首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have recently demonstrated that Cys-254 of the 73-kDa A subunit of the clathrin-coated vesicle (H+)-ATPase is responsible for sensitivity of the enzyme to sulfhydryl reagents (Feng, Y., and Forgac, M. (1992) J. Biol. Chem. 267, 5817-5822). In the present study we observe that for the purified enzyme, disulfide bond formation causes inactivation of proton transport which is reversed by dithiothreitol (DTT). DTT also restores activity of the oxidized enzyme following treatment with N-ethylmaleimide (NEM). These results indicate that disulfide bond formation between the NEM-reactive cysteine (Cys-254) and a closely proximal cysteine residue leads to inactivation of the (H+)-ATPase. To test whether sulfhydryl-disulfide bond interchange may play a role in regulating vacuolar acidification in vivo, we have determined what fraction of the (H+)-ATPase is disulfide-bonded in native clathrin-coated vesicles. Vesicles were isolated under conditions that prevent any change in the oxidation state of the sulfhydryl groups. NEM treatment of vesicles causes nearly complete loss of activity while subsequent treatment with DTT restores 50% of the activity of the fully reduced vesicles. By contrast, treatment of fully reduced vesicles with NEM leads to inactivation which is not reversed by DTT. These results indicate that a significant fraction of the clathrin-coated vesicle (H+)-ATPase exists in an inactive, disulfide-bonded state and suggest that sulfhydryl-disulfide bond interconversion may play a role in controlling vacuolar (H+)-ATPase (V-ATPase) activity in vivo.  相似文献   

2.
The (Ca2+ + Mg2+)-adenosine triphosphatase (ATPase) of sarcoplasmic reticulum contains a cysteine residue at position 12 of its sequence. This sulfhydryl group was 1 out of a total of 10-11 that were labeled by treatment of sarcoplasmic reticulum vesicles with N-[3H]ethylmaleimide under saturating conditions. This was shown by isolating a 31-residue NH2-terminal peptide from a tryptic digest of the succinylated ATPase, prepared from N-[3H]ethylmaleimide-labeled vesicles. Reaction of the vesicles with glutathione maleimide, parachloromercuribenzoic acid, or parachloromercuriphenyl sulfonic acid, membrane-impermeant reagents, prevented further reaction of sulfhydryl groups with N-ethylmaleimide. This result indicates that all sulfhydryl groups that are reactive with N-ethylmaleimide are on the outside of the vesicles. Since Cys12 is located in a hydrophilic NH2-terminal portion of the ATPase, the labeling results suggest that the NH2 terminus of the ATPase is on the cytoplasmic side of the membrane. These results are consistent with earlier observations (Reithmeier, R. A. F., de Leon, S., and MacLennan, D. H. (1980) J. Biol. Chem. 255, 11839-11846) that the (Ca2+ + Mg2+)-ATPase is synthesized without an NH2-terminal signal sequence.  相似文献   

3.
Treatment of the tonoplast H(+)-ATPase from mung bean seedlings (Vigna radiata L.) with histidine-specific modifier, diethyl pyrocarbonate (DEP), caused a marked loss of the ATP hydrolysis activity and the proton translocation in a concentration-dependent manner. The reaction order of inhibition was calculated to be 0.98, suggesting that at least one histidine residue of vacuolar H(+)-ATPase was modified by DEP. The absorbance of the vacuolar H(+)-ATPase at 240 nm was progressively increased after incubation with DEP, suggesting that N-carbethoxyhistidine had been formed. Hydroxylamine, which could break N-carbethoxyhistidine, reversed the absorbance change and partially restored the enzymic activity. The pK(a) of modified residues of vacuolar H(+)-ATPase was kinetically determined to be 6.73, a value close to that of histidine. Thus, it is assuredly concluded that histidine residues of the vacuolar H(+)-ATPase were modified by DEP. Kinetic analysis showed that V(max) but not K(m) of vacuolar H(+)-ATPase was decreased by DEP. This result is interpreted as that the residual activity after DEP inhibition was primarily due to the unmodified enzyme molecules. Moreover, simultaneous presence of DEP and DCCD (N,N'-dicyclohexyl-carbodiimide), an inhibitor modified at proteolipid subunit of vacuolar H(+)-ATPase, did not induce synergistic inhibition, indicating their independent effects. The stoichiometry studies further demonstrate that only one out of four histidine residues modified was involved in the inhibition of vacuolar H(+)-ATPase by DEP. Mg(2+)-ATP, the physiological substrate of vacuolar H(+)-ATPase, but not its analogs, exerted preferentially partial protection against DEP, indicating that the histidine residue involved in the inhibition of enzymatic activity may locate at/or near the active site and directly participate in the binding of the substrate.  相似文献   

4.
E A First  S S Taylor 《Biochemistry》1989,28(8):3598-3605
The catalytic subunit of cAMP-dependent protein kinase contains only two cysteine residues, and the side chains of both Cys 199 and Cys 343 are accessible. Modification of the catalytic subunit by a variety of sulfhydryl-specific reagents leads to the loss of enzymatic activity. The differential reactivity of the two sulfhydryl groups at pH 6.5 has been utilized to selectively modify each cysteine with the following fluorescent probes: 3,6,7-trimethyl-4-(bromomethyl)-1,5-diazabicyclo[3.3.0]octa-3,6-diene- 2,8-dione, N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine, and 4-[N-[(iodoacetoxy)ethyl]-N-methyl-amino]-7-nitrobenz-2-oxa-1,3-diazole. The most reactive cysteine is Cys 199, and exclusive modification of this residue was achieved with each reagent at pH 6.5. Modification of Cys 343 required reversible blocking of Cys 199 with 5,5'-dithiobis(2-nitrobenzoic acid) followed by reaction of Cys 343 with the fluorescent probe at pH 8.3. Treatment of this modified catalytic subunit with reducing reagent restored catalytic activity by unblocking Cys 199. In contrast, catalytic subunit that was selectively labeled at Cys 199 by the fluorescent probes was catalytically inactive. Even though Cys 199 is presumably close to the interaction site between the regulatory subunit and the catalytic subunit, all of the modified C-subunits retained the capacity to aggregate with the type II regulatory subunit in the absence of cAMP, and the resulting holoenzymes were dissociated in the presence of cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
CheR methyltransferase from Salmonella typhimurium was directly photolabeled with S-adenosyl-L-[methyl-3H]methionine. The labeled protein was subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and then was detected by fluorography. The methylase-S-adenosyl-L-methionine adduct was found to be stable under the experimental conditions employed. Labeling was found to be a function of the concentration of enzyme, S-adenosyl-L-methionine (AdoMet), and the intensity and time of UV irradiation. The extent of labeling and protein methylation was found to be inhibited by S-adenosyl-L-homocysteine, S-adenosyl-L-ethionine, and sinefungin, which are known to compete with AdoMet for the same binding site on the enzyme. Our earlier data showed that the enzyme has 2 cysteine residues and that these are important for enzyme activity. Here, we show that sulfhydryl reagents inhibit the photolabeling of the substrate to the enzyme, indicating the presence of cysteine in the vicinity of the substrate-binding site. We also found that when Cys31 was modified to Ser, no photolabeling of CheR was observed, whereas a modification of Cys229 to Ser had little effect on the ability of AdoMet to label the enzyme. This suggests that Cys31 is located at or near AdoMet-binding site. The labeled protein was cleaved at tryptophan residues, generating two major fragments, each containing 1 cysteine residue. SDS-PAGE and fluorography of the cleaved products indicated the presence of the label being associated with the Cys31 fragment. Similar results were obtained when the labeled protein was cleaved at glutamic acid residues using V8 protease. A tryptic digest of the labeled protein showed two radioactive peptide peaks when subjected to separation on reverse phase high pressure liquid chromatography. The labeled peptides were further digested to free amino acids, and the labeled amino acid was identified as S-methylcysteine by thin layer chromatography. These results indicate that Cys31 may be involved with substrate binding, as well as with catalysis.  相似文献   

6.
The vacuolar (H+)-ATPases (V-ATPases) are multisubunit complexes responsible for ATP-dependent proton transport across both intracellular and plasma membranes. The V-ATPases are composed of a peripheral domain (V1) that hydrolyzes ATP and an integral domain (V0) that conducts protons. Dissociation of V1 and V0 is an important mechanism of controlling V-ATPase activity in vivo. The crystal structure of subunit C of the V-ATPase reveals two globular domains connected by a flexible linker (Drory, O., Frolow, F., and Nelson, N. (2004) EMBO Rep. 5, 1-5). Subunit C is unique in being released from both V1 and V0 upon in vivo dissociation. To localize subunit C within the V-ATPase complex, unique cysteine residues were introduced into 25 structurally defined sites within the yeast C subunit and used as sites of attachment of the photoactivated sulfhydryl reagent 4-(N-maleimido)benzophenone (MBP). Analysis of photocross-linked products by Western blot reveals that subunit E (part of V1) is in close proximity to both the head domain (residues 166-263) and foot domain (residues 1-151 and 287-392) of subunit C. By contrast, subunit G (also part of V1) shows cross-linking to only the head domain whereas subunit a (part of V0) shows cross-linking to only the foot domain. The localization of subunit C to the interface of the V1 and V0 domains is consistent with a role for this subunit in controlling assembly of the V-ATPase complex.  相似文献   

7.
Vacuolar ATPases constitute a novel class of N-ethylmaleimide- and nitrate-sensitive proton pumps associated with the endomembrane system of eukaryotic cells. They resemble F0F1-ATPases in that they are large multimeric proteins, 400-500 kDa, composed of three to nine different subunits. Previous studies have indicated that the active site is located on the approximately 70-kDa subunit. Using antibodies to the approximately 70-kDa subunit of corn to screen a carrot root lambda gt11 cDNA library, we have isolated cDNA clones of the carrot 69-kDa subunit. The complete primary structure of the 69-kDa subunit was then determined from the nucleotide sequence of its cDNA. The 69-kDa subunit consists of 623 amino acids (Mr 68,835), with no obvious membrane-spanning regions. The carrot cDNA sequence was over 70% homologous with exons of a Neurospora 69-kDa genomic clone. The protein sequence of the carrot 69-kDa subunit also exhibited 34.3% identity to four representative F0F1-ATPase beta-chains over a 275-amino-acid core stretch of similar sequence. Alignment studies revealed several regions which were highly homologous to beta-chains, including sequences previously implicated in catalytic function. This provides definitive evidence that the vacuolar ATPase is closely related to the F0F1-type ATPases. A major functional difference between the 69-kDa and beta-subunits is the location of 3 critical cysteine residues: two in the putative catalytic region (Cys-248 and Cys-256) and one in the proposed Mg2+-binding site (Cys-279). These cysteines (and two others) probably account for the sensitivity of the vacuolar H+-ATPase to the sulfhydryl reagent, N-ethylmaleimide. It is proposed that the two ATPases may have arisen from a common ancestor by the insertion or deletion of a large stretch of nonhomologous sequence near the amino-terminal end of the subunit.  相似文献   

8.
Although the animal cell (Na+ + K+)-ATPase is composed of two polypeptide subunits, alpha and beta, very little is known about the beta subunit. In order to obtain information about the structure of this polypeptide, the beta subunit has been investigated using proteolytic fragmentation, chemical modification of carbohydrate residues, and immunoblot analysis. The sialic acid moieties on the oligosaccharide groups on the beta subunit of (Na+ + K+)-ATPase were labeled with NaB3H4 after oxidation by sodium periodate, or the penultimate galactose residues on the oligosaccharides were similarly labeled after removal of sialic acid with neuraminidase and oxidation by galactose oxidase. All of the carbohydrate residues of the protein are located on regions of the beta subunit that are found on the non-cytoplasmic surface of the membrane. Cleavage of the galactose oxidase-treated, NaB3H4-labeled beta subunit by chymotrypsin at an extracellular site produced labeled fragments of 40 and 18 kDa, indicating multiple glycosylation sites along the polypeptide. Neither the 40 kDa fragment nor the 18 kDa fragment was released from the membrane by chymotrypsin digestion alone, but after cleavage the 40 kDa fragment could be removed from the membrane by treatment with 0.1 M NaOH. This indicates that the 40 kDa fragment does not span the lipid bilayer. The 40 kDa fragment and the 18 kDa fragment are also linked by at least one disulfide bond. The 18 kDa fragment also contains all of the binding sites found on the (Na+ + K+)-ATPase for anti-beta subunit antibodies. Both the 40 kDa fragment and the 18 kDa fragment were also generated using papain or trypsin to cleave the beta subunit. These data indicate that the beta subunit of (Na+ + K+)-ATPase contains multiple sites of glycosylation, that it inserts into the cell membrane near only one end of the polypeptide, and that one region of the polypeptide is particularly sensitive to proteolytic cleavage relative to the rest of the polypeptide.  相似文献   

9.
The purified, lipid-reconstituted (Na+ + Mg2+)-ATPase from Acholeplasma laidlawii B was treated with a variety of reagents which specifically modify various amino acid residues on the enzyme. In all cases reaction of this enzyme with any of the reagents tested results in at least a partial inactivation of its activity. The modification of one reactive lysine by dinitrofluorobenzene, of one reactive arginine by phenylglyoxal, or of two tyrosine residues by 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole or fluorosulfonylbenzoyl adenosine results in a complete inactivation of the enzyme. Partial inactivation of enzymatic activity with N-ethylmaleimide, p-chloromercuribenzene sulfonic acid, dicyclohexylcarbodiimide, and Woodward's reagent K suggests an indirect involvement of sulfhydryl and carboxylic acid groups in the maintenance of enzymatic activity, although inhibition by these reagents may also be the result of nonspecific effects such as subunit crosslinking. These studies also show that all of the subunits of the ATPase can be labeled by aqueous-phase reagents directed at amino groups and phenolic groups, and provide evidence for a specific affinity labeling of the alpha subunit of the enzyme by a nucleotide analog directed at phenolic and/or sulfhydryl groups.  相似文献   

10.
DNA methyltransferases can be photolabeled with S-adenosyl-L-methionine (AdoMet). Specific incorporation of radioactivity has been demonstrated after photolabeling with either [methyl-3H]AdoMet or [35S]AdoMet (Som, S., and Friedman, S. (1990) J. Biol. Chem. 265, 4278-4283). The labeling is believed to occur at the AdoMet binding site. With the purpose of localizing the site responsible for [methyl-3H]AdoMet photolabeling, we cleaved the labeled EcoRII methyltransferase by chemical and enzymatic reactions and isolated the radiolabeled peptides by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high pressure liquid chromatography. The labeled peptides were identified by amino-terminal sequencing. A common region was localized which accounted for 65-70% of the total label. This region includes a highly conserved core sequence present in all DNA (cytosine 5)-methyltransferases. One such fragment was digested further with chymotrypsin, and amino acid analysis of the resulting 3H-labeled peptide was consistent with the sequence Ala-Gly-Phe-Pro-(Cys)-Gln-Pro-Phe-Ser-Leu. However, the cysteine residue was not recovered as carboxymethylcysteine. The Pro-Cys bond was found to be protected from cleavage at cysteine residues after cyanylation. These results suggest that the cysteine residue is modified by the labeling reaction. The chymotryptic fragment was hydrolyzed enzymatically to single amino acids, and the labeled amino acid was identified as S-methylcysteine by thin layer chromatography. These results indicate that the cysteine residue is located at or close to the AdoMet binding site of EcoRII methyltransferase.  相似文献   

11.
Theoretical mechanisms of proton translocation by the vacuolar H(+)-ATPase require that a transmembrane acidic residue of the multicopy 16-kDa proteolipid subunit be exposed at the exterior surface of the membrane sector of the enzyme, contacting the lipid phase. However, structural support for this theoretical mechanism is lacking. To address this, we have used cysteine mutagenesis to produce a molecular model of the 16-kDa proteolipid complex. Transmembrane helical contacts were determined using oxidative cysteine cross-linking, and accessibility of cysteines to the lipid phase was determined by their reactivity to the lipid-soluble probe N-(1-pyrenyl)maleimide. A single model for organization of the four helices of each monomeric proteolipid was the best fit to the experimental data, with helix 1 lining a central pore and helix 2 and helix 3 immediately external to it and forming the principal intermolecular contacts. Helix 4, containing the crucial acidic residue, is peripheral to the complex. The model is consistent not only with theoretical proton transport mechanisms, but has structural similarity to the dodecameric ring complex formed by the related 8-kDa proteolipid of the F(1)F(0)-ATPase. This suggests some commonality between the proton translocating mechanisms of the vacuolar and F(1)F(0)-ATPases.  相似文献   

12.
The human mitochondrial branched chain aminotransferase isoenzyme (hBCATm) must be stored in a reducing environment to remain active. Oxidation or labeling of hBCATm with sulfhydryl reagents results in enzyme inhibition. In this study, we investigated both the structural and biochemical basis for the sensitivity of hBCATm to these reagents. In its native form, hBCATm has two reactive cysteine residues which were identified as Cys315 and Cys318 using iodinated beta-(4-hydroxyphenyl)ethyl maleimide. These are located in the large domain of the homodimer, about 10 A from the active site. The crystal structures show evidence for a thiol-thiolate hydrogen bond between Cys315 and Cys318. Under oxidizing conditions, these cysteine residues can reasonably form a disulfide bond because of the short distance between the sulfur atoms (3.09-3.46 A), requiring only a decrease of 1.1-1.5 A. In addition to Cys315 playing a structural role by anchoring Tyr173, which in the ketimine form increases access to the active site, our evidence indicates that these cysteine residues act as a redox switch in hBCATm. Electrospray ionization mass spectrometry analysis and UV-Vis spectroscopic studies of 5,5'-dithiobis(2-nitrobenzoic acid) labeled hBCATm showed that during labeling, an intrasubunit disulfide bond was formed in a significant portion of the protein. Furthermore, it was established that reaction of hBCATm with H2O2 abolished its activity and resulted in the formation of an intrasubunit disulfide bond between Cys315 and Cys318. Addition of dithiothreitol completely reversed the oxidation and restored activity. Therefore, the results demonstrate that there is redox-linked regulation of hBCATm activity by a peroxide sensitive CXXC center. Future studies will determine if this center has an in vivo role in the regulation of branched chain amino acid metabolism.  相似文献   

13.
The CheR methyltransferase catalyzes the transfer of methyl groups from S-adenosylmethionine to specific glutamyl residues in bacterial chemoreceptor proteins. Studies with sulfhydryl reagents such as p-chloromercuribenzoate, N-ethylmaleimide, and 5,5'-dithiobis(2-nitrobenzoate) suggest that a cysteine residue is required for enzyme activity. The nucleotide sequence of the cheR gene predicts a 288-amino acid protein with cysteine residues at positions 31 and 229. To ascertain the role of these cysteine residues in the structure and function of the enzyme, oligonucleotide-directed mutagenesis was used to change each cysteine to serine. Whereas the Cys229-Ser mutation had essentially no effect on transferase activity, the Cys31-Ser mutation caused an 80% decrease in enzyme activity. The double mutant in which both cysteines were replaced by serines also had markedly reduced transferase activity. Preincubation of the wild type or Cys229-Ser proteins with either S-adenosylmethionine or beta-mercaptoethanol protected it from inhibition by sulfhydryl reagents, whereas prior incubation with the second substrate, the Tar receptor, gave partial protection. From these studies, Cys31 appears to be necessary for enzyme activity, and it seems to be located in the vicinity of the active site.  相似文献   

14.
Utilizing site-directed mutagenesis in combination with chemical modification of mutated residues, we have studied the roles of cysteine and arginine residues in the mitochondrial citrate transport protein (CTP) from Saccharomyces cerevisiae. Our strategy consisted of the sequential replacement of each of the four endogenous cysteine residues with Ser or in the case of Cys(73) with Val. Wild-type and mutated forms of the CTP were overexpressed in Escherichia coli, purified, and reconstituted in phospholipid vesicles. During the sequential replacement of each Cys, the effects of both hydrophilic and hydrophobic sulfhydryl reagents were examined. The data indicate that Cys(73) and Cys(256) are primarily responsible for inhibition of the wild-type CTP by hydrophilic sulfhydryl reagents. Experiments conducted with triple Cys replacement mutants (i.e. Cys(192) being the only remaining Cys) indicated that sulfhydryl reagents no longer inhibit but in fact stimulate CTP function 2-3-fold. Following the simultaneous replacement of all four endogenous Cys, the functional properties of the resulting Cys-less CTP were shown to be quite similar to those of the wild-type protein. Finally, utilizing the Cys-less CTP as a template, the roles of Arg(181) and Arg(189), two positively charged residues located within transmembrane domain IV, in CTP function were examined. Replacement of either residue with a Cys abolishes function, whereas replacement with a Lys or a Cys that is subsequently covalently modified with (2-aminoethyl)methanethiosulfonate hydrobromide, a reagent that restores positive charge at this site, supports CTP function. The results clearly show that positive charge at these two positions is essential for CTP function, although the chemistry of the guanidinium residue is not. Finally, these studies: (i) definitely demonstrate that Cys residues do not play an important role in the mechanism of the CTP; (ii) prove the utility of the Cys-less CTP for studying structure/function relationships within this metabolically important protein; and (iii) have led to the hypothesis that the polar face of alpha-helical transmembrane domain IV, within which Arg(181), Arg(189), and Cys(192) are located, constitutes an essential portion of the citrate translocation pathway through the membrane.  相似文献   

15.
J M May  A Buchs  C Carter-Su 《Biochemistry》1990,29(45):10393-10398
Tryptic digestion studies of the human erythrocyte glucose carrier have shown that a reactive and transport-sensitive exofacial sulfhydryl is located in the carboxy-terminal half of the molecule, corresponding to Cys347, Cys421, or Cys429. In the present studies, the erythrocyte glucose carrier labeled on the exofacial sulfhydryl with bis(maleimidomethyl) ether-L-[35S]cysteine was chemically cleaved, either at tryptophans by N-bromosuccinimide or at nonalkylated cysteines by 2-nitro-5-thiocyanobenzoic acid. The resulting fragments were separated by linear gradient polyacrylamide gel electrophoresis, and the labeled fragments were identified by their apparent molecular weight, and by immunoblotting with antibodies to specific regions of the carrier protein. All of the labeled fragments were recognized by an antibody to the carboxy terminus of the carrier, but not by an antibody to a cytoplasmic loop on the C-terminal half of the carrier. The labeled exofacial sulfhydryl was assigned to Cys429, since this is the only residue of the three possibilities which is beyond the expected cleavage sites of the two reagents in the carrier sequence. These results concur with the predictions of hydropathy analysis and will be relevant for studies of how modification of this sulfhydryl affects carrier function, particularly since several other known carrier isoforms lack a corresponding cysteine.  相似文献   

16.
We have employed a combination of site-directed mutagenesis and covalent cross-linking to identify subunits in close proximity to subunit B in the vacuolar H(+)-ATPase (V-ATPase) complex. Unique cysteine residues were introduced into a Cys-less form of subunit B, and the V-ATPase complex in isolated vacuolar membranes from each mutant strain was reacted with the bifunctional, photoactivable maleimide reagent 4-(N-maleimido)benzophenone. Photoactivation resulted in cross-linking of the unique sulfhydryl groups on subunit B with other subunits in the complex. Four of the eight mutants constructed containing a unique cysteine residue at Ala(15), Lys(45), Glu(494), or Thr(501) resulted in the formation of cross-linked products, which were recognized by Western blot analysis using antibodies against both subunits B and E. These products had a molecular mass of 84 kDa, consistent with a cross-linked product of subunits B and E. Molecular modeling of subunit B places Ala(15) and Lys(45) near the top of the V(1) structure (i.e. farthest from the membrane), whereas Glu(494) and Thr(501) are predicted to reside near the bottom of V(1), with all four residues predicted to be oriented toward the external surface of the complex. A model incorporating these and previous data is presented in which subunit E exists in an extended conformation on the outer surface of the A(3)B(3) hexamer that forms the core of the V(1) domain. This location for subunit E suggests that this subunit forms part of the peripheral stalk of the V-ATPase that links the V(1) and V(0) domains.  相似文献   

17.
The three cysteine residues per subunit of pig muscle phosphoglucose isomerase show different reactivities toward various sulfhydryl reagents. The organomercurial, p-mercuribenzoate, can titrate two of the sulfhydryl groups under nondenaturing conditions. 2,2'-Dithiodipyridine, 5,5'-dithiobis(2-nitrobenzoic acid), iodoacetamide, methyl 2-pyridyl disulfide, and 2-(2'-pyridylmercapto)mercuri-4-nitrophenol all label only one sulfhydryl group under the same conditions, whereas iodoacetic acid does not react with any of the sulfhydryl groups except when the enzyme is fully denatured. It is concluded, therefore, that charge, rather than steric restraint, is the determining factor for the differences seen in the modification patterns of the enzyme by these reagents. When enzyme was first labeled with 2,2'-dithiodipyridine and subsequently with p-mercuribenzoate, it was found that the latter, in a secondary process, will stoichiometrically react with the anion released by the former after the initial reaction with cysteine. The differences in reactivity of the cysteine residues toward the referred-to reagents have been exploited to specifically modify each of the three individual cysteine residues of pig muscle phosphoglucose isomerase.  相似文献   

18.
N,N'-Dicyclohexylcarbodiimide (DCCD) inhibits 100% of proton transport and 80-85% of (Mg2+)-ATPase activity in clathrin-coated vesicles. Half-maximum inhibition of proton transport is observed at 10 microM DCCD after 30 min. Although treatment of the coated vesicle (H+)-ATPase with DCCD has no effect on ATP hydrolysis in the detergent-solubilized state, sensitivity of proton transport and ATPase activity to DCCD is restored following reconstitution into phospholipid vesicles. In addition, treatment of the detergent-solubilized enzyme with DCCD followed by reconstitution gives a preparation that is blocked in both proton transport and ATP hydrolysis. These results suggest that although the coated vesicle (H+)-ATPase can react with DCCD in either a membrane-bound or detergent-solubilized state, inhibition of ATPase activity is only manifested when the pump is present in sealed membrane vesicles. To identify the subunit responsible for inhibition of the coated vesicle (H+)-ATPase by DCCD, we have labeled the partially purified enzyme with [14C]DCCD. A single polypeptide of molecular weight 17,000 is labeled. The extremely hydrophobic nature of this polypeptide is indicated by its extraction with chloroform:methanol. The 17,000-dalton protein can be labeled to a maximum stoichiometry of 0.99 mol of DCCD/mol of protein with 100% inhibition of proton transport occurring at a stoichiometry of 0.15-0.20 mol of DCCD/mol of protein. Amino acid analysis of the chloroform:methanol extracted 17,000-dalton polypeptide reveals a high percentage of nonpolar amino acids. The similarity in properties of this protein and the DCCD-binding subunit of the coupling factor (H+)-ATPases suggests that the 17,000-dalton polypeptide may function as part of a proton channel in the coated vesicle proton pump.  相似文献   

19.
Cholesterol 7alpha-hydroxylase (cholesterol-NADPH oxidoreductase, EC 1.14.13.17, 7alpha-hydroxylating) is known to have extremely sensitive sulfhydryl group(s). It is believed that a cysteine residue that has a sulfhydryl group plays an important role in the decrease of this enzyme activity. The amino acid sequences of cholesterol 7alpha-hydroxylase of five different mammalian species, human, rat, rabbit, hamster and mouse, revealed that these mammalian species contain eight cysteine residues that are well conserved. To identify which cysteine residues are responsible for the extremely high lability, we used the technique of the site-directed mutagenesis. Eight mutated genes of human cholesterol 7alpha-hydroxylase in which one codon for a cysteine residue was changed to that for alanine were prepared and expressed in COS-1 cells. The protein mass and enzyme activity of cholesterol 7alpha-hydroxylse obtained from these eight mutated genes were determined. While all mutated genes expressed the enzyme mass, two mutated genes did not express protein capable of catalyzing 7alpha-hydroxylation of cholesterol: in one mutant a codon for the 7th cysteine residue (Cys 444) was substituted to that for alanine and in the other mutant a codon for the 8th cysteine residue (Cys 476) was changed similarly. These results suggest that the 7th and 8th cysteine residues are important for expression of the enzyme activity. Based on the fact that Cys 444 exists in the heme binding region, Cys 476 was suggested to be responsible for enzyme lability.  相似文献   

20.
There is evidence to suggest that dopamine (DA) oxidizes to form dopamine ortho-quinone (DAQ), which binds covalently to nucleophilic sulfhydryl groups on protein cysteinyl residues. This reaction has been shown to inhibit dopamine uptake, as well as other biological processes. We have identified specific cysteine residues in the human dopamine transporter (hDAT) that are modified by this electron-deficient substrate analog. DAQ reactivity was inferred from its effects on the binding of [(3)H]2-beta-carbomethoxy-3-beta-(4-fluorophenyl)tropane (beta-CFT) to hDAT cysteine mutant constructs. One construct, X5C, had four cysteines mutated to alanine and one to phenylalanine (Cys(90)A, Cys(135)A, C306A, C319F and Cys(342)A). In membrane preparations 1 mM DAQ did not affect [(3)H]beta-CFT binding to X5C hDAT, in contrast to its effect in wild-type hDAT in which it reduced the B:(max) value by more than half. Wild-type cysteines were substituted back into X5C, one at a time, and the ability of DAQ to inhibit [(3)H]beta-CFT binding was assessed. Reactivity of DAQ with Cys(90) increased the affinity of [(3)H]beta-CFT for the transporter, whereas reactivity with Cys(135) decreased the affinity of [(3)H]beta-CFT. DAQ did not change the K:(D) for [(3)H]beta-CFT binding to wild-type. The reactivity of DAQ at Cys(342) decreased B:(max) to the same degree as wild-type. The latter result suggests that Cys(342) is the wild-type residue most responsible for DAQ-induced inhibition of [(3)H]beta-CFT binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号