首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the solution conformation of the functionally relevant C-terminal extremes of alpha- and beta-tubulin, employing the model recombinant peptides RL52alpha3 and RL33beta6, which correspond to the amino acid sequences 404-451(end) and 394-445(end) of the main vertebrate isotypes of alpha- and beta-tubulin, respectively, and synthetic peptides with the alpha-tubulin(430-443) and beta-tubulin(412-431) internal sequences. Alpha(404-451) and beta(394-445) are monomeric in neutral aqueous solution (as indicated by sedimentation equilibrium), and have circular dichroism (CD) spectra characteristic of nearly disordered conformation, consistent with low scores in peptide helicity prediction. Limited proteolysis of beta(394-445) with subtilisin, instead of giving extensive degradation, resulted in main cleavages at positions Thr409-Glu410 and Tyr422-Gln423-Gln424, defining the proteolysis resistant segment 410-422, which corresponds to the central part of the predicted beta-tubulin C-terminal helix. Both recombinant peptides inhibited microtubule assembly, probably due to sequestration of the microtubule stabilizing associated proteins. Trifluoroethanol (TFE)-induced markedly helical CD spectra in alpha(404-451) and beta(394-445). A substantial part of the helicity of beta(394-445) was found to be in the CD spectrum of the shorter peptide beta(412-431) with TFE. Two-dimensional 1H-NMR parameters (nonsequential nuclear Overhauser effects (NOE) and conformational C alphaH shifts) in 30% TFE permitted to conclude that about 25% of alpha(404-451) and 40% of beta(394-451) form well-defined helices encompassing residues 418-432 and 408-431, respectively, flanked by disordered N- and C-segments. The side chains of beta(394-451) residues Leu418, Val419, Ser420, Tyr422, Tyr425, and Gln426 are well defined in structure calculations from the NOE distance constraints. The apolar faces of the helix in both alpha and beta chains share a characteristic sequence of conserved residues Ala,Met(+4),Leu(+7),Tyr(+11). The helical segment of alpha(404-451) is the same as that described in the electron crystallographic model structure of alphabeta-tubulin, while in beta(394-451) it extends for nine residues more, supporting the possibility of a functional coil --> helix transition at the C-terminus of beta-tubulin. These peptides may be employed to construct model complexes with microtubule associated protein binding sites.  相似文献   

2.
Limited subtilisin digestion of the tubulin alpha, beta heterodimer has been used in this work to reduce the total number of tubulin isotypes from 20 for native to 9 for subtilisin-cleaved tubulin. This indicates that the major part of tubulin heterogeneity is located at the C-terminus of the molecule. The C-terminal peptides of both alpha and beta subunits of tubulin were purified by anion-exchange HPLC. Combined use of Edman degradation chemistry and mass spectrometry on the isolated peptides shows that subtilisin cleavage occurs at position Asp-438 and His-406 of alpha and Gln-433 and His-396 of beta tubulin chains. Quantitative analysis of our data show that cleavage at positions His-406 (alpha) and His-396 (beta) occurs with a low efficiency and indicates that the major isotypes of pig brain tubulin are modified by sequential attachment of 1 to 5 glutamic acid residues at positions Glu-445 or -435 of alpha and beta tubulin, respectively.  相似文献   

3.
The C-terminal domain of the heterotrimeric G protein a-subunits plays a key role in selective activation of G proteins by their cognate receptors. Several C-terminal fragments of Galpha(s) (from 11 to 21 residues) were recently synthesized. The ability of these peptides to stimulate agonist binding was found to be related to their size. Galpha(s)(380-394) is a 15-mer peptide of intermediate length among those synthesized and tested that displays a biological activity surprisingly weak compared with that of the corresponding 21-mer peptide, shown to be the most active. In the present investigation, Galpha(s)(380-394) was subjected to a conformational NMR analysis in a fluorinated isotropic environment. An NMR structure, calculated on the basis of the data derived from conventional 1D and 2D homonuclear experiments, shows that the C-terminal residues of Galpha(s)(380-394) are involved in a helical arrangement whose length is comparable to that of the most active 21 -mer peptide. A comparative structural refinement of the NMR structures of Galpha(s)(380-394) and Galpha(s)(374-394)C379A was performed using molecular dynamics calculations. The results give structural elements to interpret the role played by both the backbone conformation and the side chain arrangement in determining the activity of the G protein C-terminal fragments. The orientation of the side chains allows the peptides to assume contacts crucial for the G protein/receptor interaction. In the 15-mer peptide the lack as well as the disorder of some N-terminal residues could explain the low biological activity observed.  相似文献   

4.
Differential scanning calorimetry (DSC) measurements have been carried out simultaneously with small- and wide-angle X-ray scattering recordings on liposomal dispersions of stearoyl-oleoyl-phosphatidylethanolamine (PE) in a temperature range from 20 to 80 degrees C. The main transition temperature, T(m), was determined at 30.9 degrees C with an enthalpy of 28.5 kJ/mol and the lamellar-to-inverse hexagonal phase transition temperature, T(hex), at 61.6 degrees C with an enthalpy of 3.8 kJ/mol. Additionally highly resolved small angle X-ray diffraction experiments performed at equilibrium conditions allowed a reliable decomposition of the lattice spacings into hydrophobic and hydrophilic structure elements as well as the determination of the lipid interface area of the lamellar gel-phase (L(beta)), the fluid lamellar phase (L(alpha)) and of the inverse hexagonal phase (H(II)). The rearrangement of the lipid matrix and the coincident change of free water per lipid is illustrated for both transitions. Last, possible transition mechanisms are discussed on a molecular level.  相似文献   

5.
Pepsin contains, in a single chain, two conformationally homologous lobes that are thought to have been evolutionarily derived by gene duplication and fusion. We have demonstrated that the individual recombinant lobes are capable of independent folding and reconstitution into a two-chain pepsin or a two-chain pepsinogen (Lin, X., et al., 1992, J. Biol. Chem. 267, 17257-17263). Pepsin spontaneously inactivates in neutral or alkaline solutions. We have shown in this study that the enzymic activity of the alkaline-inactivated pepsin was regenerated by the addition of the recombinant N-terminal lobe but not by the C-terminal lobe. These results indicate that alkaline inactivation of pepsin is due to a selective denaturation of its N-terminal lobe. A complex between recombinant N-terminal lobe of pepsinogen and alkaline-denatured pepsin has been isolated. This complex is structurally similar to a two-chain pepsinogen, but it contains an extension of a denatured pepsin N-terminal lobe. Acidification of the complex is accompanied by a cleavage in the pro region and proteolysis of the denatured N-terminal lobe. The structural components that are responsible for the alkaline instability of the N-terminal lobe are likely to be carboxyl groups with abnormally high pKa values. The electrostatic potentials of 23 net carboxyl groups in the N-terminal domain (as compared to 19 in the C-terminal domain) of pepsin were calculated based on the energetics of interacting charges in the tertiary structure of the domain. The groups most probably causing the alkaline denaturation are Asp11, Asp159, Glu4, Glu13, and Asp118.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
C F Bucci  E Bucci 《Biochemistry》1975,14(20):4451-4458
The beta subunits of hemoglobin upon alkylation of the cysteinyl residues with iodoacetamide showed a sedimentation velocity with an S20w, near 1.8 as for monomeric subunits. They reacted with alpha chains to give a tetrameric hemoglobin with a sedimentation constant near 4.4. Their CD spectrum was indistinguishable from that of untreated beta chains below 270 nm, otherwise they showed some deviation that became pronounced in the Soret region, where the optical activity of the alkylated subunits was definitely lower than that of the native subunits. Upon removal of the heme the apo-beta subunits showed a decreased optical activity in the far-uv region of the spectrum indicating a substantial loss of helical content. Their sedimentation behavior was consistent with the presence of large aggregates, which dissociates into monomers upon reconstitution with cyanoheme. The apo-beta subunits could be renatured from 6 M guanidine hydrochloride. They showed a stoichiometric reaction with heme in the molar ratio 1:1. Upon reconstitution with the heme their optical activity became similar to that of the native beta chains in the far-uv region of the spectrum, but remained lower in the near-uv and Soret regions. After acylation of the lysyl residues with citraconic anhydride the apo-beta subunits were digested with trypsin and the arginyl-COOH peptides beta(1-30), beta(31-40), beta(41-104), and beta(105-146) were separated by gel chromatography. With the exception of the peptide beta/105-146), which was insoluble at neutral pH, the sedimentation behavior of the other peptides showed the presence of small polymers. The sedimentation behavior of the peptide beta(31-40) was not tested. The percentage of alpha helix, beta conformation, and of random coil (or unordered structure) of the various proteins and peptides was measured fitting their CD spectra in the far-uv region with the parameter published by Y.H. Chen et al. ((1974), Biochemistry 13, 3350) and by N. Greenfield and G.D. Fasman ((1969), Biochemistry 8, 4108). In this way the helical content of the native and reconstituted alkylated beta subunits appeared to be near 76%, a value very near to that present in the same subunits in the hemoglobin crystal. The helical content of the apo-beta subunits in 0.04 M borate buffer at pH 9.6 decreased to a value near 45%. The helical content of the isolated peptides in electrolyte solutions was in any case near 10% indicating an almost complete loss of the structure that they have in the hemoglobin crystal. Cyanoheme reacted with the peptide beta(41-104), however, the reaction was not stoichiometric indicating a low affinity of the heme for the peptide. With the exception of the peptide beta(31-104), all of the other peptides recovered some of their helical structure when dissolved in 50% methanol. Notably also the apo-beta subunits did so suggesting that the loss of structure upon the removal of the heme could be in part due to the exposure of the heme pocket to water.  相似文献   

7.
Mechanical properties of brain tubulin and microtubules   总被引:7,自引:0,他引:7       下载免费PDF全文
We measured the elasticity and viscosity of brain tubulin solutions under various conditions with a cone and plate rheometer using both oscillatory and steady shearing modes. Microtubules composed of purified tubulin, purified tubulin with taxol and 3x cycled microtubule protein from pig, cow, and chicken behaved as mechanically indistinguishable viscoelastic materials. Microtubules composed of pure tubulin and heat stable microtubule-associated proteins were also similar but did not recover their mechanical properties after shearing like other samples, even after 60 min. All of the other microtubule samples were more rigid after flow orientation, suggesting that the mechanical properties of anisotropic arrays of microtubules may be substantially greater than those of randomly arranged microtubules. These experiments confirm that MAPs do not cross link microtubules. Surprisingly, under conditions where microtubule assembly is strongly inhibited (either 5 degrees or at 37 degrees C with colchicine or Ca++) tubulin was mechanically indistinguishable from microtubules at 10-20 microM concentration. By electron microscopy and ultracentrifugation these samples were devoid of microtubules or other obvious structures. However, these mechanical data are strong evidence that tubulin will spontaneously assemble into alternate structures (aggregates) in nonpolymerizing conditions. Because unpolymerized tubulin is found in significant quantities in the cytoplasm, it may contribute significantly to the viscoelastic properties of cytoplasm, especially at low deformation rates.  相似文献   

8.
Apparently homogeneous odorant binding protein purified from pig nasal mucosa (pOBP) exhibited subunit molecular masses of 17 223, 17 447, and 17 689 (major component) Da as estimated by ESI/MS. According to gel filtration, this protein, its truncated forms, and/or its variants are homodimeric under physiologic conditions (pH 6-7, 0.1 M NaCl). The dimer if monomer equilibrium shifts toward a prevalent monomeric form at pH <4.5. Velocity sedimentation reveals a monomeric state of OBP at both pH 7.2 and 3.5, indicating a pressure-induced dissociation of the homodimer. High-sensitivity differential scanning calorimetry (HS-DSC) shows that the unfolding transition of pOBP is reversible at neutral pH. It is characterized by the transition temperature of 69.23 degrees C and an enthalpy of 391.1 kJ/mol per monomer. The transition heat capacity curve of pOBP is well-approximated by the two-state model on the level of subunit, indicating that the two monomers behave independently. Isothermal titration calorimetry (ITC) shows that at physiological pH pOBP binds 2-isobutyl-3-methoxypyrazine (IBMP) and 3,7-dimethyloctan-1-ol (DMO) with association constants of 3.19 x 10(6) and 4.94 x 10(6) M(-)(1) and enthalpies of -97.2 and -87.8 kJ/mol, respectively. The binding stoichiometry of both ligands is nearly one molecule of ligand per homodimer of pOBP. The interaction of pOBP with both ligands is enthalpically driven with an unfavorable change of entropy. The binding affinity of pOBP with IBMP does not change significantly at acidic pH, while the binding stoichiometry is nearly halved. According to HS-DSC data, the interaction with IBMP and DMO leads to a substantial stabilization of the pOBP folded structure, which is manifested by the increase in the unfolding temperature and enthalpy. The calorimetric data allow us to conclude that the mechanism of binding of the studied odorants to pOBP is not dominated by a hydrophobic effect related to any change in the hydration state of protein and ligand groups but, most likely, is driven by polar and van der Waals interactions.  相似文献   

9.
10.
This review briefly surveys the conformational properties of guest omega-amino acid residues when incorporated into host alpha-peptide sequences. The results presented focus primarily on the use of beta- and gamma-residues in alphaomega sequences. The insertion of additional methylene groups into peptide backbones enhances the range of accessible conformations, introducing additional torsional variables. A nomenclature system, which permits ready comparisons between alpha-peptides and hybrid sequences, is defined. Crystal structure determination of hybrid peptides, which adopt helical and beta-hairpin conformations permits the characterization of backbone conformational parameters for beta- and gamma-residues inserted into regular alpha-polypeptide structures. Substituted beta- and gamma-residues are more limited in the range of accessible conformation than their unsubstituted counterparts. The achiral beta,beta-disubstituted gamma-amino acid, gabapentin, is an example of a stereochemically constrained residue in which the torsion angles about the Cbeta-Cgamma (theta1) and Calpha-Cbeta (theta2) bonds are restricted to the gauche conformation. Hybrid sequences permit the design of novel hydrogen bonded rings in peptide structures.  相似文献   

11.
Protein sequencing shows that porcine brain tubulin retains the N-terminal sequences of alpha and beta tubulin after a mild treatment with subtilisin. C-terminal peptides released by subtilisin were purified and characterized by automated Edman degradation and mass spectrometry. We confirm the polyglutamylation of alpha tubulin on glutamic acid residue 445 reported by others and show in addition that class II beta tubulin, the major beta tubulin isotype of adult brain, is also polyglutamylated. The substitution is restricted to glutamic acid residue 435. Thus all major tubulin isotypes of adult brain are subjected to polyglutamylation.  相似文献   

12.
Self-association of peptides (related to the C-terminal sequence of porcine secretin) in methylene chloride was disrupted by adding dimethylsulfoxide in increasing amounts. This structural transition was monitored by the disappearance of the amide-I C = O stretching band of strongly intermolecularly hydrogen-bonded molecules (1625-1630 cm-1) in the infrared absorption spectra. The effects induced by main-chain length and sequence, type of N alpha-protection, and concentration were assessed. Hexamethylphosphortriamide was compared for its structure-disrupting properties to dimethylsulfoxide. The increasing propensity to aggregate displayed by these peptides is paralleled by a decrease in their solubility. The impact of these results on the planning of peptide syntheses is briefly discussed.  相似文献   

13.
14.
The conformational study of a homogenous series of cyclic analogues of CCK8, selective for central receptors, such as Boc-X-Tyr(SO3H)-Nle-D-Lys-Trp-Nle-Asp-Phe-NH2, where X = L-Glu, D-Glu, or gamma-D-Glu, was performed by 400-MHz 1H-nmr. The regular increase in affinity for central receptors when going from [L-Glu] to [gamma-D-Glu] is correlated to (a) an enhancement in internal flexibility of the cyclic moiety, (b) an external orientation of the tyrosine side chain, and (c) a restructuring of the C-terminal part of the peptide. All these results could permit a modeling of biologically active conformation of CCK8 for both receptors types to be performed.  相似文献   

15.
PBX is a member of the three amino acid loop extension (TALE) class of homeodomains. PBX binds DNA cooperatively with HOX homeodomain proteins that contain a conserved YPWM motif. The amino acids immediately C-terminal to the PBX homeodomain increase the affinity of the homeodomain for its DNA site and HOX proteins. We have determined the structure of the free PBX homeodomain using NMR spectroscopy. Both the PBX homeodomain and the extended PBX homeodomain make identical contacts with a 5'-TGAT-3' DNA site and a YPWM peptide. A fourth alpha-helix, which forms upon binding to DNA, stabilizes the extended PBX structure. Variations in DNA sequence selectivity of heterodimeric PBX-HOX complexes depend on the HOX partner; however, a comparison of five different HOX-derived YPWM peptides showed that each bound to PBX in the same way, differing only in the strength of the association.  相似文献   

16.
In studies of some sequence dependent structural factors and stabilizing effects of oligonucleotides the octanucleotide d(pG-A-T-C-T-T-T-T) was of particular interest in view of the presence of an endonuclease cleavage site. Its chemical synthesis is reported as well as the structural effects in CD spectral properties of the octanucleotide and of some related compounds.  相似文献   

17.
Taxol-stabilised erythrocyte microtubules assembled less readily than similarly prepared brain microtubules on adding 10(-4) M-10(-3) M concentrations of calcium at 2 degrees C. Scatchard plot analyses of the high affinity calcium binding sites showed that the erythrocyte tubulin contained only 0.9 high affinity binding sites per dimer compared to 1.4 binding sites per dimer for brain tubulin. Association constants, however, for calcium binding to both erythrocyte and brain tubulin were similar (3.0 x 10(-6) M and 2.1 x 10(-6) M). The beta-tubulin subunit appeared to be responsible for the lower calcium binding ability of erythrocyte tubulin as shown by a gel overlay assay with 45Ca. Strains-all, a dye that stains many calcium binding proteins blue, did not stain erythrocyte beta-tubulin or its chymotryptic C-terminal fragment blue as was the case for brain beta-tubulin and its chymotryptic C-terminal fragment. We suggest that the lower calcium binding ability of erythrocyte beta-tubulin may be implicated in the differential behaviour of erythrocyte microtubules.  相似文献   

18.
Phenobarbital (PB) specifically induces mitotic chromosomal malsegregation in the diploid Saccharomyces cerevisiae strain D61.M but no other genetic events such as mitotic recombination or point mutations. In accordance with the hypothesis that PB exerts its genotoxic activity by an interaction with tubulin, it stimulates the GTP-promoted assembly of porcine brain tubulin in vitro. This process is reversible thus excluding an unspecific denaturation of the tubulin protein by PB.  相似文献   

19.
The functionally active part of influenza virus hemagglutinin was investigated through the synthesis of a series of peptides representing different parts of the intersubunit region. Secondary structure prediction, circular dichroism and Fourier transform infrared spectroscopic studies were undertaken to investigate the secondary structure of these peptides. The peptide fragments were found to adopt multiple conformations, depending on their concentration in solution, the presence of the non-ionic detergent octyl-beta-D-glucoside and the polarity of the solvent. The results of biological studies with these peptide fragments are discussed in relation to their conformation, as inferred from the spectroscopic analysis.  相似文献   

20.
Wang L  Hua N  Atkinson D  Small DM 《Biochemistry》2007,46(43):12140-12151
Apolipoprotein A-I (apoA-I), the major protein of high-density lipoprotein (HDL), moves between HDL and triacylglycerol-rich lipoproteins during metabolism. We reported that apoA-I is conformationally flexible at the triolein/water (TO/W) interface, partially desorbing at low surface pressure (Pi) but totally desorbing at Pi > 19 mN/m. We now report the different behavior of the N- and C-terminal peptides of apoA-I ([1-44]apoA-I and [198-243]apoA-I) at the TO/W interface. While both peptides are surface active, [198-243]apoA-I is more stable at the TO/W interface. At equilibrium interfacial tension both peptides desorb from the interface when compressed, but [1-44]apoA-I is pushed off at 13 mN/m while [198-243]apoA-I can withstand Pi = 16 mN/m. Neither peptide is very elastic or flexible at the interface. Only at small changes of area (<8%), fast oscillations (4 and 8 s periods), and relatively low concentrations (2 x 10(-7) M) do these peptides show elastic behavior but with a relatively small modulus compared to that of apoA-I. When mixed together, they appear not to interact on the surface. [1-44]ApoA-I binds more rapidly but is replaced by [198-243]apoA-I within minutes. We suggest that when apoA-I partially desorbs from lipoprotein surfaces during lipid metabolism, the N-terminal is the first to detach while the C-terminal remains on the interface and only desorbs at higher pressures. Thus, the observations that different domains of apoA-I adsorb or desorb with small variations in surface pressure make apoA-I a very flexible protein with multiple functions, one of which is to stabilize surface pressure during lipoprotein metabolism as lipids move in and out of the lipoprotein surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号