首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The axenic shoot culture of Lippia dulcis Trev., Verbenaceae, was established on hormone-free Murashige-Skoog solid medium containing 3% sucrose. Shoots were cultured in various liquid or solid media. Woody Plant liquid medium was best for shoot multiplication, but the production of hernandulcin was relatively low. The highest hernandulcin content (2.9% dry wt) was obtained after 28 days of culture on Murashige-Skoog solid medium containing 2% sucrose. The addition of chitosan to the culture media enhanced the growth of shoots as well as the production of hernandulcin, especially with the liquid medium.Abbreviations MS(2%) Murashige-Skoog medium containing 2 % sucrose - MS(3%) Murashige-Skoog medium containing 3 % sucrose - 1/2MS half strength Murashige-Skoog medium containing 2% sucrose - B5 Gamborg B5 medium containing 2% sucrose - WP Woody Plant medium containing 2% sucrose  相似文献   

2.
It has been shown that salicylic acid (SA) acts as an endogenous signal molecule responsible for inducing abiotic stress tolerance in plants. The effect of SA and sodium chloride (NaCl) on growth, metabolite accumulation, oxidative stress and enzymatic and non-enzymatic antioxidant responses on common bean plants (Phaseolus vulgaris, cv. F-15) was studied. Results revealed that either SA or NaCl decrease, shoot, root and total plant dry weights. SA treatments decreased the contents of proline, and reduced forms of ascorbate and glutathione, however, the content of soluble sugars (TSS), thiobarbituric acid-reactive substances (TBARs) and oxidized ascorbate remained unaffected. On the other hand, salinity significantly reduced the levels of endogenous SA but increased the content of proline, soluble sugars, TBARs, ascorbate and glutathione, as well as all increasing the levels of antioxidant enzyme activities assayed, except CAT. The application of SA improved the response of common bean plants to salinity by increasing plant dry weight and decreasing the content of organic solutes (proline and TSS) and damage to the membrane (TBARs). Moreover, SA application under saline conditions decreased the levels of antioxidant enzyme activities POX, APX and MDHAR which could indicate successful acclimatization of these plants to saline conditions.  相似文献   

3.
Summary Agitated layers of liquid medium were created on platform shakers in jars with 25–30 ml of medium (similar to conventional agar culture) rotating at 90 rpm. Thin films were scaled up in larger rectangular vessels on tilted shelves that periodically rock. In jars of liquid medium with a density of 180 explants per liter, multiplication rates of Hota tokudama var. ‘Newberry Gold’ were optimal with a media sucrose concentration of 5% [both with and without 1 μM benzyladenine (BA)]. Endogenous levels of soluble sugars were directly related to the concentration of sucrose in the medium. Three Hosta cultivars (‘Striptease’, ‘Minuteman’, and ‘Stiletto’) with plant densities of 40–200 explants per liter of medium were tested in larger, agitated, thin-film vessels in media with 5% sucrose and directly compared to agar medium. Higher rates of multiplication were observed in liquid than agar with the magnitude of the difference dependent on explant density. Pooled results for the three varieties with 200 explants per liter showed multiplication rates of 1.7x and 2.3x for agar and thin-film liquid, respectively. At 40 explants per liter, the multiplication rate was increased to 2.1x for agar and 3.4x for thin-film liquid. Sugar uptake was greater in liquid than agar and was greater in the higher densities, with the magnitude of the effect dependent on plant variety. Increased vessel size in the liquid, thin-film system and greater sugar uptake allowed more, larger plants to be harvested. Alocasia macrorrhizos was cultured in growth medium containing 1μM BA and 5% sucrose with plant densities in the range of 33–330 explants per liter. Dry weight and multiplication rate were greater in the liquid system than agar with the magnitude of the difference dependent on plant density. With approximately 165 explants per liter, and greater at the initiation of culture, plant density limited growth in both agar and liquid thin-film systems. In a multiplication medium (3 μM BA and 3 μM ancymidol) plant size was reduced by 50% and 60% (fresh weight) in liquid and agar, respectively. Initial density in the range of 165–330 explants per liter did not limit growth with the smaller plants in liquid or semisolid multiplication medium. Sugar uptake was greater in liquid than agar. While ample sugar was present in media for growth at any density on agar, sugar depletion was limiting growth at highest densities with the larger plants in liquid growth medium. In semisolid agar medium, sugar uptake by plants was more rapid than diffusion across the agar medium, resulting in non-equilibrium conditions following the culture cycle. In agitated, liquid medium, a greater transfer of sugars to plant tissue was related to accelerated growth.  相似文献   

4.
Reproducible protocol for regeneration of complete plantlets from ‘Bounty’ strawberry (Fragaria ananassa Duch.), using a combination of gelled medium and bioreactor system, has been standardized. Sepals, leaf discs, and petiole halves produced multiple buds and shoots when cultured on semi solid‐gelled medium containing 4 μM thidiazuron (TDZ) for 4 wk followed by transferring in liquid medium containing 2 μM TDZ in a bioreactor system and cultured for another 4 wk. TDZ induced shoot proliferation at 0.1 μM in the bioreactor system but inhibited shoot elongation. TDZ‐induced shoots were elongated and rooted in vitro on gelled medium containing 2 μM zeatin. Such bioreactor‐derived tissue culture (BC) plantlets obtained from sepal explants were grown ex vitro and compared with those propagated by tissue culture on gelled medium (GC) and by conventional runner cuttings (RC), for growth, morphology, anthocyanin content, and antioxidant activity after three growth seasons. The BC and GC plants produced more crowns, runners, leaves, and berries than the RC plants although berry weight per plant did not differ significantly. BC and GC plants produced berries with more anthocyanin contents and antioxidant activities than those produced by the RC plants. However, intersimple sequence repeat (ISSR) marker assay produced a homogenous amplification profile in the tissue culture and donor control plants confirming the clonal fidelity of micropropagated plants. In vitro culture on TDZ and zeatin‐containing nutrient media apparently induced the juvenile branching characteristics that favored enhanced vegetative growth with more crown, runners, leaf, and berry production.  相似文献   

5.
The Agrobacterium T-DNA oncogene 6b induces tumors and modifies the growth of transgenic plants by an unknown mechanism. We have investigated changes in roots of tobacco seedlings that express a dexamethasone-inducible T-6b (dex-T-6b) gene. On induction medium with sucrose, intact or isolated dex-T-6b roots accumulated sucrose, glucose, and fructose and changed their growth, contrary to noninduced roots. Root fragments bridging agar blocks with or without sucrose accumulated sugars at the site of sucrose uptake, resulting in local growth. Induced root fragments showed enhanced uptake of 14C-labeled sucrose, glucose, and fructose. When seedlings were placed on sucrose-free induction medium, sugar levels strongly decreased in roots and increased in cotyledons. Collectively, these results demonstrate that 6b stimulates sugar uptake and retention with drastic effects on growth. Apart from sugars, phenolic compounds also have been found to accumulate in 6b tissues and have been proposed earlier to play a role in 6b-induced growth. Induced dex-T-6b roots accumulated high levels of 5-caffeoylquinic acid (or chlorogenic acid [CGA]), but only under conditions where endogenous sugars increased. Inhibition of phenylalanine ammonia-lyase with the competitive inhibitor 2-aminoindan-2-phosphonic acid (AIP) abolished CGA accumulation without modifying sugar accumulation or affecting the 6b phenotype. We conclude that the absorption, retention, and abnormal accumulation of sugars are essential factors in 6b-induced growth changes, whereas phenylpropanoids only marginally contribute to the 6b seedling phenotype.  相似文献   

6.
A rapid micropropagation system for Scopolia parviflora Nakai (Solanaceae), a rare medicinal plant native to Korea, was established using rhizome cultures. Shoots that originated from adventitious shoots of the rhizome were multiplied when the rhizomes were cultured on half-strength B5 liquid medium supplemented with various growth regulators. Optimum shoot multiplication was observed in half-strength B5 medium containing 3% (w/v) sucrose and 5.77 M gibberellic acid (GA3). Each rhizome gave rise to an average of 12 shoots. Shoot elongation and root induction from multiple shoots occurred on growth regulator-free half-strength B5 solid medium. Healthy plantlets were transferred to a peat moss:vermiculite mixture for acclimatization, which was successful. The concentrations of tropane alkaloids, hyoscyamine and scopolamine were determined in different tissues of native growing plants, in vitro-propagated plants and acclimatized plants by high-performance liquid chromatography. The analysis revealed that the levels of hyoscyamine and scopolamine were higher in in vitro-propagated plants than in the native growing plants. When the rhizome was cut into segments and transferred to optimal culture conditions for multiple shoot propagation, only 12 weeks were required to produce a mature plant. We conclude that in vitro propagation techniques through rhizome cultures provide an efficient and rapid method for shoot propagation of S. parviflora.Abbreviations BA Benzyladenine - 2,4-D 2,4-Dichlorophenoxyacetic acid - GA3 Gibberellic acid - HPLC High-performance liquid chromatography - IBA Indole-3-butyric acid - NAA -Naphthaleneacetic acid  相似文献   

7.
Artemisia judaica L., an Egyptian medicinal plant used in the treatment of gastrointestinal disorders, was mass-propagated and grown using solid, paper-bridge-support liquid, liquid-flask and bioreactor cultures. The liquid-flask culture using 50 ml MS liquid medium in 250 ml flask yielded significantly greater shoot proliferation than either solid cultures or paper-bridge-support liquid cultures. Increasing flask capacity from 100 to 500 ml improved shoot proliferation and growth. Mass-propagation efficiencies of various bioreactor systems, viz. temporary immersion reactors and bubble column reactors, were also compared. The temporary immersion bioreactor was found to have significant advantages for A. judaica shoot proliferation. The shoot cultures from the temporary immersion reactor formed complete plantlets when subcultured onto a medium containing 1 micromoll(-1) indole-3-butyric acid (IBA), and mature plants were established, acclimatized and thrived in standard greenhouse conditions. Assays of antioxidant activity and total flavonoid content of in vitro and in vivo grown tissues were evaluated as gross parameters of medicinal efficacy. Significantly higher antioxidant activity and flavonoid contents were observed in the tissues of mature greenhouse-grown plants. The efficient in vitro production systems developed in this study provided sterile, consistent tissues for investigation of bioactivity and germplasm conservation of A. judaica.  相似文献   

8.
The effect of nutrients and growth conditions on the accumulation of glutamyl endopeptidase in the culture liquid of Bacillus intermedius 3-19 was studied. Glucose and other readily metabolizable carbon sources were found to suppress the production of the enzyme, while inorganic phosphate and ammonium cations enhanced it. Protein substrates, such as casein, gelatin, and hemoglobin, did not affect enzyme production. Some bivalent cations (Ca2+, Mg2+, Co2+) increased the production of glutamyl endopeptidase, but others (Zn2+, Fe2+, Cu2+) acted in the opposite way. The rate of enzyme accumulation in the culture liquid increased as the growth rate of the bacterium decreased, so that the maximum enzyme activity was observed in the stationary growth phase. Based on the results of this investigation, an optimal medium for the maximum production of glutamyl endopeptidase by B. intermedius 3-19 was elaborated.  相似文献   

9.
Five different liquid medium culture methods for meristem propagation of bananas were investigated and compared with solid medium culture. Treatments studied were: gelled culture medium (treatment 1); liquid medium with immersion of the plants (treatment 2); liquid medium with cellulose culture support (treatment 3); liquid medium with partial immersion of the plants (treatment 4); liquid medium aerated by bubbling (treatment 5); liquid medium with temporary immersion of the explants for 20 min every 2h (treatment 6). After 20 days of culture, three culture groups with statistically different multiplication rates were observed:
  • -shoots in simple liquid medium and those on cellulose substrate proliferated little or not at all,
  • -shoots on gelled medium, those subjected to partial immersion and those in aerated medium displayed multiplication rates of 2.2 to 3.1, and
  • -the highest multiplication rate (>5) was observed in explants subjected to temporary immersion in the medium.
  • Two groups of treatments differed in the accumulation of dry matter: the smallest weight (around 0.5 g) was observed in treatment 1, 2, 3 and 4, and accumulation was 2 to 5 times greater in the explants in aerated liquid medium and those subjected to temporary immersion. The highest multiplication rates and weight gains were observed in aerated treatments (treatments 4 and 5). Shoots in liquid medium continuously aerated by bubbling displayed hyperhydricity of the outer leaf sheaths. This was not observed with temporary immersion of explants.  相似文献   

    10.
    11.
    In this work, the growth of the yeast Candida utilis on different solid substrate (wheat bran) and supports (sugarcane bagasse and Amberlite resin) imbibed with a liquid culture medium was studied. Growth was followed by sugars consumption, carbon dioxide production rate (CDPR) and cell count. The results showed the ability of the yeast to grow on the three solid media with fairly good viability and total dextrose consumption in the case of sugarcane bagasse and Amberlite, and partial consumption of wheat bran sugars. After two or three days of culture, a five hundred fold increase in cell population was observed.  相似文献   

    12.
    Stem explants of Solanum hainanense Hance plantlets were cultured on Murashige and Skoog solid medium, containing 3% (w/v) sucrose, supplemented with 0.1 mg/L benzylaminopurine (BAP) and 1.0 mg/L 2, 4-dichlorophenoxyacetic acid (2, 4-D) for callus production. To establish the cell suspension culture, 3 g of fresh callus were cultured in 50 mL of the same medium, but without a solid agent, at an agitation speed of 120 rpm. Every 15 mL of culture was sub-cultured in fresh MS liquid medium for maintenance. The cell biomass of S. hainanense reached a maximum value of 18.47 g after 4 weeks of culture on the same MS medium, but with the sucrose content increased to 4%, at an agitation speed of 150 rpm, with 20 mL of inoculum. Analysis via high performance liquid chromatography (HPLC) showed that the solasodine content in the cell suspension after 4-weeks old (121.01 mg/g) was higher than that of in planta 1-year old roots (20.52 mg/g) by approximately 6-fold.  相似文献   

    13.
    The influence of Glomus etunicatum colonization on plant growth and drought tolerance of 3-month-old Pistacia vera seedlings in potted culture was studied in two different water treatments. The arbuscular mycorrhiza (AM) inoculation and plant growth (including plant shoot and root weight, leaf area, and total chlorophyll) were higher for well-watered than for water-stressed plants. The growth of AM-treated seedlings was higher than non-AM-treatment regardless of water status. P, K, Zn and Cu contents in AM-treated shoots were greater than those in non-AM shoots under well-watered conditions and drought stress. N and Ca content were higher under drought stress, while AM symbiosis did not affect the Mg content. The contents of soluble sugars, proteins, flavonoid and proline were higher in mycorrhizal than non-mycorrhizal-treated plants under the whole water regime. AM colonization increased the activities of peroxidase enzyme in treatments, but did not affect the catalase activity in shoots and roots under well-watered conditions and drought stress. We conclude that AM colonization improved the drought tolerance of P. vera seedlings by increasing the accumulation of osmotic adjustment compounds, nutritional and antioxidant enzyme activity. It appears that AM formation enhanced the drought tolerance of pistachio plants, which increased host biomass and plant growth.  相似文献   

    14.
    The influence of the arbuscular mycorrhizal (AM) fungus, Glomus mosseae, on characteristics of growth, photosynthetic pigments, osmotic adjustment, membrane lipid peroxidation and activity of antioxidant enzymes in leaves of tomato (Lycopersicon esculentum cv Zhongzha105) plants was studied in pot culture under low temperature stress. The tomato plants were placed in a sand and soil mixture at 25°C for 6 weeks, and then subjected to 8°C for 1 week. AM symbiosis decreased malondialdehyde (MDA) content in leaves. The contents of photosynthetic pigments, sugars and soluble protein in leaves were higher, but leaf proline content was lower in mycorrhizal than non-mycorrhizal plants. AM colonization increased the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX) in leaves. The results indicate that the AM fungus is capable of alleviating the damage caused by low temperature stress on tomato plants by reducing membrane lipid peroxidation and increasing the photosynthetic pigments, accumulation of osmotic adjustment compounds, and antioxidant enzyme activity. Consequently, arbuscular mycorrhiza formation highly enhanced the cold tolerance of tomato plant, which increased host biomass and promoted plant growth.  相似文献   

    15.
    A liquid meristematic root primordia culture (RPC) of Solanum lycopersicoides Dun. based on persistent rhizogenesis in a modified Murashige and Skoog (1962) medium supplemented with NAA (15 mg·l−1) or 2,4-D (1 mg·l−1) was described. The meristematic clumps (2–3 mm in diameter) originating from NAA supplemented medium were capable of regenerating plants through the callus stage (up to 70 %). Efficient direct plant regeneration (up to 21 %) was possible from numerous single globular-shaped root primordia (RP) structures liberated from the parental aggregates in 2,4-D supplemented proliferation medium without NH4NO3 and with a 2.5 fold increase in KNO3. The RP converted into plantlets (artificial seedlings) on solid or liquid media without growth growth regulators through the unipolar followed by the mace-shaped bipolar structure stages. The use of apical shoot bud, root apices or root segments as a primary explants brought about RPC induction and plant regeneration. The plants derived from 2 years old culture were phenotypically identical to their parental S. lycopersicoides plants and possessed the same ploidy.  相似文献   

    16.
    Spontaneous shoot regeneration was observed from Agrobacterium rhizogenes-induced hairy roots of Plumbago indica when these were incubated in liquid MS medium for a period of 3 weeks under continuous light. Insertion of the rolB gene in putative transformed plants was confirmed by PCR and sequencing. Transformed plants grown for a period of 1 week on solid MS medium containing 0.5 mg l−1 6-benzyladenine and then transplanted to growth regulator-free medium showed better overall growth than control plants. Transformed plants had a higher root bio-biomass and an increased plumbagin content relative to non-transformed plants.  相似文献   

    17.
    Protocorm-like bodies (PLBs) were induced from shoot tips of Grammatophyllum speciosum, a Thai orchid. The highest frequency of PLBs (93%) were observed on explants incubated on 1/2-Murashige and Skoog (MS) liquid medium containing 2% (w/v) sucrose without any plant growth regulators (PGRs). Tests with different carbon sources compared to sucrose revealed that maltose promoted the highest relative growth of G. speciosum PLBs (7-fold increase), while trehalose and sucrose yielded 5-fold and 4-fold increases, respectively. In 1/2 MS liquid medium, addition of 15 mg/l of chitosan promoted a 7-fold increase in PLB growth while 25 mg/l promoted a 4-fold increase. However, the relative growth rate in solid culture was significantly lower than that in liquid culture. In addition, chitosan supplementation in solid medium promoted shoot formation but not rooting. Plantlet regeneration was induced using a combination of NAA and BA supplementation in 1/2 MS solid medium with optimum induction shoot and root formation at 2.0 mg/l NAA and 1.0 mg/l BA. Using this protocol, approximately 8 months was required to obtain a hundred plantlets from one shoot tip. The plantlets showed no changes in ploidy when tested by flow cytometry.  相似文献   

    18.
    Petiole explants of centella plants (Centella asiatica L. Urban) were cultured on Murashige and Skoog (MS) solid medium containing 20 g/L sucrose, supplemented with 1.0 mg/L benzylaminopurine and 1.0 mg/L naphthaleneacetic acid for callus production. To establish a cell suspension culture, 2 g of fresh callus was cultured in 50 mL of the same medium but without solid agent at a 100 rpm agitation speed. Every 2 g of culture was subcultured in fresh MS liquid medium for maintenance. After 24 days of culture at a 120 rpm agitation speed, the centella cell biomass reached a maximum of 9.03 g/50 mL on the same MS medium with 30 g/L sucrose and a 3 g inoculum size. A high performance liquid chromatography analysis showed that asiaticoside content in 24-day old suspension cultured cells (45.35 mg/g dry weight) was significantly higher (4.5 fold) than that of in planta leaves (10.55 mg/g dry weight).  相似文献   

    19.
    Detached chickpea inflorescences bearing pods at 20 days after flowering (DAF) were cultured for 5 days in complete liquid medium supplemented separately with asparate, myo-inositol, alpha-ketoglutarate and phytic acid. Effect of these metabolites on sugar interconvestion and starch and protein accumulation in developing pods was studied. Substituting asparate (62.5 mM) for glutamine in culture medium decreased relative proportion of sucrose in all pod tissues but increased the level of sugars, starch and protein in pod wall and cotyledons. In cotyledons, whereas myo-inositol (75 mM) reduced the accumulation of starch without affecting protein level, alpha-ketoglutarate (44 mM) increased both starch and protein accumulation. Both myo-inositol and alpha-ketoglutarate increased relative proportion of sucrose in cotyledons. Phytic acid (1 mM) decreased in cotyledons 14C incorporation from glucose into EtOH extract (principally constituted by sugars), amino acids and proteins but increased the same into starch. In cotyledons, phytic acid also increased 14C incorporation from glutamate into amino acids but this increase was negatively correlated with protein synthesis. Phytic acid decreased the relative distribution of 14C from glucose and glutamate into sucrose from pod wall but enhanced the same into EtOH extract from embryo. Based on the results, it is suggested that mode of metabolic response to exogenously supplied metabolites widely differs in pod tissues of chickpea.  相似文献   

    20.
    In order to discriminate between the ionic and osmotic components of salt stress, sugarcane (Saccharum officinarum L. cv. Co 86032) plants were treated with salt-NaCl or polyethylene glycol-PEG 8000 solutions (?0.7 MPa) for 15 days. Both the salt and PEG treatments significantly reduced leaf width, number of green leaves, and chlorophyll stability index. Osmotic adjustment (OA) indicated that both the stresses led to significant accumulation of osmolytes and sugars. Salt stressed plants appeared to use salt as an osmoticum while the PEG stressed plants showed an accumulation of sugars. Oxidative damage to membranes was not severe in plants subjected to salt or PEG stress. The salt stressed plants showed an increase in the activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX), while PEG stress led to an increase in SOD but not APX activity as compared to the control. Thus, results indicate that the iso-osmotic salt or PEG stress led to differential responses in plants especially with respect to growth, OA, and antioxidant enzyme activities.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号