首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Olivier  Rieppel 《Journal of Zoology》1993,231(3):487-509
Patterns and sequence of ossification are described throughout the skeleton of Chelydra serpentina Linnaeus. Evidence is adduced documenting the decoupling of ossification processes from sequence and patterns of chondrification. Convergence of ontogenetic repatterning in the ossification of the axial skeleton in Chelydra and Squamata is discussed, as are problems of adaptive modification of ossification patterns. The development of a carapace may be correlated with changes of ossification patterns in the postcranial axial skeleton of turtles, but the most striking evidence for the adaptive modification of ossification sequence obtains from a comparison of the limb skeleton and its ossification in Chelydra and in sea turtles  相似文献   

2.
The study of ossification during postembryonic development of the lizard Cyrtodactylus pubisulcus reveals consistent patterns in the skeleton of the body axis and of the limbs. The vertebral column shows a distinct antero-posterior gradient in ossification; the serial homology of sacral ribs and caudal transverse processes with dorsal ribs requires further scrutiny. The sequence of ossification of carpal and tarsal elements is constant, yet different from the pattern of chondrification as described in the literature. The homology of a separate 'intermedium' in the ossified lizard carpus requires further discussion. The development of the lizard astragalus is discussed in detail, as is the ossification of epiphyses in the limbs.  相似文献   

3.
Two different patterns of the condensation and chondrification of the limbs of tetrapods are known from extensive studies on their early skeletal development. These are on the one hand postaxial dominance in the sequential formation of skeletal elements in amniotes and anurans, and on the other, preaxial dominance in urodeles. The present study investigates the relative sequence of ossification in the fore‐ and hindlimbs of selected tetrapod taxa based on a literature survey in comparison to the patterns of early skeletal development, i.e. mesenchymal condensation and chondrification, representing essential steps in the late stages of tetrapod limb development. This reveals the degree of conservation and divergence of the ossification sequence from early morphogenetic events in the tetrapod limb skeleton. A step‐by‐step recapitulation of condensation and chondrification during the ossification of limbs can clearly be refuted. However, some of the deeper aspects of early skeletal patterning in the limbs, i.e. the general direction of development and sequence of digit formation are conserved, particularly in anamniotes. Amniotes show a weaker coupling of the ossification sequence in the limb skeleton with earlier condensation and chondrification events. The stronger correlation between the sequence of condensation/chondrification and ossification in the limbs of anamniotes may represent a plesiomorphic trait of tetrapods. The pattern of limb ossification across tetrapods also shows that some trends in the sequence of ossification of their limb skeleton are shared by major clades possibly representing phylogenetic signals. This review furthermore concerns the ossification sequence of the limbs of the Palaeozoic temnospondyl amphibian Apateon sp. For the first time this is described in detail and its patterns are compared with those observed in extant taxa. Apateon sp. shares preaxial dominance in limb development with extant salamanders and the specific order of ossification events in the fore‐ and hindlimb of this fossil dissorophoid is almost identical to that of some modern urodeles.  相似文献   

4.
5.
Current phylogenics of mosasauroid reptiles are reviewed and a new phylogeny examining aigialosaur interrelationships presented. Patterns of mesopodial ossification and overall limb morphology are described for adult mosasauroids. Ossification sequences are mapped onto a phylogeny in order to assess the distribution of ontogenetic characters. Consistent and ordered distributions are found. Based on the phylogenetic distribution of ossification patterns, an overall mesopodial ossification sequence for mosasaurs is proposed. Carpal sequence: ulnare—distal carpal four (dc4)—intermedium—dc3—radiale or dc2—de1 or pisiform and dc5. Tarsal sequence: astragalus—distal tarsal four or calcaneum. Skeletal paedomorphosis is recognized as a dominant pattern in the evolution of mosasauroid limbs. Apomorphic characters of skeletal paedomorphosis, apparent in most taxa, reach extremes in tylosaurs. Arguments for the presence of a single proximal cartilage in the tarsus of mosasaurs are made. This cartilage is presumed to include ossification centres from which both the astragalus and calcaneum will ossify.  相似文献   

6.
Individual groups of 6 ram lambs were housed within a controlled environment and exposed to one of 6 photoperiod schedules. Groups I and II received 8 (short day) or 16 (long day) h of continuous light, respectively; Groups III, IV and V were exposed to asymmetrical skeleton photoperiods consisting of a main light period of 7 h followed 9 h later by a light pulse of 1 h, 15 min or 1 min duration, respectively, and Group VI was exposed to a symmetrical skeleton photoperiod consisting of two 1-h light pulses positioned 16 h apart. After 4 weeks of treatment serum concentrations of prolactin and testosterone were measured over 24 h. Long-day responses characteristic of the 16L:8D photoperiod (i.e. elevated prolactin and reduced testosterone) were obtained in each of the asymmetric light-pulse treatment groups, but whereas prolactin was elevated over the full 24 h in lambs exposed to 16L:8D, two prominent nocturnal prolactin releases were largely responsible for the high 24-h mean prolactin values in Groups III, IV and V. Reduced serum testosterone in these same groups could not be attributed to a diurnal pattern of secretion but was associated with an overall decrease in testosterone pulse frequency. Prolactin and testosterone levels in Group IV were intermediate between those observed in lambs exposed to 8 or 16 h of light. In summary, light pulses of short duration (1 min) positioned at 17 h after dawn can produce endocrine changes in lambs similar to those observed in lambs exposed to 16 h of continuous light.  相似文献   

7.
The osteology of the appendicular skeleton and its postnatal development are described in Bachia bicolor, a serpentiform lizard with reduced limbs. The pectoral girdle is well developed and the forelimb consists of a humerus, ulna, radius, five carpal elements (ulnare, radiale, distal carpals 4–3, centrale), four metacarpals (II, III, IV, V) and phalanges (phalangeal formula X‐2‐2‐2‐2). In the hindlimb, the femur is small and slender, and articulates distally with a series of ossified amorphous and extremely reduced elements that correspond to a fibula, tibia and proximal and distal tarsals 4 and 3. The pelvic girdle consists of ischium, pubis and ilium, but its two halves are widely separated; the ilium is the least reduced element. We describe the ossification and development during postnatal skeletal ontogeny, especially of epiphyseal secondary centres, ossifications of carpal elements, apophyseal ossifications and sesamoids. Compared to other squamates, B. bicolor shows an overall reduction in limb size, an absence of skeletal elements, a fusion of carpal elements, an early differentiation of apophyseal centres, and a low number of sesamoids and apophyseal centres. These observations suggest that the reductions are produced by heterochronic changes during postnatal development and probably during embryonic development; therefore the appendicular skeleton exhibits a pattern of paedomorphic features.  相似文献   

8.
Postcranial ossification sequences in 24 therian mammals and three outgroup taxa were obtained using clear staining and computed tomography to test the hypothesis that the marsupial forelimb is developmentally accelerated, and to assess patterns of therian postcranial ossification. Sequence rank variation of individual bones, phylogenetic analysis, and algorithm-based heterochrony optimization using event pairs were employed. Phylogenetic analysis only recovers Marsupialia, Australidelphia, and Eulipotyphla. Little heterochrony is found within marsupials and placentals. However, heterochrony was observed between marsupials and placentals, relating to late ossification in hind limb long bones and early ossification of the anterior axial skeleton. Also, ossification rank position of marsupial forelimb and shoulder girdle elements is more conservative than that of placentals; in placentals the hind limb area is more conservative. The differing ossification patterns in marsupials can be explained with a combination of muscular strain and energy allocation constraints, both resulting from the requirement of active movement of the altricial marsupial neonates toward the teat. Peramelemorphs, which are comparatively passive at birth and include species with relatively derived forelimbs, differ little from other marsupials in ossification sequence. This suggests that ossification heterochrony in marsupials is not directly related to diversity constraints on the marsupial forelimb and shoulder girdle.  相似文献   

9.
10.
An elastostatic, finite element model (designated THORAX I) of the human thoracic skeleton has been developed. The model includes the primary load-carrying members of the thorax; namely, the sternum, costal cartilage, ribs, and vertebral column. The soft tissue has been neglected.

Using gross geometric data measured from a skeleton with an apparent ‘small’ frame and approximate cross-sectional properties, the THORAX I model has been subjected to three loading distribution applied to the anterior chest wall in the anterior-posterior direction. Calculations were carried out on the IBM 7094 computer, and primary attention was focused upon the displacement fields of the sternum, costal cartilage and ribs and stresses in costal cartilage and ribs. The sternum and rib nodal point displacement fields are reported in detail, and a simple 2-degree-of-freedom model for the sternum, which correlates well with the analytic results, is also presented. Maximum normal stresses in the cartilage and bony regions of the individual ribs for one loading condition are also given.  相似文献   


11.
The dermal skeleton (=exoskeleton) has long been recognized as a major determinant of vertebrate morphology. Until recently however, details of tissue development and diversity, particularly among amniotes, have been lacking. This investigation explores the development of the dermatocranium, gastralia, and osteoderms in the American alligator, Alligator mississippiensis. With the exception of osteoderms, elements of the dermal skeleton develop early during skeletogenesis, with most initiating ossification prior to mineralization of the endoskeleton. Characteristically, circumoral elements of the dermatocranium, including the pterygoid and dentigerous elements, are among the first to form. Unlike other axially arranged bones, gastralia develop in a caudolateral to craniomedial sequence. Osteoderms demonstrate a delayed onset of development compared with the rest of the skeleton, not appearing until well after hatching. Osteoderm development is asynchronous across the body, first forming dorsally adjacent to the cervical vertebrae; the majority of successive elements appear in caudal and lateral positions. Exclusive of osteoderms, the dermal skeleton initiates osteogenesis via intramembranous ossification. Following the establishment of skeletal condensations, some preossified spicules become engorged with many closely packed clusters of chondrocyte-like cells in a bone-like matrix. This combination of features is characteristic of chondroid bone, a tissue otherwise unreported among nonavian reptiles. No secondary cartilage was identified in any of the specimens examined. With continued growth, dermal bone (including chondroid bone) and osteoid are resorbed by multinucleated osteoclasts. However, there is no evidence that these cells contribute to the rugose pattern of bony ornamentation characteristic of the crocodylian dermatocranium. Instead, ornamentation develops as a result of localized concentrations of bone deposited by osteoblasts. Osteoderms develop in the absence of osteoblastic cells, osteoid, and periosteum; bone develops via the direct transformation of the preexisting dense irregular connective tissue. This mode of bone formation is identified as metaplasia. Importantly, it is also demonstrated that osteoderms are not histologically uniform but involve a range of tissues including calcified and uncalcified dense irregular connective tissue. Between taxa, not all osteoderms develop by homologous processes. However, it is concluded that all osteoderms may share a deep homology, connected by the structural and skeletogenic properties of the dermis.  相似文献   

12.
13.
We studied skull, vertebral column, and limb skeleton development in Japanese clawed salamander Onychodactylus japonicus (Hynobiidae). The study is based on the ontogenetic series of embryos and larvae obtained from wild-captured adults by artificial induction of breeding using hormonal stimulation. The first stages of the skeleton formation in O. japonicus are shifted to the late embryonic period and hatching larvae already possess a well-ossified vertebral column, large number of skull ossifications and show signs of ossification in the forelimb skeleton. Compared to the primitive pattern of the skeleton development typical for other hynobiid salamanders, O. japonicus shows a number of heterochronies related to embryonization. In particular, this species is characterized by an earlier ossification of the vertebral column compared to that of the skull and by the delayed development and early reduction of the coronoid. Our results, along with the previously reported data on the skeleton development in the Fischer’s clawed salamander O. fischeri (Smirnov and Vassilieva, 2002), indicate that the genus Onychodactylus is characterized by the loss or reduction of several skeletal features typically found at early larval stages in other Hynobiidae species. In particular, provisional bones (especially the coronoid) and their dentition are underdeveloped. In addition, it is corroborated that the first tooth generation is absent in Onychodactylus, whereas such monocuspid nonpedicellate tooth generation normally develops at the early larval stages of other caudate amphibians. Since similar patterns of skeleton ontogeny are observed in other caudate groups with different extent of embryonization, it is proposed that, in different lineages of Urodela, the evolution of ontogeny followed similar pathways and was accompanied by the same changes in skeletogenesis.  相似文献   

14.
5种东北红豆杉植物群丛及其物种多样性的比较   总被引:1,自引:0,他引:1  
东北红豆杉(Taxus cuspidata)是我国数量极少的珍贵濒危树种, 了解其天然群落的组成和特征对东北红豆杉种群的保护利用和恢复有重要意义。本文对吉林省天然东北红豆杉群落进行调查, 根据物种组成进行系统聚类分析。将20块40 m × 40 m样地划分为5种群丛类型, 分别以优势种进行命名, 即: Ⅰ. 舞鹤草-五味子+狗枣猕猴桃-紫椴+臭冷杉群丛; II. 东北羊角芹-狗枣猕猴桃-臭冷杉群丛; III. 盾叶唐松草-狗枣猕猴桃-臭冷杉群丛; IV. 舞鹤草-软枣猕猴桃-红松+紫椴+臭冷杉群丛; V. 舞鹤草-软枣猕猴桃-紫椴+臭冷杉群丛。对群丛的物种组成、群落结构和群丛类型、物种多样性进行了分析。物种多样性选用Menhinick丰富度指数、Pielou均匀度指数、Simpson优势度指数以及Shannon-Wiener多样性指数, 对比分析不同群丛特征。结果显示: 东北红豆杉植物群落组成中蔷薇科的种和属数所占比例最大; 5个群丛的多样性指数顺序为群丛V > 群丛III > 群丛IV > 群丛II > 群丛Ⅰ; 群丛Ⅰ和II具有较低的多样性和较高的优势度, 群丛II和群丛III的乔木层的多样性指数差异不明显, 但其丰富度指数和优势度指数却呈现了相反的特征; 群丛II丰富度低而优势度高, 而群丛III丰富度高而优势度低; 群丛III中的草本层的多样性高于乔木层, 群落郁闭度较低; 群丛IV和群丛V均位于和龙市荒沟林场, 随着海拔上升, 其物种多样性随之下降。结果表明, 不同物种组成的东北红豆杉植物群丛的群落特征存在显著差异。  相似文献   

15.
Patterns of growth and variation of the appendicular skeleton were examined in Thorius, a speciose genus of minute terrestrial plethodontid salamanders from southern Mexico. Observations were based primarily on ontogenetic series of each of five species that collectively span the range of adult body size in the genus; samples of adults of each of seven additional species provided supplemental estimates of the full range of variation of limb skeletal morphology. Limbs are generally reduced, i.e., pedomorphic, in both overall size and development, and they are characterized by a pattern of extreme variation in the composition of the limb skeleton, especially mesopodial elements, both within and between species. Fifteen different combinations of fused carpal or tarsal elements are variably present in the genus, producing at least 18 different overall carpal or tarsal arrangements, many of which occur in no other plethodontid genus. As many as four carpal or tarsal arrangements were observed in single population samples of each of several; five tarsal arrangements were observed in one population of T. minutissimus. Left-right asymmetry of mesopodial arrangement in a given specimen is also common. In contrast, several unique, nonpedomorphic features of the limb skeleton, including ossification of the typically cartilaginous adult mesopodial elements and ontogenetic increase in the degree of ossification of long bones, are characteristic of all species and distinguish Thorius from most related genera. They form part of a mechanism of determinate skeletal growth that restricts skeletal growth after sexual maturity. Interspecific differences in the timing of the processes of appendicular skeletal maturation relative to body size are well correlated with interspecific differences in mean adult size and size at sexual maturity, suggesting that shifts in the timing of skeletal maturation provide a mechanism of achieving adult size differentiation among species. Processes of skeletal maturation that confer determinate skeletal growth in Thorius are analogous to those typical of most amniotes – both groups exhibit ontogenetic reduction and eventual disappearance of the complex of stratified layers of proliferating and maturing cartilage in long bone epiphyses – but, unlike most amniotes, Thorius lacks secondary ossification centers. Thus, the presence of secondary ossification centers cannot be used as a criterion for establishing determinate skeletal growth in all vertebrates.  相似文献   

16.
We investigated the development of the whole skeleton of the soft‐shelled turtle Pelodiscus sinensis, with particular emphasis on the pattern and sequence of ossification. Ossification starts at late Tokita‐Kuratani stage (TK) 18 with the maxilla, followed by the dentary and prefrontal. The quadrate is the first endoskeletal ossification and appears at TK stage 22. All adult skull elements have started ossification by TK stage 25. Plastral bones are the first postcranial bones to ossify, whereas the nuchal is the first carapacial bone to ossify, appearing as two unstained anlagen. Extensive examination of ossification sequences among autopodial elements reveals much intraspecific variation. Patterns of ossification of cranial dermal elements are more variable than those of endochondral elements, and dermal elements ossify before endochondral ones. Differences in ossification sequences with Apalone spinifera include: in Pelodiscus sinensis the jugal develops relatively early and before the frontal, whereas it appears later in A. spinifera; the frontal appears shortly before the parietal in A. spinifera whereas in P. sinensis the parietal appears several stages before the frontal. Chelydrids exhibit an early development of the postorbital bone and the palatal elements as compared to trionychids. Integration of the onset of ossification data into an analysis of the sequence of skeletal ossification in cryptodirans using the event‐pairing and Parsimov methods reveals heterochronies, some of which reflect the hypothesized phylogeny considered taxa. A functional interpretation of heterochronies is speculative. In the chondrocranium there is no contact between the nasal capsules and planum supraseptale via the sphenethmoid commissurae. The pattern of chondrification of forelimb and hind limb elements is consistent with a primary axis and digital arch. There is no evidence of anterior condensations distal to the radius and tibia. A pattern of quasi‐ simultaneity is seen in the chondrogenesis of the forelimb and the hind limb. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
The adult skeleton and tadpole chondrocranium of the leptodcatylid frog, Ceratophrys cornuta (Ceratophryinae), are described in detail, including the ontogenetic development of the chondrocanium and the ossification sequence of the skeleton. The chondrocranium of the carnivorous larvae is unique in lacking a frontoparietal fontanelle and possessing a complete dorsal roof of cartilage. Furthermore, the chondrocranium is extremely robust, particularly those elements involved in the feeding mechanism; these include large palatoquadrate cartilages, stout Meckel's, supra- and infrarostral cartilages, and short, wide, cornua trabeculae. The chondrocranium of C. cornuta resembles that described for Ceratophrys cranwelli, but differs from the chondrocrania reported for the species of Lepidobatrachus. The large adult skull is hyperossified; most elements are fused into a single unit, and nearly all dermal elements are ornamented, casqued, and co-ossified. Calcification is present in nearly every cartilaginous element of the skeleton in larger (older) adults. Several osteological characters previously used in ceratophryine systematics, such as the otic ramus of the squamosal and the columella, are reassessed. Contrary to previous reports, the ossified, dorsal dermal shield above the vertebral column in many ceratophryine anurans is absent in C. cornuta. With few exceptions, the ossification sequence relative to metamorphosis is consistent with those that are known for other anurans. The squamosal arises from three distinct centers of ossification, including an otic element. The frontoparietal arises from two centers of ossification that fuse early in development. A robust postorbital arch is formed primarily by the otic flange of the frontoparietal, which articulates laterally with the medial border of the otic ramus of the squamosal. Changes in the timing of development, or heterochrony, are involved with the evolution of the unusual skull and skeleton of ceratophryine frogs. J Morphol 232:169–206, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
The skeleton of a 35- to 40-year-old male (A.D. 1250 to 1300) with distal phocomelia (intercalary transverse) of the right forearm and severe (90-100 degrees) right-sided scoliosis is examined. Congenital malformation of the the right forearm resulted in absence of the radius and ulna, and attachment of the upper arm and hand to the trunk. Lesser abnormalities consist of a-hypoplastic right scapula and misshapened ribs and sternum. This rare deformity reflects the variability and antiquity of congenital malformations of the upper limb.  相似文献   

19.
Cis-diammine Pt(II)- bridged bis-netropsin and oligomethylene-bridged bis-netropsin in which two monomers are linked in a tail-to-tail manner bind to the DNA oligomer with the sequence 5'-CCTATATCC-3' in a parallel-stranded hairpin form with a stoichiometry 1:1. The difference circular dichroism (CD) spectra characteristic of binding of these ligands in the hairpin form are similar. They differ from CD patterns obtained for binding to the same duplex of another bis-netropsin in which two netropsin moieties were linked in a head-to-tail manner. This reflects the fact that tail-to-tail and head-to-tail bis-netropsins use parallel and antiparallel side-by-side motifs, respectively, for binding to DNA in the hairpin forms. The binding affinity of cis-diammine Pt(II)-bridged bis-netropsin in the hairpin form to DNA oligomers with nucleotide sequences 5'-CCTATATCC-3' (I), 5'-CCTTAATCC-3' (II), 5'-CCTTATTCC-3' (III), 5'-CCTTTTTCC-3' (IV) and 5'-CCAATTTCC-3' (V) decreases in the order I = II > III > IV > V . The binding of oligomethylene-bridged bis-netropsin in the hairpin form follows a similar hierarchy. An opposite order of sequence preferences is observed for partially bonded monodentate binding mode of the synthetic ligand.  相似文献   

20.
Protein L is an immunoglobulin light chain-binding protein expressed by some strains of the anaerobic bacterial species Peptostreptococcus magnus. The major variable region subgroups of human kappa and lambda light chains were tested for protein L binding; V kappa I, V kappa III, and V kappa IV bound protein L, whereas no binding occurred with proteins of the V kappa II subgroup or with any lambda light chain subgroups. Studies of the protein L binding capacity of naturally occurring VL fragments, and VL- and CL-related trypsin- and pepsin-derived peptides prepared from a kappa I light chain, localized the site of interaction to the VL domain. The affinity constant for the binding to an isolated V kappa I fragment was comparable to that for the native protein (Ka 0.9 x 10(9) M-1 and Ka 1.5 x 10(9) M-1, respectively). No binding occurred with CL-related fragments. Extensive reduction and alkylation of the V kappa fragment or the native kappa chain resulted in complete loss of protein L binding. Although it is possible, from comparative amino acid sequence data, to identify certain VL-framework region residues that account for the selective binding of protein L by kappa I, kappa III, and kappa IV proteins, our studies indicate that this interaction is essentially dependent upon the tertiary structural integrity of the kappa chain VL domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号