestion reduced the sedimentation rate of baskets from 150 S to 120 S and of coated vesicles from 200 S to 150 S. Gel electrophoresis of baskets and coated vesicles showed extensive conversion of clathrin (Mr 180,000) to a product of Mr approximately equal to 110,000, suggesting equivalent structural organization of the coat in coated vesicles as in baskets. In both cases, the peptide(s) released from the vesicles by digestion were essentially free of fluorescent label. In the case of the uncoated vesicles, tryptic digestion released most of the proteins remaining after coat removal.  相似文献   

10.
 M11D杂交瘤细胞株是由人胎盘细胞膜纯化所得胰岛素受体免疫BALB/C小鼠后,取其脾细胞与同系小鼠骨髓瘤细胞株NS-1细胞融合所得。该杂交瘤细胞分泌的抗体经ELISA及放射免疫沉淀法证实为胰岛素受体特异的单克隆抗体。该抗体经Protein A-Sepharose亲和层析分离、纯化,SDS-聚丙烯酰胺梯度凝胶电泳鉴定得分子量分别为53000及23000的两条区带,免疫双扩证明为IgGl。该抗体特异地沉淀125Ⅰ-人胎盘细胞膜胰岛素受体,沉淀经SDS-聚丙烯酰胺凝胶电泳后放射自显影得分子量为135000的特异显影带,与胰岛素受体α亚基分子量相同,说明M11D为抗胰岛素受体α亚基的单克隆抗体。  相似文献   

11.
The 180,000 molecular weight protein from [32P]phosphorylated wheat germ agglutinin-purified rat liver plasma membranes was digested with trypsin. NIH 3T3 HIR 3.5 cells were [32P]phosphate-labelled in the presence of 10(-7) M insulin, and the 185,000 molecular weight cytoplasmic protein was digested with trypsin. Digests were applied to a C18-mu Bondapak column, eluted with acetonitrile gradients, and radioactivity in the eluate was monitored. The chromatogram for the cytoplasmic protein was similar but not identical to chromatograms of trypsin digests of insulin receptor substrates from other cultured cells. Thirteen and seven phosphopeptides were obtained from the plasma membrane and cytoplasmic substrate, respectively. One phosphopeptide from the two digests eluted at the same acetonitrile concentration; however, dissimilarity in elution profiles and dissimilarity in relative yields of individual phosphopeptides, suggest that the primary structures of tyrosine phosphorylation sites in the two insulin receptor substrates are different.  相似文献   

12.
A biosynthetic study of rat liver coated vesicle (CV) proteins was undertaken by using in vivo labeling with L-[35S]methionine. CVs were isolated and purified by using standard procedures and characterized by electron microscopy, sedimentation, and sodium dodecyl sulfate polyacrylamide gel electrophoresis followed by fluorography, or by gel slicing and liquid scintillation counting. After 5 1/2 min of labeling (the earliest time examined), incorporation of radioactive clathrin heavy-chain (180-kD (kilodalton] subunits as well as a 90-kD CV-associated protein into purified CVs was demonstrated. The level of labeled 180-kD clathrin in coated vesicles increased rapidly during the first 2 hr of labeling and then continued to rise at a slower rate between 4 and 16 hr. This slow accumulation of labeled clathrin heavy chains in the CV pool may reflect early compartmental sequestration of a fraction of newly synthesized clathrin with delayed assembly into free CVs. By 16 hr of labeling, clathrin 180-kD chains and the 90-kD CV-associated protein accounted for approximately 48 and 26%, respectively, of the radioactivity in all CV proteins. Two proteins of MWa 68 kD and 53 kD showed marked declines in cpm/unit protein between 30 min and 4 hr, raising the possibility that these species may be transferred out of CVs during or after transport without loss of the other CV proteins. The possibility is also raised that clathrin heavy chains may be recycled during CV formation. Possible heterogeneity within individual CV preparations with respect to protein composition and derivation from both plasma membrane and Golgi regions are proposed.  相似文献   

13.
The molecular adaptor Grb14 binds in vitro to the activated insulin receptor (IR) and inhibits IR signaling. In this study, we have used rat liver subcellular fractionation to analyze in vivo insulin effects on Grb14 compartmentalization and IR phosphorylation and activity. In control rats, Grb14 was recovered mainly in microsomal and cytosolic fractions, but was also detectable at low levels in plasma membrane and Golgi/endosome fractions. Insulin injection led to a rapid and dose-dependent increase in Grb14 content, first in the plasma membrane fraction, and then in the Golgi/endosome fraction, which paralleled the increase in IR beta-subunit tyrosine phosphorylation. Upon sustained in vivo IR tyrosine phosphorylation induced by high-affinity insulin analogs, in vitro IR dephosphorylation by endogenous phosphatases, and in vivo phosphorylation of the IR induced by injection of bisperoxo(1,10 phenanthroline)oxovanadate, a phosphotyrosine phosphatase inhibitor, we observed a striking correlation between IR phosphorylation state and Grb14 content in both the plasma membrane and Golgi/endosome fractions. In addition, coimmunoprecipitation experiments provided evidence that Grb14 was associated with phosphorylated IR beta-subunit in these fractions. Altogether, these data support a model whereby insulin stimulates the recruitment of endogenous Grb14 to the activated IR at the plasma membrane, and induces internalization of the Grb14-IR complex in endosomes. Removal of Grb14 from fractions of insulin-treated rats by KCl treatment led to an increase of in vivo insulin-stimulated IR tyrosine kinase activity, indicating that endogenous Grb14 exerts a negative feedback control on IR catalytic activity. This study thus demonstrates that Grb14 is a physiological regulator of liver insulin signaling.  相似文献   

14.
How clathrin‐mediated endocytosis (CME) retrieves vesicle proteins into newly formed synaptic vesicles (SVs) remains a major puzzle. Besides its roles in stimulating clathrin‐coated vesicle formation and regulating SV size, the clathrin assembly protein AP180 has been identified as a key player in retrieving SV proteins. The mechanisms by which AP180 recruits SV proteins are not fully understood. Here, we show that following acute inactivation of AP180 in Drosophila, SV recycling is severely impaired at the larval neuromuscular synapse based on analyses of FM 1‐43 uptake and synaptic ultrastructure. More dramatically, AP180 activity is important to maintain the integrity of SV protein complexes at the plasma membrane during endocytosis. These observations suggest that AP180 normally clusters SV proteins together during recycling. Consistent with this notion, SV protein composition and distribution are altered in AP180 mutant flies. Finally, AP180 co‐immunoprecipitates with SV proteins, including the vesicular glutamate transporter and neuronal synaptobrevin. These results reveal a new mode by which AP180 couples protein retrieval to CME of SVs. AP180 is also genetically linked to Alzheimer's disease. Hence, the findings of this study may provide new mechanistic insight into the role of AP180 dysfunction in Alzheimer's disease.   相似文献   

15.
The integrity of the actin cytoskeleton and associated motor proteins are essential for the efficient functioning of clathrin mediated endocytosis at least in polarised cells. Myosin VI, the only motor protein so far identified that moves towards the minus end of actin filaments, is the first motor protein to be shown to associate with clathrin coated pits/vesicles at the plasma membrane and to modulate clathrin mediated endocytosis. Recent kinetic studies suggest that myosin VI may move processively along actin filaments providing clues about its functions in the cell. The possible role(s) of myosin VI in the sequential steps involved in receptor mediated endocytosis are discussed.  相似文献   

16.
K M Huang  K D''Hondt  H Riezman    S K Lemmon 《The EMBO journal》1999,18(14):3897-3908
The major coat proteins of clathrin-coated vesicles are the clathrin triskelion and heterotetrameric associated protein (AP) complexes. The APs are thought to be involved in cargo capture and recruitment of clathrin to the membrane during endocytosis and sorting in the trans-Golgi network/endosomal system. AP180 is an abundant coat protein in brain clathrin-coated vesicles, and it has potent clathrin assembly activity. In Saccharomyces cerevisiae, there are 13 genes encoding homologs of heterotetrameric AP subunits and two genes encoding AP180-related proteins. To test the model that clathrin function is dependent on the heterotetrameric APs and/or AP180 homologs, yeast strains containing multiple disruptions in AP subunit genes, as well as in the two YAP180 genes, were constructed. Surprisingly, the AP deletion strains did not display the phenotypes associated with clathrin deficiency, including slowed growth and endocytosis, defective late Golgi protein retention and impaired cytosol to vacuole/autophagy function. Clathrin-coated vesicles isolated from multiple AP deletion mutants were morphologically indistinguishable from those from wild-type cells. These results indicate that clathrin function and recruitment onto membranes are not dependent upon heterotetrameric adaptors or AP180 homologs in yeast. Therefore, alternative mechanisms for clathrin assembly and coated vesicle formation, as well as the role of AP complexes and AP180-related proteins in these processes, must be considered.  相似文献   

17.
Internalization of agonist-activated G protein-coupled receptors is mediated by non-visual arrestins, which also bind to clathrin and are therefore thought to act as adaptors in the endocytosis process. Phosphoinositides have been implicated in the regulation of intracellular receptor trafficking, and are known to bind to other coat components including AP-2, AP180 and COPI coatomer. Given these observations, we explored the possibility that phosphoinositides play a role in arrestin's function as an adaptor. High-affinity binding sites for phosphoinositides in beta-arrestin (arrestin2) and arrestin3 (beta-arrestin2) were identified, and dissimilar effects of phosphoinositide and inositol phosphate on arrestin interactions with clathrin and receptor were characterized. Alteration of three basic residues in arrestin3 abolished phosphoinositide binding with complete retention of clathrin and receptor binding. Unlike native protein, upon agonist activation, this mutant arrestin3 expressed in COS1 cells neither supported beta2-adrenergic receptor internalization nor did it concentrate in coated pits, although it was recruited to the plasma membrane. These findings indicate that phosphoinositide binding plays a critical regulatory role in delivery of the receptor-arrestin complex to coated pits, perhaps by providing, with activated receptor, a multi-point attachment of arrestin to the plasma membrane.  相似文献   

18.
The effect of insulin to increase the cell surface concentration of various receptors is accompanied by an increase in the concentration of clathrin assembled on the plasma membrane (Corvera, S. (1990) J. Biol. Chem. 265, 2413-2416). In the present study, clathrin-coated membranes were purified from isolated adipocytes labeled isotopically with [32P]orthophosphate. Analysis of the coated vesicle preparation by polyacrylamide gel electrophoresis and autoradiography revealed the presence of a cluster of phosphopeptides of 90-100 kDa as well as other phosphorylated species of 125, 70, 58, 50, 43, and 32 kDa. Incubation of the coated vesicles in alkaline pH resulted in the elution of the majority of the phosphopeptides, suggesting that these components are part of the clathrin coat and not integral membrane proteins. A pronounced increase in the amount of phosphate incorporated into the 125-kDa species was observed in response to stimulation of labeled cells by low concentrations of insulin. Phosphoamino acid analysis of an acid hydrolysate of this band revealed that its phosphorylation occurred exclusively on serine residues. The increased serine phosphorylation of this protein was apparent after only 2 min of exposure of cells to insulin and persisted for at least 60 min. The effect of insulin to increase the cell surface concentration of receptors and the assembly of clathrin on the plasma membrane displays a similar time course. Phorbol esters or dibutyryl cyclic AMP did not mimic the effects of insulin to stimulate the incorporation of [32P]phosphate into the 125-kDa polypeptide. Phosphorylation of the 125-kDa polypeptide was not observed after incubation of purified adipocyte-coated vesicles with [gamma-32P]ATP, suggesting that the kinase responsible for this reaction may not be contained within the clathrin-coated vesicle itself. These results suggest that phosphorylation of this 125-kDa polypeptide in intact cells may play a role in the regulation of clathrin-coated membrane formation and receptor-mediated endocytosis in response to insulin.  相似文献   

19.
Epsin and AP180/CALM are important endocytic accessory proteins that are believed to be involved in the formation of clathrin coats. Both proteins associate with phosphorylated membrane inositol lipids through their epsin N-terminal homology domains and with other components of the endocytic machinery through short peptide motifs in their carboxyl-terminal segments. Using hydrodynamic and spectroscopic methods, we demonstrate that the parts of epsin 1 and AP180 that are involved in protein-protein interactions behave as poorly structured flexible polypeptide chains with little or no conventional secondary structure. The predominant cytosolic forms of both proteins are monomers. Furthermore, we show that recombinant epsin 1, like AP180, drives in vitro assembly of clathrin cages. We conclude that the epsin N-terminal homology domain-containing proteins AP180/CALM and epsin 1 have a very similar molecular architecture that is designed for the rapid and efficient recruitment of the principal coat components clathrin and AP-2 at the sites of coated pit assembly.  相似文献   

20.
Clathrin-coated vesicles are involved in protein and lipid trafficking between intracellular compartments in eukaryotic cells. AP-2 and AP180 are the resident coat proteins of clathrin-coated vesicles in nerve terminals, and interactions between these proteins could be important in vesicle dynamics. AP180 and AP-2 each assemble clathrin efficiently under acidic conditions, but neither protein will assemble clathrin efficiently at physiological pH. We find that there is a direct, clathrin-independent interaction between AP180 and AP-2 and that the AP180-AP-2 complex is more efficient at assembling clathrin under physiological conditions than is either protein alone. AP180 is phosphorylated in vivo, and in crude vesicle extracts its phosphorylation is enhanced by stimulation of casein kinase II, which is known to be present in coated vesicles. We find that recombinant AP180 is a substrate for casein kinase II in vitro and that its phosphorylation weakens both the binding of AP-2 by AP180 and the cooperative clathrin assembly activity of these proteins. We have localized the binding site for AP-2 to amino acids 623-680 of AP180. The AP180/AP-2 interaction can be disrupted by a recombinant AP180 fragment containing the AP-2 binding site, and this fragment also disrupts the cooperative clathrin assembly activity of the AP180-AP-2 complex. These results indicate that AP180 and AP-2 interact directly to form a complex that assembles clathrin more efficiently than either protein alone. Phosphorylation of AP180, by modulating the affinity of AP180 for AP-2, may contribute to the regulation of clathrin assembly in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号