首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Drosophila melanogaster 68C chromosomal locus is the site of a prominent polytene chromosome puff that harbors the genes Sgs-3, Sgs-7 and Sgs-8. These genes code for proteins that are part of the salivary glue that Drosophila larvae secrete as a means of fixing themselves to an external substrate for the duration of the pre-pupal and pupal period. The 68C glue genes are regulated by the steroid hormone ecdysterone, with the hormone required for both initiation and cessation of gene expression during the third larval instar. Previous work has defined sequences sufficient for expression of abundant levels of Sgs-3 mRNA at the correct time and in the correct tissue. We show here that sequences sufficient for normal tissue- and stage-specific accumulation of Sgs-3 RNA, but adequate only for low levels of expression, lie within 130 bp of the 5' end of the gene, or within the gene.  相似文献   

2.
Pig-1 and Sgs-4 are a pair of closely linked and divergently transcribed Drosophila melanogaster genes, which are both expressed in larval salivary glands but at different times during development. While Sgs-4 is expressed at high levels only at the end of the third instar, Pig-1 exhibits a major peak of expression during late second and early third instar. Thus, Pig-1 expression declines as Sgs-4 expression is induced. In this paper, we show that three adjacent elements located within the short region between these genes can account for the switch from Pig-1 to Sgs-4 expression. A 170-bp segment acts as an enhancer to direct Sgs-4 expression in late-third-instar salivary glands. A 64-bp sequence located just upstream from the enhancer can modify its temporal specificity so that it works throughout the third instar. Expression induced at mid-third instar by a combination of these two elements can be repressed by a negative regulatory sequence located still further upstream. We present evidence suggesting that the changing interactions between these regulatory elements and the Sgs-4 and Pig-1 promoters lead to the correct pattern of expression of the two genes.  相似文献   

3.
4.
Cooperative enhancement at the Drosophila Sgs-3 locus   总被引:4,自引:0,他引:4  
The Drosophila glue gene Sgs-3 is specifically expressed in the secretory cells of the salivary glands of third instar larvae. We have assayed the expression of gene fusions to determine the role of cis-acting Sgs-3 sequences in conferring this pattern of expression. These experiments define two regulatory regions required for expression of reporter genes from the Sgs-3 promoter. One region, between 106 and 56 bp upstream of the Sgs-3 mRNA 5' end is sufficient for low but correct tissue- and stage-specific expression. A second region, lying between 629 and 130 bp 5' of the RNA start site is functionally equivalent; that is, it alone will also direct low level, specific expression. These two regions act synergistically to give high level expression. More distant upstream regions function to further increase levels of expression. These two regulatory elements can confer a salivary gland-specific pattern of expression on a heterologous promoter and are also sufficient to drive gene expression in other Drosophila species, implying conservation of regulators.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
The Sgs-4 glue protein gene of Drosophila is expressed only in third-instar larval salivary glands. Previous work suggests that a regulatory region lies 5' and remote to the gene, as indicated by a region of tissue-specific DNase I hypersensitivity and by underproducing mutants with DNA lesions in the hypersensitive region. Here we demonstrate by germ line transformation of cloned fragments containing Sgs-4 that the sequences between 840 bp 5' and 130 bp 3' to the gene are sufficient for Sgs-4 activity. When 5' sequence was removed to -392, activity was eliminated, thereby verifying the existence of essential sequences far upstream. Fragments that are active include, in addition to the capacity for normal levels of expression, three other cis-acting regulatory activities: developmental timing, tissue specificity, and dosage compensation. In contrast, the fragments tested did not specify formation of the puff with which Sgs-4 is normally associated. As shown by chromosomal rearrangements, the region required for puffing is limited to 16-19 kb surrounding the gene.  相似文献   

14.
15.
16.
During Drosophila metamorphosis, larval tissues, such as the salivary glands, are histolysed whereas imaginal tissues differentiate into adult structures forming at eclosion a fly-shaped adult. Inactivation of the lethal(2)giant larvae (l(2)gl) gene encoding the cytoskeletal associated p127 protein, causes malignant transformation of brain neuroblasts and imaginal disc cells with developmental arrest at the larval-pupal transition phase. At this stage, p127 is expressed in wild-type salivary glands which become fully histolysed 12 - 13 h after pupariation. By contrast to wild-type, administration of 20-hydroxyecdsone to l(2)gl-deficient salivary glands is unable to induce histolysis, although it releases stored glue granules and gives rise to a nearly normal pupariation chromosome puffing, indicating that p127 is required for salivary gland apoptosis. To unravel the l(2)gl function in this tissue we used transgenic lines expressing reduced ( approximately 0.1) or increased levels of p127 (3.0). Here we show that the timing of salivary gland histolysis displays an l(2)gl-dose response. Reduced p127 expression delays histolysis whereas overexpression accelerates this process without affecting the duration of third larval instar, prepupal and pupal development. Similar l(2)gl-dependence is noticed in the timing of expression of the cell death genes reaper, head involution defective and grim, supporting the idea that p127 plays a critical role in the implementation of ecdysone-triggered apoptosis. These experiments show also that the timing of salivary gland apoptosis can be manipulated without affecting normal development and provide ways to investigate the nature of the components specifically involved in the apoptotic pathway of the salivary glands.  相似文献   

17.
18.
In a screen for genes expressed in the Drosophila embryonic salivary gland, we identified a tryptophanyl-tRNA synthetase gene that maps to cytological position 85D (WRS-85D). WRS-85D expression is dependent on the homeotic gene Sex combs reduced (Scr). In the absence of Scr function, WRS-85D expression is lost in the salivary gland primordia; conversely, ectopic expression of Scr results in expression of WRS-85D in new locations. Despite the fact that WRS-85D is a housekeeping gene essential for protein synthesis, we detected both WRS-85D mRNA and protein at elevated levels in the developing salivary gland. WRS-85D is required for embryonic survival; embryos lacking the maternal contribution were unrecoverable, whereas larvae lacking the zygotic component died during the third instar larval stage. We showed that recombinant WRS-85D protein specifically charges tRNATrp, and WRS-85D is likely to be the only tryptophanyl-tRNA synthetase gene in Drosophila. We characterized the expression patterns of all 20 aminoacyl-tRNA synthetases and found that of the four aminoacyl-tRNA synthetase genes expressed at elevated levels in the salivary gland primordia, WRS-85D is expressed at the highest level throughout embryogenesis. We also discuss the potential noncanonical activities of tryptophanyl-tRNA synthetase in immune response and regulation of cell growth.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号