首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microalgae have been used to remove nitrogen, phosphorus, and chemical oxygen demand (COD) from brewery wastewater (BWW). The microalga Scenedesmus obliquus was grown on BWW, using bubble column photobioreactors that operated under batch and continuous regimes. For the first time, the cell physiological status cell membrane integrity and enzymatic activity was monitored during the microalgae based BWW treatment, using flow cytometry. All the cultivations batch and continuous displayed a proportion of cells with intact membrane >?87%, although the continuous cultivations displayed a lower proportion of cells with enzymatic activity (20–40%) than the batch cultivations (97%). The dilution rate of 0.26 day?1 was the most favorable condition, since the microalgae cultivation attained the maximum biomass productivity (0.2 g ash-free dry weight day?1) and the total nitrogen and COD removal rates were the highest (97 and 74%, respectively), while the phosphorous removal rate was the third (23%).  相似文献   

2.
The performance of a bioreactor with a microfiltration module for the production of an intracellular enzyme, superoxide dismutase (SOD), by Streptococcus lactis is described. The fermentation system involving the bioreactor enables the continuous removal of metabolites inhibitory for cell growth and the complete recycling of the cells to the bioreactor. In a fed-batch (FB) culture with filtration, in which the main metabolite, lactic acid, in the culture broth was maintained at a low concentration, S. lactis was cultivated to the high concentration of 15.5 g-dry cells/1. The SOD content of the cells remained at almost a constant level throughout the cultivation and the productivity of SOD as well as cells per unit time was 4.3-fold as high as that in the case of a conventional batch culture without filtration. Repeating the FB culture with filtration enhanced the productivities of SOD and cells further, as compared with those in the case of the FB culture with filtration.  相似文献   

3.
Aims: Kluyveromyces lactis was cultured in cheese whey permeate on both batch and continuous mode to investigate the effect of time course and growth rate on β‐galactosidase activity, lactose consumption, ethanol production and protein profiles of the cells. Methods and Results: Cheese whey was the substrate to grow K. lactis as a batch or continuous culture. In order to precise the specific growth rate for maximum β‐galactosidase activity a continuous culture was performed at five dilution (growth) rates ranging from 0·06, 0·09, 0·12, 0·18 to 0·24 h?1. The kinetics of lactose consumption and ethanol production were also evaluated. On both batch and continuous culture a respirofermentative metabolism was detected. The growth stage for maximum β‐gal activity was found to be at the transition between late exponential and entrance of stationary growth phase of batch cultures. Fractionating that transition stage in several growth rates at continuous culture a maximum β‐galactosidase activity at 0·24 h?1 was observed. Following that stage β‐gal activity undergoes a decline which does not correlate to the density of its corresponding protein band on the gel prepared from the same samples. Conclusion: The maximum β‐galactosidase activity per unit of cell mass was found to be 341·18 mmol ONP min?1 g?1 at a dilution rate of 0·24 h?1. Significance and Impact of the Study: The physiology of K. lactis growing in cheese whey permeate can proven useful to optimize the conversion of that substrate in biomass rich in β‐gal or in ethanol fuel. In addition to increasing the native enzyme the conditions established here can be set to increase yields of recombinant protein production based on the LAC4 promoter in K. lactis host.  相似文献   

4.
The effect was studied of oxygen supply on the changes in total and specific rate of oxygen consumption by the cells, oxygen transfer rate, saturation concentrations of dissolved oxygen and the yields of batch and continuous cultivations. Experiments were done on the microorganismKlebsiella aerogenes CCM 2318 growing on synthetic glucose medium. Continuous cultivations were carried out at dilution rates of 0.96 and 0.178 h−1. The rate of oxygen transfer was determined by the sulphite method and the coefficient KLa was assessed using the dynamic method with a correction for changes in the saturations of dissolved oxygen. A lowered oxygen supply in batch cultivations caused deformations in the course of cell respiration. Comparison of results of batch and continuous cultivations showed that the highest yields Yx/s and Yx/o are attained at low dilution rates without oxygen limitation. Batch cultivations, on the other hand, exhibit the lowest yields and the highest cell respiration levels. In both types of cultivations, a respiration peak was ascertained under the conditions of growth limitation by oxygen.  相似文献   

5.
Lovastatin, a hypocholesterolemic agent, is a secondary metabolite produced by filamentous microorganism Aspergillus terreus in submerged batch cultivation. Lovastatin production by pellets and immobilized siran cells was investigated in an airlift reactor. The process was carried out by submerged cultivation in continuous mode with the objective of increasing productivity using pellet and siran supported growth of A terreus. The continuous mode of fermentation improves the rate of lovastatin production. The effect of dilution rate and aeration rate were studied in continuous culture. The optimum dilution rate for pellet was 0.02 h−1 and for siran carrier was 0.025 h−1. Lovastatin productivity using immobilized siran carrier (0.0255 g/L/h) was found to be greater than pellets (0.022 g/L/h). The productivity by both modes of fermentation was found higher than that of batch process which suggests that continuous cultivation is a promising strategy for lovastatin production.  相似文献   

6.
An experimental method for producing ethanol continuously was designed and tested with a cell-recycling two-tank system, which was composed of two fermentors, each of which was individually equipped with a settler for recycling flocculent yeast. This system was effective for the continuous fermentation of ethanol from sucrose at high cell-recycling (r = 0.8–0.9) and dilution (up to 0.48 h?1) rates. The system has several advantages; the high cell concentration in the fermentors and relief of substrate and product inhibition. Thus, the enhanced productivity using this continuous fermentation with the two-tank cell-recycling system was significantly higher compared with that of the batch fermentation. The results indicate that increased recycling ratios caused an increase in biomass concentration and subsequently, product concentration in the tank. The ethanol productivity increased with the dilution rate, but higher dilution rates could render increasing amounts of sugar unconverted. Continuous fermentation with the sugar feed concentration of 160 g/l at r = 0.9 and dilution rate of 0.2 h?1 achieved the highest productivity with less than 2% of the unconverted sugar in the product steam. Under the same cell recycling ratios a productivity range of 6.9–7.5 g/l h?1 could be achieved with feeding concentrations of 80–200 g/l, while batch fermentation at these sugar concentrations led to productivities of 3.85–4.48 g/l h?1.  相似文献   

7.
Summary A cell-recycled air-lift bioreactor was studied for its performance in cultivation of Mentha piperita cells producing essential oils. The reactor system sustained a stable operation over 30 days with the aid of a cell settler. The maximum cell concentration reached 50% packed cell volume and it occurred at the dilution rate of 0.27 day-1. Volumetric productivity of essential oils in this system was substantially higher than that obtainable from batch culture.  相似文献   

8.
Lactococcus lactis 65.1 was cultivated in a batch culture, which underwent starvation for 3 days, continuous culture and continuous culture with complete cell recycling. The objective was to study the product formation and intracellular protein pattern. Changes from homofermentative to heterofermentative metabolism were observed in continuous culture at the lower dilution rates as well as continuous cultures with complete cell recycling at a fixed dilution rate (D=0.4 h–1). Changes in intracellular protein pattern were observed when starving the cells in a batch culture and also when recycling the cells in a continuous culture. Some changes were the same in these two cases. The data collected from these experiments show how the fermentation technique can affect the products of the microorganism being cultured and gives some interesting information on the complete cell recycling technique, which is of great interest in fermentation processes.  相似文献   

9.
We carried out the first simulation on multi-stage continuous high cell density culture (MSC-HCDC) to show that the MSC-HCDC can achieve batch/fed-batch product titer with much higher productivity to the fed-batch productivity using published fermentation kinetics of lactic acid, penicillin and ethanol. The system under consideration consists of n-serially connected continuous stirred-tank reactors (CSTRs) with either hollow fiber cell recycling or cell immobilization for high cell-density culture. In each CSTR substrate supply and product removal are possible. Penicillin production is severely limited by glucose metabolite repression that requires multi-CSTR glucose feeding. An 8-stage C-HCDC lactic acid fermentation resulted in 212.9 g/L of titer and 10.6 g/L/h of productivity, corresponding to 101 and 429% of the comparable lactic acid fed-batch, respectively. The penicillin production model predicted 149% (0.085 g/L/h) of productivity in 8-stage C-HCDC with 40 g/L of cell density and 289% of productivity (0.165 g/L/h) in 7-stage C-HCDC with 60 g/L of cell density compared with referring batch cultivations. A 2-stage C-HCDC ethanol experimental run showed 107% titer and 257% productivity of the batch system having 88.8 g/L of titer and 3.7 g/L/h of productivity. MSC-HCDC can give much higher productivity than batch/fed-batch system, and yield a several percentage higher titer as well. The productivity ratio of MSC-HCDC over batch/fed-batch system is given as a multiplication of system dilution rate of MSC-HCDC and cycle time of batch/fed-batch system. We suggest MSC-HCDC as a new production platform for various fermentation products including monoclonal antibody.  相似文献   

10.
This paper describes the metabolic adaptation of Lactococcus lactis during the transition from a growing to a non‐growing state using retentostat cultivation. Under retentostat cultivation, the specific growth rate decreased from 0.025 h?1 to 0.0001 h?1 in 42 days, while doubling time increased to more than 260 days. Viability of the overall culture was maintained above 90% but included approximately 20% damaged cells, which had lost their colony forming capacity on solid media. Although culture biomass and viability had reached a steady‐state after 14 days of retentostat cultivation, the morphology of the cells changed from coccus‐to‐rod shape at later stages of retentostat cultivation, by which the cell's surface to volume ratio was estimated to increase 2.4‐fold. Furthermore, the metabolic patterns switched between homolactic and mixed‐acid fermentation during the retentostat cultivation. Retentostat cultivation enabled the calculation of accurate substrate‐ and energy‐related maintenance coefficients and biomass yields under non‐growing conditions, which were in good agreement with those calculated by extrapolation from chemostat cultivations at high dilution rates. In this study, we illustrate how retentostat cultivation allows decoupling of growth and non‐growth associated processes in L. lactis, enabling the analysis of quantitative physiological responses of this bacterium to near zero‐specific growth rates.  相似文献   

11.
AThermus strain, producing an extracellular protease, was isolated in a hot spring in Iceland. The main growth characteristics of this isolate were studied with different cultivation vessels and different cultivation techniques. A clear and striking dependence of the growth behavior on the cultivation technique was apparent. Higher maximum yield of biomass, higher productivity of biomass, and higher maximum growth rate were found in continuous cultivations compared with batch cultivations. The substrate utilization and the yield of biomass of this strain were much higher than reported for several otherThermus strains. Reproducibility of kinetic data seemed not to depend on the type of cultivation vessel, on the basis of the types of vessels tested, and instability of the population was not observed during cultivations. Production of extracellular protease in our cultivations was apparently growth associated in batch culture, and the specific rate of production in continuous culture was dependent of the dilution rate, implying that certain kinds of regulatory mechanism(s) might be involved.  相似文献   

12.
Overproduction of proteinase A by recombinantSaccharomyces cerevisiae was investigated by cultivations in a cell-recycling bioreactor. Memebrane filtration was used to separate cells from the broth. Recycling ratios and dilution rates were varied and the effect on enzyme production was studied both experimentally and by computer simulations. Experiments and simulations showed that cell mass and product concentration were enhanced by high ratios of recycling. Additional simulations showed that the proteinase A concentration decreased drastically at high dilution rates and the optimal volumetric productivities were at high dilution rates just below washout and at high ratios of recycling. Cell-recycling fermentation gave much higher volumetric productivities and stable product concentrations in contrast to simple continuous fermentation.  相似文献   

13.
A 30-l hollow fibre reactor with continuous fermentation for cell recycling of Escherichia coli AS 1.183 was used to remove the inhibitory effects on cell growth and extend the fast growth phase to increase the yield of polynucleotide phosphorylase (PNPase) in E. coli cells. When the dilution rate was 1.5 h−1, the cell concentration of E. coli reached 235 g/l (wet wt, 70% moisture content), with PNPase activity above 90 u/g (wet wt). With the dilution rate is 1.0 h−1, the fermentor volumetric productivity of PNPase in a hollow fiber reactor can reach 974 (u/h * l) compared to 20 (u/h * l) in a conventional batch culture.  相似文献   

14.
New biomass sources for alternative fuels has become a subject of increasing importance as the nation strives to resolve the economic and strategic impacts of limited fossil fuel resources on our national security, environment, and global climate. Algae are among the most promising non‐food‐crop‐based biomass feedstocks. However, there are currently no commercially viable microalgae‐based production systems for biofuel production that have been developed, as limitations include less‐than optimal oil content, growth rates, and cultivation techniques. While batch studies are critical for determining basic growth phases and characteristics of the algal species, steady‐state studies are necessary to better understand and measure the specific growth parameters. This study evaluated the effects of dilution rate on microalgal biomass productivity, lipid content, and fatty acid profile under steady‐state conditions with continuous illumination and carbon dioxide supplemention for two types of algae. Continuous cultures were conducted for more that 3 months. Our results show that the productivity of Chlorella minutissima varied from 39 to 137 mg/L/day (dry mass) when the dilution rate varied from 0.08 to 0.64 day?1. The biomass productivity of C. minutissima reached a maximum value (137 mg/L/day) at a dilution rate of 0.33 day?1, while the productivity of Dunaliella tertiolecta varied from 46 to 91 mg/L/day at a dilution rate of 0.17 to 0.74 day?1. The biomass productivity of D. tertiolecta reached a maximum value of 91 mg/L/day at a dilution rate of 0.42 day?1. Moreover, the lipid content had no significant change with various dilution rates. Biotechnol. Bioeng. 2012; 109: 2468–2474. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Summary The actinomycete Thermomonospora fusca KW 3 produced novel thermostable xylanases in batch and continuous cultures in media containing insoluble xylan. The production of xylanases could be induced with oat spelt or beech xylan. Very low activities were detected when the strain was grown on glucose or xylose. In continuous cultivations, mycelial wall growth could be prevented using a stirrer speed controller. Homogeneous mixing of the insoluble substrate was obtained by vibrating the flexible tubes. T. fusca KW 3 could be grown on insoluble xylan at growth rates as high as 0.23 h–1, equivalent to a doubling time of 3 h. Xylanase activity decreased from maximum levels of 2.5 units (U) ml–1 with increasing dilution rate and was nearly constant at a level of 0.5 U ml–1 with dilution rates greater than 0.1 h–1. Correspondence to: P. Röthlisberger  相似文献   

16.
Summary The influence of oxygen on growth and production of 2,3-butanediol and acetoin by Enterobacter aerogenes was studied in continuous culture. At all dilution rates (D) studied cell mass increased steadily with increasing oxygen uptake rate (OUR), hence the micro-aerobic cultivation was energy-limited. The biomass yield on oxygen increased with D which suggests that cells need more energy for maintenance functions at lower D. At each D an optimal OUR giving highest volumetric productivity for the sum of butanediol and acetoin was found. The optimal OUR increased with D. The occurrence of optimal OURs results from the various effects of O2 on growth and specific productivity. The latter was found to be a linear function of the specific OUR irrespective of D. At optimal OUR the cells proved to have equal specific OURs and equal specific productivities representing a fixed relationship between fermentative and respiratory metabolism. The product yield based on glucose and corrected for biomass formation was 80%. A product concentration as high as 43 g/l was obtained at D =0.1 h–1 while the volumetric productivity was the highest at D =0.28 h–1 (5.6 g/l and hour). The findings further indicate that growth and product generation are obviously non-associated phenomena. Hence, high productivities may be achievable by cell recycling and cell immobilisation systems. Offprint requests to: W.-D. Deckwer  相似文献   

17.
Summary To increase the solvent productivity of the acetone-butanol fermentation, a continuous culture of Clostridium acetobytylicum with cell recycling was used. At a dry cell mass concentration of 8 g l-1 and a dilution rate of D=0.64 h-1, a solvent productivity of 5.4 g l-1 h-1 was attained. To prevent degeneration of the culture, which occurs with high concentrations of solvents (acetone, butanol and ethanol), different reactor cascades were used. A two-stage cascade with cell recycling and turbidostatic cell concentration control turned out to be the best solution, the first stage of which was kept at relatively low cell and product concentrations. A solvent productivity of 3 and 2.3 g l-1 h-1, respectively, was achieved at solvent concentrations of 12 and 15 g l-1.Symbols D Dilution rate (h-1) - r p solvent productivity (g l-1 h-1) - s residual glucose concentration (g l-1) - V R reactor volume (l) - V O overall volume (l) - x (dry) cell mass concentration (g l-1) - Y P/S solvent yield (g g-1)  相似文献   

18.
Two recombinant strains of Aspergillus niger (NW 297-14 and NW297-24) producing a heterologous lipase from Thermomyces lanuginosus were constructed. The heterologous lipase was expressed using the TAKA amylase promoter from Aspergillus oryzae. The production kinetics of the two strains on different carbon sources in batch and carbon-limited chemostat cultivations were evaluated. In batch cultivations, the highest total product yield coefficient (Yxp total), given as the sum of extracellular and intracellular yields, was obtained during growth on glucose for the transformant strain NW297-24 (5.7±0.65 KU/g DW), whereas the highest total product yield coefficient was obtained during growth on maltose for the transformant strain NW297-14 (6.3±0.02 KU/g DW). Both transformants were evaluated in glucose-limited chemostat cultures. Strain NW297-14 was found to be the best producer and was thus employed for further analysis of the influence of carbon source in chemostat cultures. Here, the highest total specific lipase productivity (rp total, the sum of extracellular and intracellular lipase productivity) was found to be 1.60±0.81 KU/g DW/h in maltose-limited chemostats at a dilution rate of 0.08 h–1, compared with a total specific lipase productivity of 1.10±0.41 KU/g DW/h in glucose-limited chemostats. At the highest specific productivity obtained in this study, the heterologous enzyme accounted for about 1% of all cellular protein being produced by the cells, which shows that it is possible to obtain high productivities of heterologous fungal enzymes in A. niger. However, SDS-PAGE analysis showed that most of the produced lipase was bound to the cell wall.  相似文献   

19.
Bacillus megaterium was used for production of the lysozyme-specific recombinant scFv D1.3 antibody fragment. Key process parameters like the temperature and the hydromechanical stress play a very important role for significant product formation during process development or scale-up. In this study, the influence of these two variables on growth and recombinant antibody fragment production in a 2-L lab-scale bioreactor system was investigated using a central composite design. Especially a significant influence of the hydromechanical stress on antibody fragment production was detected in batch cultivations. While volumetric power inputs of about 0.5 kW/m3 (agitation rates around 500 min−1) are usually employed in batch cultivations, in this work maximal product concentration was found at a volumetric power input of about 0.06 kW/m3 (agitation rate around 250 min−1) and at a high cultivation temperature of 41 °C. The influence of the two process variables at single-cell level was estimated using flow cytometry too. The characterization was done by estimating the membrane potential giving a hint on bioprocess productivity and secretion capability: the best production was obtained through big cells with low specific membrane potential, which grew at low volumetric power inputs and high cultivation temperatures.  相似文献   

20.
The continuous fermentation of 1,3-propanediol from glycerol by Clostridium butyricum was subjected to cell recycling by filtration using hollow-fibre modules made from polysulphone. The performance of the culture system was checked at a retention ratio (dilution rate/bleed rate) of 5, dilution rates between 0.2 h−1 and 1.0 h−1 and glycerol input concentrations of 32 g l−1 and 56 g l−1. The near-to-optimum propanediol concentration of 26.5 g l−1 (for 56 g l−1 glycerol) was maintained up to a dilution rate of 0.5 h−1 and then decreased while the propanediol productivity was highest at 0.7 h−1. The productivity could be increased by a factor of four in comparison to the continuous culture without cell recycling. By application of the model of Zeng and Deckwer [(1995) Biotechnol Prog 11: 71–79] for cultures under substrate excess, it was shown that the limitations resulted exclusively from product inhibition and detrimental influences from the cell recycling system, such as shear stress, were not involved. Received: 20 October 1997 / Received revision: 12 December 1997 / Accepted: 14 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号