共查询到20条相似文献,搜索用时 0 毫秒
1.
Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element 总被引:1,自引:0,他引:1
Shirazi-Adl A 《Journal of biomechanics》2006,39(2):267-275
Axial compression on the spine could reach large values especially in lifting tasks which also involve large rotations. Experimental and numerical investigations on the spinal multi motion segments in presence of physiological compression loads cannot adequately be carried out due to the structural instability and artefact loads. To circumvent these problems, a novel wrapping cable element is used in a nonlinear finite element model of the lumbosacral spine (L1-S1) to investigate the role of moderate to large compression loads on the lumbar stiffness in flexion and axial moments/rotations. The compression loads up to 2,700 N was applied with no instability or artefact loads. The lumbar stiffness substantially increased under compression force, flexion moment, and axial torque when applied alone. The presence of compression preloads significantly stiffened the load-displacement response under flexion and axial moments/rotations. This stiffening effect was much more pronounced under larger preloads and smaller moments/rotations. Compression preloads also increased intradiscal pressure, facet contact forces, and maximum disc fibre strain at different levels. Forces in posterior ligaments were, however, diminished with compression preload. The significant increase in spinal stiffness, hence, should be considered in biomechanical studies for accurate investigation of the load partitioning, system stability, and fixation systems/disc prostheses. 相似文献
2.
Muscle forces stabilize the spine and have a great influence on spinal loads. But little is known about their magnitude. In a former in vitro experiment, a good agreement with intradiscal pressure and fixator loads measured in vivo could be achieved for standing and extension of the lumbar spine. However, for flexion the agreement between in vitro and in vivo measurements was insufficient. In order to improve the determination of trunk muscle forces, a three-dimensional nonlinear finite element model of the lumbar spine with an internal fixation device was created and the same loads were applied as in a previous in vitro experiment. An extensive adaptation process of the model was performed for flexion and extension angles up to 20 degrees and -15 degrees, respectively. With this validated computer model intra-abdominal pressure, preload in the fixators, and a combination of hip- and lumbar flexion angle were varied until a good agreement between analytical and in vivo results was reached for both, intradiscal pressure and bending moments in the fixators. Finally, the fixators were removed and the muscle forces for the intact lumbar spine calculated. A good agreement with the in vivo results could only be achieved at a combination of hip- and lumbar flexion. For the intact spine, forces of 170, 100 and 600 N are predicted in the m. erector spinae for standing, 5 degrees extension and 30 degrees flexion, respectively. The force in the m. rectus abdominus for these body positions is less than 25 N. For more than 10 degrees extension the m. erector spinae is unloaded. The finite element method together with in vivo data allows the estimation of trunk muscle forces for different upper body positions in the sagittal plane. In our patients, flexion of the upper body was most likely a combination of hip- and lumbar spine bending. 相似文献
3.
Comparative strengths and structural properties of the upper and lower cervical spine in flexion and extension 总被引:3,自引:0,他引:3
Nightingale RW Winkelstein BA Knaub KE Richardson WJ Luck JF Myers BS 《Journal of biomechanics》2002,35(6):725-732
The purpose of this study is to test the hypothesis that the upper cervical spine is weaker than the lower cervical spine in pure flexion and extension bending, which may explain the propensity for upper cervical spine injuries in airbag deployments. An additional objective is to evaluate the relative strength and flexibility of the upper and lower cervical spine in an effort to better understand injury mechanisms, and to provide quantitative data on bending responses and failure modes. Pure moment flexibility and failure testing was conducted on 52 female spinal segments in a pure-moment test frame. The average moment at failure for the O-C2 segments was 23.7+/-3.4Nm for flexion and 43.3+/-9.3Nm for extension. The ligamentous upper cervical spine was significantly stronger in extension than in flexion (p=0.001). The upper cervical spine was significantly stronger than the lower cervical spine in extension. The relatively high strength of the upper cervical spine in tension and in extension is paradoxical given the large number of upper cervical spine injuries in out-of-position airbag deployments. This discrepancy is most likely due to load sharing by the active musculature. 相似文献
4.
Zeinali-Davarani S Shirazi-Adl A Dariush B Hemami H Parnianpour M 《Computer methods in biomechanics and biomedical engineering》2011,14(7):645-656
The effects of external resistance on the recruitment of trunk muscles in sagittal movements and the coactivation mechanism to maintain spinal stability were investigated using a simple computational model of iso-resistive spine sagittal movements. Neural excitation of muscles was attained based on inverse dynamics approach along with a stability-based optimisation. The trunk flexion and extension movements between 60° flexion and the upright posture against various resistance levels were simulated. Incorporation of the stability constraint in the optimisation algorithm required higher antagonistic activities for all resistance levels mostly close to the upright position. Extension movements showed higher coactivation with higher resistance, whereas flexion movements demonstrated lower coactivation indicating a greater stability demand in backward extension movements against higher resistance at the neighbourhood of the upright posture. Optimal extension profiles based on minimum jerk, work and power had distinct kinematics profiles which led to recruitment patterns with different timing and amplitude of activation. 相似文献
5.
Shahrokh Zeinali-Davarani Aboulfazl Shirazi-Adl Behzad Dariush Hooshang Hemami 《Computer methods in biomechanics and biomedical engineering》2013,16(7):645-656
The effects of external resistance on the recruitment of trunk muscles in sagittal movements and the coactivation mechanism to maintain spinal stability were investigated using a simple computational model of iso-resistive spine sagittal movements. Neural excitation of muscles was attained based on inverse dynamics approach along with a stability-based optimisation. The trunk flexion and extension movements between 60° flexion and the upright posture against various resistance levels were simulated. Incorporation of the stability constraint in the optimisation algorithm required higher antagonistic activities for all resistance levels mostly close to the upright position. Extension movements showed higher coactivation with higher resistance, whereas flexion movements demonstrated lower coactivation indicating a greater stability demand in backward extension movements against higher resistance at the neighbourhood of the upright posture. Optimal extension profiles based on minimum jerk, work and power had distinct kinematics profiles which led to recruitment patterns with different timing and amplitude of activation. 相似文献
6.
Longer static flexion duration elicits a neuromuscular disorder in the lumbar spine. 总被引:4,自引:0,他引:4
Rebecca LaBry Paola Sbriccoli Bing-He Zhou Moshe Solomonow 《Journal of applied physiology》2004,96(5):2005-2015
The objective of this study was to assess the impact of two sequential long, static, anterior lumbar flexions on the development of a neuromuscular disorder and to compare it with previously obtained data from a series of short static flexion periods of the same cumulative time (Sbriccoli P, Solomonow M, Zhou BH, Baratta RV, Lu Y, Zhu MP, and Burger EL, Muscle Nerve 29: 300-308, 2004). Static flexions with loads of 20, 40, and 60 N were applied to the lumbar spine over two 30-min periods with a 10-min rest in between. The reflex EMG activity from the multifidus muscles and supraspinous ligament displacement (creep) was recorded during the flexion periods. Creep and EMG were also monitored over 7 h of rest following the work-rest-work cycle. It was found that the creep that developed in the first 30-min flexion period did not recover completely during the following 10 min of rest, giving rise to a large cumulative creep at the end of the work-rest-work session. Spasms were frequently seen within the EMG during the static flexion. Initial and delayed hyperexcitabilities were observed in all of the preparations at any of the three loads explored during the 7-h rest period. ANOVA revealed a significant effect of time (P < 0.0001) on the postloading data. Larger loads elicited larger magnitudes of the initial and delayed hyperexcitabilities, yet were not statistically different. It was concluded that the 3:1 work-to-rest duration ratio resulted in a neuromuscular disorder, regardless of the load magnitude. The conclusions are reinforced in view of the results from a previous study using 60 min of flexion overall but at 1:1 work-to-rest ratio in which only the highest load elicited a delayed hyperexcitability (Sbriccoli et al., Muscle Nerve 29: 300-308, 2004). An optimal dose-to-duration ratio needs to be established to limit, attenuate, or prevent the adverse effects of static load on the lumbar spine while considering the loading duration as a major risk factor. 相似文献
7.
Prediction of antagonistic muscle forces using inverse dynamic optimization during flexion/extension of the knee. 总被引:1,自引:0,他引:1
This paper examined the feasibility of using different optimization criteria in inverse dynamic optimization to predict antagonistic muscle forces and joint reaction forces during isokinetic flexion/extension and isometric extension exercises of the knee. Both quadriceps and hamstrings muscle groups were included in this study. The knee joint motion included flexion/extension, varus/valgus, and internal/external rotations. Four linear, nonlinear, and physiological optimization criteria were utilized in the optimization procedure. All optimization criteria adopted in this paper were shown to be able to predict antagonistic muscle contraction during flexion and extension of the knee. The predicted muscle forces were compared in temporal patterns with EMG activities (averaged data measured from five subjects). Joint reaction forces were predicted to be similar using all optimization criteria. In comparison with previous studies, these results suggested that the kinematic information involved in the inverse dynamic optimization plays an important role in prediction of the recruitment of antagonistic muscles rather than the selection of a particular optimization criterion. Therefore, it might be concluded that a properly formulated inverse dynamic optimization procedure should describe the knee joint rotation in three orthogonal planes. 相似文献
8.
Proprioception plays an important role in appropriate sensation of spine position, movement, and stability. Previous research has demonstrated that position sense error in the lumbar spine is increased in flexed postures. This study investigated the change in position sense as a function of altered trunk flexion and moment loading independently. Reposition sense of lumbar angle in 17 subjects was assessed. Subjects were trained to assume specified lumbar angles using visual feedback. The ability of the subjects to reproduce this curvature without feedback was then assessed. This procedure was repeated for different torso flexion and moment loading conditions. These measurements demonstrated that position sense error increased significantly with the trunk flexion (40%, p < .05) but did not increase with moment load (p = .13). This increased error with flexion suggests a loss in the ability to appropriately sense and therefore control lumbar posture in flexed tasks. This loss in proprioceptive sense could lead to more variable lifting coordination and a loss in dynamic stability that could increase low back injury risk. This research suggests that it is advisable to avoid work in flexed postures. 相似文献
9.
Mechanical loading of the spine has been shown to be an important risk factor for the development of low-back pain. Inertial motion capture (IMC) systems might allow measuring lumbar moments in realistic working conditions, and thus support evaluation of measures to reduce mechanical loading. As the number of sensors limits applicability, the objective of this study was to investigate the effect of the number of sensors on estimates of L5S1 moments.Hand forces, ground reaction forces (GRF) and full-body kinematics were measured using a gold standard (GS) laboratory setup. In the ambulatory setup, hand forces were estimated based on the force plates measured GRF and body kinematics that were measured using (subsets of) an IMC system. Using top-down inverse dynamics, L5S1 flexion/extension moments were calculated.RMSerrors (Nm) were lowest (16.6) with the full set of 17 sensors and increased to 20.5, 22 and 30.6, for 8, 6 and 4 sensors. Absolute errors in peak moments (Nm) ranged from 17.7 to 16.4, 16.9 and 49.3 Nm, for IMC setup’s with 17, 8, 6 and 4 sensors, respectively. When horizontal GRF were neglected for 6 sensors, RMSerrors and peak moment errors decreased from 22 to 17.3 and from 16.9 to 13 Nm, respectively.In conclusion, while reasonable moment estimates can be obtained with 6 sensors, omitting the forearm sensors led to unacceptable errors. Furthermore, vertical GRF information is sufficient to estimate L5S1 moments in lifting. 相似文献
10.
11.
The association between low back pain and spine movement control suggests that it is important to reliably quantify movement behavior. One method to characterize spine movement behavior is to measure the local dynamic stability (LDS) of spine movement during a repetitive flexion task in which a participant is asked to touch multiple targets repetitively. Within the literature, it has been well established that an individual’s focus of attention (FOA) can modulate their neuromuscular control and affect task performance. The goal of this project was to examine the unknown effect of FOA on LDS measurements and timing error during a repetitive spine flexion task that is commonly used to assess movement control. Fourteen healthy adults (7 male) were instructed to touch two targets (shoulder height and knee height) to the beat of a metronome (4 s/cycle) for 35 consecutive cycles. They completed this task under internal (focus on trunk movement) and external (focus on targets) FOA conditions. Motion capture data of the trunk and sacrum were collected at 120 Hz. The lumbar spine angle was defined as the orientation of the trunk relative to the pelvis. The local divergence exponent (λmax) was calculated from the sum of squares of the 3-dimensional spine angle. Timing error was calculated as the time difference between target touches and metronome beats. Changing an individual’s FOA had no effect on λmax calculations or timing error. Although clear task instructions are important, it is not essential to control for FOA during this movement assessment protocol. 相似文献
12.
T. Oktenoglu A. Kiapour A.F. Ozer I. Lazoglu T. Kaner 《Computer methods in biomechanics and biomedical engineering》2013,16(11):1252-1261
Pedicle screw-based dynamic constructs either benefit from a dynamic (flexible) interconnecting rod or a dynamic (hinged) screw. Both types of systems have been reported in the literature. However, reports where the dynamic system is composed of two dynamic components, i.e. a dynamic (hinged) screw and a dynamic rod, are sparse. In this study, the biomechanical characteristics of a novel pedicle screw-based dynamic stabilisation system were investigated and compared with equivalent rigid and semi-rigid systems using in vitro testing and finite element modelling analysis. All stabilisation systems restored stability after decompression. A significant decrease in the range of motion was observed for the rigid system in all loadings. In the semi-rigid construct the range of motion was significantly less than the intact in extension, lateral bending and axial rotation loadings. There were no significant differences in motion between the intact spine and the spine treated with the dynamic system (P>0.05). The peak stress in screws was decreased when the stabilisation construct was equipped with dynamic rod and/or dynamic screws. 相似文献
13.
《Journal of Biomedical Engineering》1991,13(5):399-406
The purpose of this study is to provide a better understanding of the rheological properties of the lumbar spinal ligaments under subfailure physiological loads. Non-destructive tests including an hysteresis experiment, stress-relaxation and stepwise load-relaxation tests were used to investigate the time-dependent properties of the interspinous-supraspinous ligament complex. Using a reduced relaxation function, the viscoelastic behaviour over the experimental time-scale was described by a linear function of the logarithm of time. Internal damping of ligament substance dissipates about 36% of the mechanical energy applied during physiological loading. Local elastic stiffness is found to be two to four times global stiffness of the bone-ligament-bone complex. These physical parameters (stiffness, energy dissipation, hysteresis, relaxation, etc) can be used to improve computer models of the lumbar spinal column. 相似文献
14.
Experimental flexion/extension data corridors for validation of finite element models of the young, normal cervical spine 总被引:6,自引:0,他引:6
Finite element (FE) modeling is an important tool for studying the cervical spine in normal, injured and diseased conditions. To understand the role of mechanical changes on the spine as it goes from a normal to a diseased or injured state, experimental studies are needed to establish the external response of young, normal cervical spinal segments compared to injured or degenerated cervical spinal segments under physiologic loading. It is important to differentiate injured or degenerated specimens from young, normal specimens to provide accurate experimental results necessary for the validation of FE models. This study used seven young, normal fresh adult cadaver cervical spine segments C2-T1 ranging in age from 20 to 51 years. Prior to testing, the spines were graded in three ways: specimen quality, facet degeneration and disc degeneration. Spine segments were tested in flexion/extension, and the range of loads applied to the specimens was 0.33, 0.5, 1.0, 1.5 and 2.0 Nm. These loads resulted in rotations in the direction of loading as the primary response to loading. In general, results for young, normal specimens showed greater flexibility in flexion and less flexibility in extension than results previously reported in the literature. The flexion/extension curves are asymmetric with a greater magnitude in flexion than in extension. These experimental results will be used to validate FE models of young, normal cervical spines. 相似文献
15.
Mansour M Spiering S Lee C Dathe H Kalscheuer AK Kubein-Meesenburg D Nägerl H 《Journal of biomechanics》2004,37(4):583-592
The biomechanical properties of the lumbar spine have long been studied. However, despite its enormous importance, basic functional and morphological properties have been not well understood and require further experimental analysis since data concerning the spatial instantaneous segmental motions are hardly available. This study describes the theoretical background and the technical properties of an innovative method for tracking the instantaneous 3D motion of human spinal segments in vitro at high spatial resolution. This new acquisition system allows to scrutinise closely the location and alignment of the segmental instantaneous helical axis (IHA) and the respective screw pitch as functions of the absolute rotational angle. The required precision of the measuring device was attained (a) by six highly resolving linear inductive displacement sensors in a special spatially configuration (3-2-1), (b) by a method to apply torque and force independently of each other without counteraction, and (c) by suppression of vibrations. The validity and reliability of the experimental set-up and the numerical method of data analysis were tested by subjects of known mechanical properties. In vitro experiments with a human lumbar segment (L3/L4, autopsy material) demonstrated that (a) the IHA migrated during axial rotation from one segmental articulatio zygapophysialis to the other joint, (b) the IHA tilted medial-laterally, and (c) the pitch of the screw altered linearly as a function of the rotational angle. This phenomenon is traced back to the guidance of the articluationes zygapophysiales. The validation of the method allows to map segments of the entire vertebral column. The results can be used as benchmarks for future models of the human spine. 相似文献
16.
A polynomial modeling approach was developed to describe the contribution of individual passive spinal elements to the lumbar spinal motion segment flexion-extension motion. Flexion-extension moment-angle curves from porcine lumbar spines tested using a robotic testing system were described using sixth-order polynomials; the polynomials describing different dissection conditions were subtracted to describe the contribution of individual spinal elements to the motion segment flexion-extension properties. This modeling approach is a powerful and straightforward method for representing the mechanics of individual spinal tissues in biomechanical models and could easily be expanded to incorporate other features such as axial load. 相似文献
17.
Despite the findings that peak anterior shear load is highly correlated with low-back pain reporting, very little research has been conducted to determine how vertebral shear injury potential is influenced. The current study quantified the combined effects of vertebral joint compression and flexion/extension postural deviation from neutral on ultimate shear failure. Ninety-six porcine cervical specimens (48C3-C4, 48C5-C6) were tested. Each specimen was randomly assigned to one of twelve combinations of compressive force (15%, 30%, 45%, or 60% of predicted compressive failure force) and flexion/extension postural deviation (extended, neutral, or flexed). Vertebral joint shear failure was induced by applying posterior shear displacement of the caudal vertebra at a constant rate of 0.15 mm/s. Throughout shear failure tests, vertebral joint kinematics were measured using an optoelectronic camera and a series of infrared light emitting diodes while shear force was measured from load cells rigidly interfaced in series with linear actuators that applied the shear displacement. Measurements of shear stiffness, ultimate force, displacement, and energy stored were made from the force-displacement data. Compressive force and postural deviation demonstrated main effects without a statistically significant interaction for any of the measurements. Shear failure force increased by 11.1% for each 15% increment in compressive force (p<0.05). Postural deviation from neutral impacted ultimate shear failure force by a 12.8% increase with extension (p<0.05) and a 13.2% decrease with flexion (p<0.05). Displacement at ultimate failure was not significantly altered by either compressive force or postural deviation. These results demonstrate that shear failure force may be governed by changes in facet articulation, either by postural deviation or by reducing vertebral joint height through compression that alter the moment arm length between the center of facet contact pressure and the pars interarticularis location. However, objective evidence of this alteration currently does not exist. Both compression and flexion/extension postural deviation should be equally considered while assessing shear injury potential. 相似文献
18.
The ultimate strength in flexion of 16 lumbar functional spinal units (FSU) was determined. The specimens were exposed to a combined static load of bending and shearing in the sagittal plane until overt rupture occurred (simulated flexion-distraction injuries). The biomechanical response of the FSU was measured with a force and moment platform. Mechanical displacement gauges were used to measure vertical displacements (flexion angulation) of the specimens. Photographs were taken after each loading step for determination of horizontal displacements and the centre of rotation. The lumbar FSU could resist a combination of bending moment and shear force of 156 Nm and 620 N respectively, before complete disruption occurred. The tension force acting on the posterior structures was 2.8 kN. The flexion angulation just before failure was 20 degrees and the anterior horizontal displacement between the upper and lower vertebrae was 9 mm. The centre of rotation was located in the posterior part of the lower vertebral body. The bone mineral content in the vertebrae appeared to be a good predictor of ultimate strength of the lumbar FSU. Knowledge of the biomechanical response of the lumbar spine under different static traumatic loads is a first step to better understand the injury mechanisms of the spine in traffic accidents. 相似文献
19.
Okushima Y Yamazaki N Matsumoto M Chiba K Nagura T Toyama Y 《Journal of applied biomechanics》2006,22(2):83-92
A biomechanical study of lateral translation in lumbar spine with human cadavers was performed in order to explore the direction of the force increasing lateral translation and the contributions of discs and facet joints to lateral translation. Whole lumbar spines from 12 fresh cadavers were attached to a specially designed loading apparatus whose five cables simulated the muscles of the trunk without restricting natural movement. Three-dimensional positions of each vertebra were recorded with position-sensitive detectors. Force in the anterolateral direction increased the lateral translation more than force in the posterolateral direction. Lateral translation was increased to a significantly greater extent when the facet joints were removed than when the discs were removed at L4-5 at the levels of shear loading applied in this study. 相似文献
20.
Previous curved muscle models have typically examined their robustness only under simple, single-plane static exertions. In addition, the empirical validation of curved muscle models through an entire lumbar spine has not been fully realized. The objective of this study was to empirically validate a personalized biologically-assisted curved muscle model during complex dynamic exertions. Twelve subjects performed a variety of complex lifting tasks as a function of load weight, load origin, and load height. Both a personalized curved muscle model as well as a straight-line muscle model were used to evaluate the model’s fidelity and prediction of three-dimensional spine tissue loads under different lifting conditions. The curved muscle model showed better model performance and different spinal loading patterns through an entire lumbar spine compared to the straight-line muscle model. The curved muscle model generally showed good fidelity regardless of lifting condition. The majority of the 600 lifting tasks resulted in a coefficient of determination (R2) greater than 0.8 with an average of 0.83, and the average absolute error less than 15% between measured and predicted dynamic spinal moments. As expected, increased load and asymmetry were generally found to significantly increase spinal loads, demonstrating the ability of the model to differentiate between experimental conditions. A curved muscle model would be useful to estimate precise spine tissue loads under realistic circumstances. This precise assessment tool could aid in understanding biomechanical causal pathways for low back pain. 相似文献