首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.

Background

Biomechanical investigations of spinal motion preserving implants help in the understanding of their in vivo behavior. In this study, we hypothesized that the lumbar spine with implanted total spinal segment replacement (TSSR) would exhibit decreased dynamic stiffness and more rapid energy absorption compared to native functional spinal units under simulated physiologic motion when tested with the pendulum system.

Methods

Five unembalmed, frozen human lumbar functional spinal units were tested on the pendulum system with axial compressive loads of 181 N, 282 N, 385 N, and 488 N before and after Flexuspine total spinal segment replacement implantation. Testing in flexion, extension, and lateral bending began by rotating the pendulum to 5°; resulting in unconstrained oscillatory motion. The number of rotations to equilibrium was recorded and bending stiffness (N-m/°) was calculated and compared for each testing mode.

Results

The total spinal segment replacement reached equilibrium with significantly fewer cycles to equilibrium compared to the intact functional spinal unit at all loads in flexion (p<0.011), and at loads of 385 N and 488 N in lateral bending (p<0.020). Mean bending stiffness in flexion, extension, and lateral bending increased with increasing load for both the intact functional spinal unit and total spinal segment replacement constructs (p<0.001), with no significant differences in stiffness between the intact functional spinal unit and total spinal segment replacement in any of the test modes (p>0.18).

Conclusions

Lumbar functional spinal units with implanted total spinal segment replacement were found to have similar dynamic bending stiffness, but absorbed energy at a more rapid rate than intact functional spinal units during cyclic loading with an unconstrained pendulum system. Although the effects on clinical performance of motion preserving devices is not fully known, these results provide further insight into the biomechanical behavior of this device under approximated physiologic loading conditions.  相似文献   

2.
Compression on the lumbar spine is 1000 N for standing and walking and is higher during lifting. Ex vivo experiments show it buckles under a vertical load of 80-100 N. Conversely, the whole lumbar spine can support physiologic compressive loads without large displacements when the load is applied along a follower path that approximates the tangent to the curve of the lumbar spine. This study utilized a two-dimensional beam-column model of the lumbar spine in the frontal plane under gravitational and active muscle loads to address the following question: Can trunk muscle activation cause the path of the internal force resultant to approximate the tangent to the spinal curve and allow the lumbar spine to support compressive loads of physiologic magnitudes? The study identified muscle activation patterns that maintained the lumbar spine model under compressive follower load, resulting in the minimization of internal shear forces and bending moments simultaneously at all lumbar levels. The internal force resultant was compressive, and the lumbar spine model, loaded in compression along the follower load path, supported compressive loads of physiologic magnitudes with minimal change in curvature in the frontal plane. Trunk muscles may coactivate to generate a follower load path and allow the ligamentous lumbar spine to support physiologic compressive loads.  相似文献   

3.
Ultimate strength of the lumbar spine in flexion--an in vitro study   总被引:2,自引:0,他引:2  
The ultimate strength in flexion of 16 lumbar functional spinal units (FSU) was determined. The specimens were exposed to a combined static load of bending and shearing in the sagittal plane until overt rupture occurred (simulated flexion-distraction injuries). The biomechanical response of the FSU was measured with a force and moment platform. Mechanical displacement gauges were used to measure vertical displacements (flexion angulation) of the specimens. Photographs were taken after each loading step for determination of horizontal displacements and the centre of rotation. The lumbar FSU could resist a combination of bending moment and shear force of 156 Nm and 620 N respectively, before complete disruption occurred. The tension force acting on the posterior structures was 2.8 kN. The flexion angulation just before failure was 20 degrees and the anterior horizontal displacement between the upper and lower vertebrae was 9 mm. The centre of rotation was located in the posterior part of the lower vertebral body. The bone mineral content in the vertebrae appeared to be a good predictor of ultimate strength of the lumbar FSU. Knowledge of the biomechanical response of the lumbar spine under different static traumatic loads is a first step to better understand the injury mechanisms of the spine in traffic accidents.  相似文献   

4.
The effects of the rib cage on thoracic spine loading are not well studied, but the rib cage may provide stability or share loads with the spine. Intervertebral disc pressure provides insight into spinal loading, but such measurements are lacking in the thoracic spine. Thus, our objective was to examine thoracic intradiscal pressures under applied pure moments, and to determine the effect of the rib cage on these pressures. Human cadaveric thoracic spine specimens were positioned upright in a testing machine, and Dynamic pure moments (0 to ±5 N·m) with a compressive follower load of 400 N were applied in axial rotation, flexion - extension, and lateral bending. Disc pressures were measured at T4-T5 and T8-T9 using needle-mounted pressure transducers, first with the rib cage intact, and again after the rib cage was removed. Changes in pressure vs. moment slopes with rib cage removal were examined. Pressure generally increased with applied moments, and pressure-moment slope increased with rib cage removal at T4-T5 for axial rotation, extension, and lateral bending, and at T8-T9 for axial rotation. The results suggest the intact rib cage carried about 62% and 56% of axial rotation moments about T4-T5 and T8-T9, respectively, as well as 42% of extension moment and 36–43% of lateral bending moment about T4-T5 only. The rib cage likely plays a larger role in supporting moments than compressive loads, and may also play a larger role in the upper thorax than the lower thorax.  相似文献   

5.
Investigations of biomechanical properties of pediatric cadaver cervical spines subjected to tensile or bending modes of loading are generally limited by a lack of available tissue and limiting sample sizes, both per age and across age ranges. It is therefore important to develop fixation techniques capable of testing individual cadavers in multiple modes of loading to obtain more biomechanical data per subject. In this study, an experimental apparatus and fixation methodology was developed to accommodate cadaver osteoligamentous head-neck complexes from around birth (perinatal) to full maturation (adult) [cervical length: 2.5-12.5 cm; head breadth: 6-15 cm; head length: 6-19 cm] and sequentially test the whole cervical spine in tension, the upper cervical spine in bending and the upper cervical spine in tension. The experimental apparatus and the fixation methodology provided a rigid casting of the head during testing and did not compromise the skull. Further testing of the intact skull and sub-cranial material was made available due to the design of the apparatus and fixation techniques utilized during spinal testing. The stiffness of the experimental apparatus and fixation technique are reported to better characterize the cervical spine stiffness data obtained from the apparatus. The apparatus and fixation technique stiffness was 1986 N/mm. This experimental system provides a stiff and consistent platform for biomechanical testing across a broad age range and under multiple modes of loading.  相似文献   

6.
Variation of lumbar spine stiffness with load   总被引:1,自引:0,他引:1  
Mechanical studies of the Functional Spinal Unit (FSU) in-vitro have shown that the slopes of the load-displacement curves increase with load. This nonlinearity implies that the stiffness of the FSU is not constant over the range of physiologic loads, and that measurements obtained for FSU specimens through the application of individual loads cannot be summed to predict the response of the specimens to combined loads. Both experimental and analytical methods were developed in the present study to better quantify the nonlinear FSU load-displacement response and to calculate the coupled stiffness of FSU specimens at combined states of load reflecting in-vivo conditions. Results referenced to the center of the vertebral body indicate that lumbar FSU specimens are stiffer in flexion than in extension, and that FSU specimens loaded in flexion are stiffer at high loads than at low loads. The importance of combined load testing and a nonlinear interpretation of load-displacement data is demonstrated.  相似文献   

7.
Animals are becoming more and more common as in vivo models for the human spine. Especially the sheep cervical spine is stated to be of good comparability and usefulness in the evaluation of in vivo radiological, biomechanical and histological behaviour of new bone replacement materials, implants and cages for cervical spine interbody fusion. In preceding biomechanical in vitro examinations human cervical spine specimens were tested after fusion with either a cubical stand-alone interbody fusion cage manufactured from a new porous TiO2/glass composite (Ecopore) or polymethylmethacrylate (PMMA) after discectomy. Following our first experience with the use of the new material and its influence on the primary stability after in vitro application we carried out fusions of 20 sheep cervical spines levels with either PMMA or an Ecopore-cage, and performed radiological examinations during the following 2-4 months. In this second part of the study we intended the biomechanical evaluation of the spine segments with reference to the previously determined morphological findings, like subsidence of the implants, significant increase of the kyphosis angle and degree of the bony fusion along with the interpretation of the results. 20 sheep cervical spines segments with either PMMA- or Ecopore-fusion in the levels C2/3 and C4/5 were tested, in comparison to 10 native corresponding sheep cervical spine segments. Non-destructive biomechanical testing was performed, including flexion/extension, lateral bending and axial rotation using a spine testing apparatus. Three-dimensional range of motion (ROM) was evaluated using an ultrasound measurement system. In the native spine segments C2/3 and C4/5 the ROM increased in cranio-caudal direction particulary in flexion/extension, less pronounced in lateral flexion and axial rotation (p < 0.05). The overall ROM of both tested segments was greatest in lateral flexion, reduced to 52% in flexion/extension and to 16% in axial rotation. After 2 months C2/3- and C4/5-segments with PMMA-fusion and C2/3-segments with Ecopore-interposition showed decrease of ROM in lateral flexion in comparison to the native segments, indicating increasing stiffening. However, after 4 months all operated segments, independent from level or implanted material, were stiffer than the comparable native segments. The decrease of the ROM correlated with the radiological-morphological degree of fusion. Our evaluation of the new porous TiO2/glass composite as interbody fusion cage has shown satisfactory radiological results as well as distinct biomechanical stability and fusion of the segments after 4 months in comparison to PMMA. After histological analysis of the bone-biomaterial-interface, further examinations of this biomaterial previous to an application as alternative to other customary cages in humans are necessary.  相似文献   

8.
Cervical spine injuries continue to be a costly societal problem. Future advancements in injury prevention depend on improved physical and computational models which, in turn, are predicated on a better understanding of the responses of the neck during dynamic loading. Previous studies have shown that the tolerance of the neck is dependent on its initial position and its buckling behavior. This study uses a computational model to examine the mechanical factors influencing buckling behavior during impact to the neck. It was hypothesized that the inertial properties of the cervical spine influence the dynamics during compressive axial loading. The hypothesis was tested by performing parametric analyses of vertebral mass, mass moments of inertia, motion segment stiffness, and loading rate. Increases in vertebral mass resulted in increasingly complex kinematics and larger peak loads and impulses. Similar results were observed for increases in stiffness. Faster loading rates were associated with higher peak loads and higher-order buckling modes. The results demonstrate that mass has a great deal of influence on the buckling behavior of the neck, particularly with respect to the expression of higher-order modes. Injury types and mechanisms may be substantially altered by loading rate because inertial effects may influence whether the cervical spine fails in a compressive mode, or a bending mode.  相似文献   

9.
Recently, there has been a rapid increase in the use of cervical spine interbody fusion cages, differing in design and biomaterial used, in competition to autologous iliac bone graft and bone cement (PMMA). Limited biomechanical differences in primary stability, as well as advantages and disadvantages of each cage or material have been investigated in studies, using an in vitro human cervical spine model. 20 human cervical spine specimens were tested after fusion with either a cubical stand-alone interbody fusion cage manufactured from a new porous TiO2/glass composite (Ecopore) or PMMA after discectomy. Non-destructive biomechanical testing was performed, including flexion/extension and lateral bending using a spine testing apparatus. Three-dimensional segmental range of motion (ROM) was evaluated using an ultrasound measurement system. ROM increased more in flexion/extension and lateral bending after PMMA fusion (26.5%/36.1%), then after implantation of the Ecopore-cage (8.1%/7.8%). In this first biomechanical in vitro examination of a new porous ceramic bone replacement material a) the feasibility and reproducibility of biomechanical cadaveric cervical examination and its applicability was demonstrated, b) the stability of the ceramic cage as a stand alone interbody cage was confirmed in vitro, and c) basic information and knowledge for our intended biomechanical and histological in vivo testing, after implantation of Ecopore in cervical sheep spines, were obtained.  相似文献   

10.
Simplified loading modes (pure moment, compressive force) are usually applied in the in vitro studies to simulate flexion-extension, lateral bending and axial rotation of the spine. The load magnitudes for axial rotation vary strongly in the literature. Therefore, the results of current investigations, e.g. intervertebral rotations, are hardly comparable and may involve unrealistic values. Thus, the question 'which in vitro applicable loading mode is the most realistic' remains open. A validated finite element model of the lumbar spine was employed in two sensitivity studies to estimate the ranges of results due to published load assumptions and to determine the input parameters (e.g. torsional moment), which mostly affect the spinal load and kinematics during axial rotation. In a subsequent optimisation study, the in vitro applicable loading mode was determined, which delivers results that fit best with available in vivo measurements. The calculated results varied widely for loads used in the literature with potential high deviations from in vivo measured values. The intradiscal pressure is mainly affected by the magnitude of the compressive force, while the torsional moment influences mainly the intervertebral rotations and facet joint forces. The best agreement with results measured in vivo were found for a compressive follower force of 720N and a pure moment of 5.5Nm applied to the unconstrained vertebra L1. The results reveal that in many studies the assumed loads do not realistically simulate axial rotation. The in vitro applicable simplified loads cannot perfectly mimic the in vivo situation. However, the optimised values lead to the best agreement with in vivo measured values. Their consequent application would lead to a better comparability of different investigations.  相似文献   

11.
In-vitro biomechanical testing is widely performed for characterizing the load-displacement characteristics of intact, injured, degenerated, and surgically repaired osteoligamentous spine specimens. Traditional specimen fixture devices offer an unspecified rigidity of fixation, while varying in the associated amounts and reversibility of damage to and “coverage” of a specimen – factors that can limit surgical access to structures of interest during testing as well as preclude the possibility of testing certain segments of a specimen. Therefore, the objective of this study was to develop a specimen fixture system for spine biomechanical testing that uses components of clinically available spinal fixation hardware and determine whether the new system provides sufficient rigidity for spine biomechanical testing. Custom testing blocks were mounted into a robotic testing system and the angular deflection of the upper fixture was measured indirectly using linear variable differential transformers. The fixture system had an overall stiffness 37.0, 16.7 and 13.3 times greater than a typical human functional spine unit for the flexion/extension, axial rotation and lateral bending directions respectively – sufficient rigidity for biomechanical testing. Fixture motion when mounted to a lumbar spine specimen revealed average motion of 0.6, 0.6, and 1.5° in each direction. This specimen fixture method causes only minimal damage to a specimen, permits testing of all levels of a specimen, and provides for surgical access during testing.  相似文献   

12.
Intervertebral disc degeneration, a leading cause of low back pain, poses a significant socioeconomic burden with a broad array of costly treatment options. Mechanical loading is important in disease progression and treatment. Connecting mechanics and biology is critical for determining how loading parameters affect cellular response and matrix homeostasis. A novel ex-vivo experimental platform was developed to facilitate in-situ loading of rabbit functional spinal units (FSUs) with relevant biological outcome measures. The system was designed for motion outside of an incubator and validated for rigid fixation and physiologic environmental conditions. Specimen motion relative to novel fixtures was assessed using a digitizer; fixture stiffness exceeded specimen stiffness by an order of magnitude. Intradiscal pressure (IDP), measured using a fiber-optic pressure transducer, confirmed rigidity and compressive force selection. Surrounding media was controlled at 37 °C, 5% O(2)/CO(2) using a closed flow loop with an hypoxic incubator and was validated with probes in the specimen chamber. FSUs were subjected to cyclic compression (20 cycles) and four-hour creep at 1.0 MPa. Disc tissue was analyzed for cell viability using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), which showed high viability (>90%) regardless of loading. Conditioned media was assayed for type-II collagen degradation fragments (CTX-II) and an aggrecan epitope (CS-846) associated with new aggrecan synthesis. CTX-II concentrations were not associated with loading, but CS-846 concentrations appeared to be increased with loading. Preservation of the full FSU allows physiologic load transmission and future multi-axis motion and identification of load-responsive proteins, thereby forming a new niche in intervertebral disc organ culture.  相似文献   

13.
A comparison between the dynamic compressive properties of human lumbar intervertebral joints when fresh and after a period of deep frozen storage was made. Physiologically relevant loads of -750 +/- 250 N were applied in axial compression with the joint constrained against bending, over a frequency range of 0.01-10 Hz. Frozen storage was found not to affect the compressive stiffness or hysteresis of the seven joints. The magnitude of the observed changes in mean values were small, less than 1% decrease in the compressive stiffness and less than 1% increase in hysteresis after deep frozen storage.  相似文献   

14.
The human cervical spine supports substantial compressive load in vivo. However, the traditional in vitro testing methods rarely include compressive loads, especially in investigations of multi-segment cervical spine constructs. Previously, a systematic comparison was performed between the standard pure moment with no compressive loading and published compressive loading techniques (follower load – FL, axial load – AL, and combined load – CL). The systematic comparison was structured a priori using a statistical design of experiments and the desirability function approach, which was chosen based on the goal of determining the optimal compressive loading parameters necessary to mimic the segmental contribution patterns exhibited in vivo. The optimized set of compressive loading parameters resulted in in vitro segmental rotations that were within one standard deviation and 10% of average percent error of the in vivo mean throughout the entire motion path. As hypothesized, the values for the optimized independent variables of FL and AL varied dynamically throughout the motion path. FL was not necessary at the extremes of the flexion–extension (FE) motion path but peaked through the neutral position, whereas, a large negative value of AL was necessary in extension and increased linearly to a large positive value in flexion. Although further validation is required, the long-term goal is to develop a “physiologic” in vitro testing method, which will be valuable for evaluating adjacent segment effect following spinal fusion surgery, disc arthroplasty instrumentation testing and design, as well as mechanobiology experiments where correct kinematics and arthrokinematics are critical.  相似文献   

15.
A new method for determining facet loads during in vitro spine loading using strain gauges and a neural networks solution method was investigated. A test showed that the new solution method was more robust than and as accurate as a previously presented graphical solution method for computing facet loads using surface strain. The technique was subsequently utilized to assess facet loads at L1-L2 during flexibility testing [7.5Nm pure moments in flexion (FL), extension (EX), right and left axial rotation (AR), and right and left lateral bending (LB)], and stiffness testing (FL-EX with 400N compressive follower load) of six human lumbar spine segments (T12-L2). In contrast to other techniques, such as thin film sensors or pressure-sensitive film, the strain-gauge method leaves the facet joint capsule intact during data collection, presumably allowing more natural load transmission. During flexibility tests, the mean (+/-standard deviation) calculated facet loads (in N) were 46.1+/-41.3 (FL), 51.5+/-39.0 (EX), 70.3+/-43.2 (AR-contralateral side), 31.3+/-33.4 (AR-ipsilateral side), 30.6+/-29.1 (LB-contralateral side), and 32.0+/-44.4 (LB-ipsilateral side). During stiffness tests, the calculated facet loads were 45.5+/-40.4 (upright), 46.6+/-41.9 (full FL), and 75.4+/-39.0 (full EX), corresponding to an equivalent of 11.4%, 11.6%, and 18.8% of the compressive follower load (upright, full FL and EX, respectively). The error associated with this technique, which was below 11N for loads up to 125N, is comparable to that reported with other techniques. The new method shows promise for assessing facet load during in vitro spine testing, an important parameter when evaluating new implant systems and surgical techniques.  相似文献   

16.
Current neck injury criteria do not include limits for lateral bending combined with axial compression and this has been observed as a clinically relevant mechanism, particularly for rollover motor vehicle crashes. The primary objectives of this study were to evaluate the effects of lateral eccentricity (the perpendicular distance from the axial force to the centre of the spine) on peak loads, kinematics, and spinal canal occlusions of subaxial cervical spine specimens tested in dynamic axial compression (0.5 m/s). Twelve 3-vertebra human cadaver cervical spine specimens were tested in two groups: low and high eccentricity with initial eccentricities of 1 and 150% of the lateral diameter of the vertebral body. Six-axis loads inferior to the specimen, kinematics of the superior-most vertebra, and spinal canal occlusions were measured. High speed video was collected and acoustic emission (AE) sensors were used to define the time of injury. The effects of eccentricity on peak loads, kinematics, and canal occlusions were evaluated using unpaired Student t-tests. The high eccentricity group had lower peak axial forces (1544±629 vs. 4296±1693 N), inferior displacements (0.2±1.0 vs. 6.6±2.0 mm), and canal occlusions (27±5 vs. 53±15%) and higher peak ipsilateral bending moments (53±17 vs. 3±18 Nm), ipsilateral bending rotations (22±3 vs. 1±2°), and ipsilateral displacements (4.5±1.4 vs. −1.0±1.3 mm, p<0.05 for all comparisons). These results provide new insights to develop prevention, recognition, and treatment strategies for compressive cervical spine injuries with lateral eccentricities.  相似文献   

17.
Moment arms of the human neck muscles in flexion, bending and rotation   总被引:1,自引:0,他引:1  
There is a paucity of data available for the moment arms of the muscles of the human neck. The objective of the present study was to measure the moment arms of the major cervical spine muscles in vitro. Experiments were performed on five fresh-frozen human head-neck specimens using a custom-designed robotic spine testing apparatus. The testing apparatus replicated flexion-extension, lateral bending and axial rotation of each individual intervertebral joint in the cervical spine while all other joints were kept immobile. The tendon excursion method was used to measure the moment arms of 30 muscle sub-regions involving 13 major muscles of the neck about all three axes of rotation of each joint for the neutral position of the cervical spine. Significant differences in the moment arm were observed across sub-regions of individual muscles and across the intervertebral joints spanned by each muscle (p<0.05). Overall, muscle moment arms were larger in flexion-extension and lateral bending than in axial rotation, and most muscles had prominent moment arms in at least 2 out of the 3 joint motions investigated. This study emphasizes the importance of detailed representation of a muscle's architecture in prediction of its torque capacity about the individual joints of the cervical spine. The dataset produced may be useful in developing and validating computational models of the human neck.  相似文献   

18.
Formalin fixation strongly influences biomechanical properties of the spine   总被引:7,自引:0,他引:7  
As fresh human cadaveric spine specimens for in vitro testing are hard to obtain and carry a potential risk of infection, the possibility of using embalmed spine specimens has been considered. The cross-linking effect of formalin fixation, however, raises uncertainties regarding the biomechanical likeness of preserved specimens. They have been reported to be stiffer, but no quantitative data exist.

The purpose of this study was to determine the biomechanical differences between fresh and formalin-fixed spine specimens, using L1–2 motion segments from six 16-week-old calf spines. The range of motion and neutral zone were determined in flexion-/extension, left/right axial rotation, and right/left lateral bending.

The range of motion decreased in the formalin fixed specimens by as much as 80%, and the neutral zone by as much as 96%. The results of this study therefore imply that, for biomechanical testing, formalin-fixed specimens are not representative of the in vivo conditions.  相似文献   


19.
Pedicle screw-based dynamic constructs either benefit from a dynamic (flexible) interconnecting rod or a dynamic (hinged) screw. Both types of systems have been reported in the literature. However, reports where the dynamic system is composed of two dynamic components, i.e. a dynamic (hinged) screw and a dynamic rod, are sparse. In this study, the biomechanical characteristics of a novel pedicle screw-based dynamic stabilisation system were investigated and compared with equivalent rigid and semi-rigid systems using in vitro testing and finite element modelling analysis. All stabilisation systems restored stability after decompression. A significant decrease in the range of motion was observed for the rigid system in all loadings. In the semi-rigid construct the range of motion was significantly less than the intact in extension, lateral bending and axial rotation loadings. There were no significant differences in motion between the intact spine and the spine treated with the dynamic system (P>0.05). The peak stress in screws was decreased when the stabilisation construct was equipped with dynamic rod and/or dynamic screws.  相似文献   

20.
A technique is described for measuring load magnitude and resultant load contact location in the facet joint in response to applied loads and moments, and the technique applied to the canine lumbar spine motion segment. Due to the cantilever beam geometry of the cranial articular process, facet joint loads result in surface strains on the lateral aspect of the cranial articular process. Strains were quantified by four strain gages cemented to the bony surface of the process. Strain measured at any one gage depended on the loading site on the articular surface of the caudal facet and on the magnitude of the facet load. Determination of facet loads during in vitro motion segment testing required calibration of the strains to known loads of various magnitudes applied to multiple sites on the caudal facet. The technique is described in detail, including placement of the strain gages. There is good repeatability of strains to applied facet loads and the strains appear independent of load distribution area. Error in the technique depends on the location of the applied facet loads, but is only significant in nonphysiologic locations. The technique was validated by two independent methods in axial torsion. Application of the technique to five in vitro canine L2-3 motion segments testing resulted in facet loads (in newtons, N) of 74+ / -23 N (mean + / -STD) in 2 newton-meter, Nm, extension, to unloaded in flexion. Lateral bending resulted in loads in the right facet of 40+ / -32 N for 1 Nm right lateral bending and 54+ / -29 N for 1 Nm left lateral bending. 4 Nm Torsion with and without 100 N axial compression resulted in facet loads of 92+ / -27 N and 69+ / -19 N, respectively. The technique is applicable to dynamic and in vivo studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号