首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, BmK alphaIV, a novel modulator of sodium channels, was cloned from venomous glands of the Chinese scorpion (Buthus martensi Karsch) and expressed successfully in Escherichia coli. The BmK alphaIV gene is composed of two exons separated by a 503 bp intron. The mature polypeptide contains 66 amino acids. BmK alphaIV has potent toxicity in mice and cockroaches. Surface-plasmon-resonance analysis found that BmK alphaIV could bind to both rat cerebrocortical synaptosomes and cockroach neuronal membranes, and shared similar binding sites on sodium channels with classical AaH II (alpha-mammal neurotoxin from the scorpion Androctonus australis Hector), BmK AS (beta-like neurotoxin), BmK IT2 (the depressant insect-selective neurotoxin) and BmK abT (transitional neurotoxin), but not with BmK I (alpha-like neurotoxin). Two-electrode voltage clamp recordings on rNav1.2 channels expressed in Xenopus laevis oocytes revealed that BmK alphaIV increased the peak amplitude and prolonged the inactivation phase of Na+ currents. The structural and pharmacological properties compared with those of other scorpion alpha-toxins suggests that BmK alphaIV represents a novel subgroup or functional hybrid of alpha-toxins and might be an evolutionary intermediate neurotoxin for alpha-toxins.  相似文献   

2.
BmK AS在大鼠脑和蟑螂神经索突触体上的药理结合特性   总被引:1,自引:0,他引:1  
用INDOGEN法对一个新型东亚钳蝎活性多肽BmK AS进行了^125I标记。分别在哺乳动物和昆虫标本上观察了标记物的药理结合特性,结果表明BmK AS大大鼠脑突触体标本上有单一非协同结合位点,其平衡解离常数Kd与最大结合容量Bmax分别为1.49nmol/L,1.39nmol/g。此外,BmK AS在蟑螂神经索突触体标本同样也只有单一非协同结合位点,其平均解离常数Kd与最大结合容量Bmax分别为  相似文献   

3.
Ji YH  Liu T 《生理学报》2008,60(5):628-634
Voltage-gated sodium channels(VGSCs) are transmembrane proteins responsible for generation and conduction of action potentials in excitable cells.Physiological and pharmacological studies have demonstrated that VGSCs play a critical role in chronic pain associated with tissue or nerve injury.Many long-chain peptide toxins(60-76 amino acid residues) purified from the venom of Asian scorpion Buthus martensii Karsch(BmK) are investigated to be sodium channel-specific modulators.The α-like neurotoxins that can ...  相似文献   

4.
A new toxin, Lqh alpha IT, which caused a unique mode of paralysis of blowfly larvae, was purified from the venom of the scorpion Leiurus quinquestriatus hebraeus, and its structural and pharmacological properties were compared to those of three other groups of neurotoxins found in Buthinae scorpion venoms. Like the excitatory and depressant insect-selective neurotoxins, Lqh alpha IT was highly toxic to insects, but it differed from these toxins in two important characteristics: (a) Lqh alpha IT lacked strict selectivity for insects; it was highly toxic to crustaceans and had a measurable but low toxicity to mice. (b) It did not displace an excitatory insect toxin, 125I-AaIT, from its binding sites in the insect neuronal membrane; this indicates that the binding sites for Lqh alpha IT are different from those shared by the excitatory and depressant toxins. However, in its primary structure and its effect on excitable tissues, Lqh alpha IT strongly resembled the well-characterized alpha scorpion toxins, which affect mammals. The amino acid sequence was identical with alpha toxin sequences in 55%-75% of positions. This degree of similarity is comparable to that seen among the alpha toxins themselves. Voltage- and current-clamp studies showed that Lqh alpha IT caused an extreme prolongation of the action potential in both cockroach giant axon and rat skeletal muscle preparations as a result of the slowing and incomplete inactivation of the sodium currents. These observations indicate that Lqh alpha IT is an alpha toxin which acts on insect sodium channels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Long-chain neurotoxins derived from the venom of the Buthidae scorpions, which affect voltage-gated sodium channels (VGSCs) can be subdivided according to their toxicity to insects into insect-selective excitatory and depressant toxins (beta-toxins) and the alpha-like toxins which affect both mammals and insects. In the present study by the aid of reverse-phase HPLC column chromatography, RT-PCR, cloning and various toxicity assays, a new insect selective toxin designated as BjalphaIT was isolated from the venom of the Judean Black Scorpion (Buthotus judaicus), and its full primary sequence was determined: MNYLVVICFALLLMTVVESGRDAYIADNLNCAYTCGSNSYCNTECTKNGAVSGYCQWLGKYGNACWCINLPDKVPIRIPGACR (leader sequence is underlined). Despite its lack of toxicity to mammals and potent toxicity to insects, BjalphaIT reveals an amino acid sequence and an inferred spatial arrangement that is characteristic of the well-known scorpion alpha-toxins highly toxic to mammals. BjalphaITs sharp distinction between insects and mammals was also revealed by its effect on sodium conductance of two cloned neuronal VGSCs heterloguously expressed in Xenopus laevis oocytes and assayed with the two-electrode voltage-clamp technique. BjalphaIT completely inhibits the inactivation process of the insect para/tipE VGSC at a concentration of 100 nM, in contrast to the rat brain Na(v)1.2/beta1 which is resistant to the toxin. The above categorical distinction between mammal and insect VGSCs exhibited by BjalphaIT enables its employment in the clarification of the molecular basis of the animal group specificity of scorpion venom derived neurotoxic polypeptides and voltage-gated sodium channels.  相似文献   

6.
Four novel insecticidal toxins were isolated from the venom of the spider Paracoelotes luctuosus (Araneae: Amaurobiidae) and named delta-palutoxins IT1 to IT4. The four toxins are homologous 36-37 amino acid peptides reticulated by four disulfide bridges and three have amidated C-terminal residues. The delta-palutoxins are highly homologous with the previously described mu-agatoxins and curtatoxins (77-97%). The four peptides demonstrated significant toxicity against larvae of the crop pest Spodoptera litura (Lepidoptera: Noctuidae) in a microinjection bioassay, with LD50 values in the 9-50 microg per g of insect range. This level of toxicity is equivalent to that of several of the most active scorpion toxins used in the development of recombinant baculoviruses, and the delta-palutoxins appear to be insect specific. Electrophysiological experiments demonstrated that delta-palutoxin IT1, the most active toxin acts by affecting insect sodium channel inactivation, resulting in the appearance of a late-maintained sodium current, in a similar fashion to insecticidal scorpion alpha and alpha-like toxins and is thus likely to bind to channel receptor site 3. However, delta-palutoxin IT1 was distinguished by its lack of effect on peak sodium conductance, on the early phase of sodium current inactivation and the absence of a shift in the activation voltage of the sodium channels. delta-Palutoxins are thus proposed as new insecticidal toxins related to the alpha and alpha-like scorpion toxins. They will be useful both in the development of recombinant baculoviruses in agrochemical applications and also as molecular probes for the investigation of molecular mechanisms of insect selectivity and structure and function of sodium channels.  相似文献   

7.
Photoreactive and radioiodinated derivatives of several scorpion toxins acting on insect Na+ channels were prepared without loss of their pharmacological activities. Photoaffinity experiments were carried out on a synaptosomal fraction from the nerve cord of the cockroach Periplaneta americana: with all toxin derivatives, a single specifically labeled band was obtained with a molecular weight of 188,000 +/- 12,000 (n = 17). These results indicate for the first time the molecular weight of the scorpion toxin receptor from the insect nervous system which is probably associated with voltage sensitive Na+ channels. One of these toxins, toxin VII from Tityus serrulatus venom, has been previously shown to be active both in mammals and in insects, in rat brain synaptosomes this toxin labeled a Mr = 31,000 +/- 4,000 band in contrast, to observations in the insect preparation.  相似文献   

8.
Diverse subtypes of voltage-gated sodium channels (VGSCs) have been found throughout tissues of the brain, muscles and the heart. Neurotoxins extracted from the venom of the Asian scorpion Buthus martensi Karsch (BmK) act as sodium channel-specific modulators and have therefore been widely used to study VGSCs. α-type neurotoxins, named BmK I, BmK αIV and BmK abT, bind to receptor site-3 on VGSCs and can strongly prolong the inactivation phase of VGSCs. In contrast, β-type neurotoxins, named BmK AS, BmK AS-1, BmK IT and BmK IT2, occupy receptor site-4 on VGSCs and can suppress peak currents and hyperpolarize the activation kinetics of sodium channels. Accumulating evidence from binding assays of scorpion neurotoxins on VGSCs, however, indicate that pharmacological sensitivity of VGSC subtypes to different modulators is much more complex than that suggested by the simple α-type and β-type neurotoxin distinction. Exploring the mechanisms of possible dynamic interactions between site 3-/4-specific modulators and region- and/or species-specific subtypes of VGSCs would therefore greatly expand our understanding of the physiological and pharmacological properties of diverse VGSCs. In this review, we discuss the pharmacological and structural diversity of VGSCs as revealed by studies exploring the binding properties and cross-competitive binding of site 3- or site 4-specific modulators in VGSC subtypes in synaptosomes from distinct tissues of diverse species.  相似文献   

9.
We have purified a new toxin (BmK 17[4]) from Asian scorpion (Buthus martensii Karsch) venom that possesses a distinctive structural motif in its N-terminal (positions 8-12) that is similarly found in two other previously described alpha-like toxins. BmK 17[4] prolongs action potentials (APs) in frog nerve and was purified using gel filtration, ion exchange, fast protein liquid chromatography (FPLC), and high-performance liquid chromatography (HPLC). BmK 17[4] significantly prolonged frog APs but it did not alter APs from an insect ventral nerve cord at similar doses. When applied to voltage-clamped frog muscle single fibers, BmK 17[4] prolonged fast inactivation. Because the polypeptide prolongs APs when both K+ and Ca2+ channels were blocked, BMK 17[4] acts to selectively alter Na+ channel inactivation. The N-terminal sequence of BmK 17[4] was found to be VRDAYIAKPENCVYXC --. The molar mass of BmK 17[4] was determined by LC/MS/MS to be 7097 Daltons. The N- terminal motif (KPENC), which introduces a reverse turn in residues 8-12, does not appear in previously characterized BmK alpha-toxins and may be characteristic of alpha-like toxins. Sequence similarity database searches were used to test whether the N-terminal sequences of alpha-like polypeptide toxins from B. martensii Karsch possess a distinctive structural motif in its 5-residue reverse turn (alpha-turn) that is conserved. Sequence similarities with putative polypeptides encoded by cDNAs obtained from a cDNA library [Zhu, S. Y., Li, W. X., Zenq, X. C., et al. (2000) Nine novel precursors of Buthus martensii scorpiox alpha-toxin homologues. Toxicon 38, 1653-1661] from BmK venom glands showed that an active polypeptide toxin cleaved from the putative propolypeptide toxin BmK M9 is likely identical to BmK 17[4]. Sequence comparisons with toxins and putative toxins from B. martensii Karsch and other species revealed that a group of these toxins possess a common structural motif in their alpha-turn. A neighbor-joining phylogenetic analysis suggests that there are two phylogenetic sister groups of related BmK polypeptides; one possesses the KPENC motif and the other possesses a modifed version (KPHNC) of it.  相似文献   

10.
The alpha-like toxin from the venom of the scorpion Leiurus quinquestriatus hebraeus (Lqh III) binds with high affinity to receptor site 3 on insect sodium channels but does not bind to rat brain synaptosomes. The binding affinity of Lqh III to cockroach neuronal membranes was fivefold higher at pH 6.5 than at pH 7.5. This correlated with an increase in the electropositive charge on the toxin surface resulting from protonation of its four histidines. Radioiodination of Tyr(14) of Lqh III abolished its binding to locust but not cockroach sodium channels, whereas the noniodinated toxin bound equally well to both neuronal preparations. Radioiodination of Tyr(10) or Tyr(21) of the structurally similar alpha-toxin from L. quinquestriatus hebraeus (LqhalphaIT), as well as their substitution by phenylalanine, had only minor effects on binding to cockroach neuronal membranes. However, substitution of Tyr(21), but not Tyr(14), by leucine decreased the binding affinity of LqhalphaIT approximately 87-fold. Thus, Tyr(14) is involved in the bioactivity of Lqh III to locust receptor site 3 and is not crucial for the binding of LqhalphaIT to this site. In turn, the aromatic ring of Tyr(21) takes part in the bioactivity of LqhalphaIT to insects. These results highlight subtle architectural variations between locust and cockroach receptor site 3, in addition to previous results demonstrating the competence of Lqh III to differentiate between insect and mammalian sodium channel subtypes.  相似文献   

11.
Delta-atracotoxins (delta-ACTXs) from Australian funnel-web spiders differ structurally from scorpion alpha-toxins (Sc(alpha)Tx) but similarly slow sodium current inactivation and compete for their binding to sodium channels at receptor site-3. Characterization of the binding of 125I-labelled delta-ACTX-Hv1a to various sodium channels reveals a decrease in affinity for depolarized (0 mV; Kd=6.5 +/- 1.4 nm) vs.polarized (-55 mV; Kd=0.6 +/- 0.2 nm) rat brain synaptosomes. The increased Kd under depolarized conditions correlates with a 4.3-fold reduction in the association rate and a 1.8-increase in the dissociation rate. In comparison, Sc(alpha)Tx binding affinity decreased 33-fold under depolarized conditions due to a 48-fold reduction in the association rate. The binding of 125I-labelled delta-ACTX-Hv1a to rat brain synaptosomes is inhibited competitively by classical Sc(alpha)Txs and allosterically by brevetoxin-1, similar to Sc(alpha)Tx binding. However, in contrast with classical Sc(alpha)Txs, 125I-labelled delta-ACTX-Hv1a binds with high affinity to cockroach Na+ channels (Kd=0.42 +/- 0.1 nm) and is displaced by the Sc(alpha)Tx, Lqh(alpha)IT, a well-defined ligand of insect sodium channel receptor site-3. However, delta-ACTX-Hv1a exhibits a surprisingly low binding affinity to locust sodium channels. Thus, unlike Sc(alpha)Txs, which are capable of differentiating between mammalian and insect sodium channels, delta-ACTXs differentiate between various insect sodium channels but bind with similar high affinity to rat brain and cockroach channels. Structural comparison of delta-ACTX-Hv1a to Sc(alpha)Txs suggests a similar putative bioactive surface but a 'slimmer' overall shape of the spider toxin. A slimmer shape may ease the interaction with the cockroach and mammalian receptor site-3 and facilitate its association with different conformations of the rat brain receptor, correlated with closed/open and slow-inactivated channel states.  相似文献   

12.
1. A neurotoxic peptide was isolated from the venom of the scorpion Buthus martensi Karsch collected in Henan Province, China. 2. This toxin showed the highest neurotoxic potency to crickets amongst all components in the venom examined. 3. The amino acid composition of the toxin was similar to that of insect toxin 1 of Leiurus quinquestriatus quinquestriatus. 4. The partial primary sequence of the toxin at the N-terminal was very similar to that of an insect toxin of Androctonus australis Hector. 5. We conclude that the neurotoxin we isolated is indeed an insect toxin and thus named it as BmK IT.  相似文献   

13.
Two scorpion neurotoxins active only on insects, the insect toxins AaH IT1 and AaH IT2, were purified from the venom of scorpions Androctonus australis Hector collected in Tozeur (Tunisia) and characterized. AaH IT2 was sequenced and found to differ in four amino acid positions from AaH IT, the single previously sequenced insect toxin [Darbon, H., Zlotkin, E., Kopeyan, C., Van Rietschoten, J., & Rochat, H. (1982) Int. J. Pept. Protein Res. 20, 320-330] which possessed an equal potential for paralyzing fly larvae. The basic amino acid residues of AaH IT1, which differs from AaH IT by one amino acid residue, were selectively chemically modified. Six derivatives were characterized. Their toxicity toward fly larvae and cockroach was determined, and their affinity for the AaH IT1 synaptosomal receptor from cockroach nerve cord was measured. Modification of His-30, Lys-34, and Arg-60 showed no significant effect on biological activity. However, the modification of Lys-28 or Lys-51 demonstrated that these two amino acids are important for toxicity. Furthermore, simultaneous modifications of both Lys-28 and Lys-51 led to a cumulative decrease in biological activity. AaH IT1 and AaH IT2 show similar CD spectra. The secondary structures content of AaH IT2 was estimated from circular dichroism data. Results showed that this class of toxin should possess an additional alpha-helical region and a beta-sheet strand, not found in toxins active on mammals. Attempts to localize these secondary structural features in the amino acid sequence of AaH IT2 indicated that these two regions would be located within the last 20 C-terminal amino acid residues. From these studies on secondary structures, it is possible to consider that toxins active on insects are more structurally constrained than those active on mammals; a decreased molecular flexibility may be, at least partially, responsible for the observed specificity of these toxins for the insect sodium channel. Furthermore, the two alpha-helices found in insect toxins enclosed the two conserved Lys-28 and Lys-51 and might thus be implicated in the toxic site of insect toxins.  相似文献   

14.
Seven polypeptides highly toxic to mice were isolated from the venom of the scorpion, Centruroides suffusus suffusus (Css), and their chemical and toxic properties were characterized. It was shown that the most active toxins by intracerebroventricular injection are less active when injected subcutaneously. The complete amino acid sequence (66 residues) of toxin II (Css II) has been determined. The C-terminal end is amidated as found for most other scorpion toxins. Css II is a beta-type toxin, previously used to define the binding site for activation of the sodium channel. Using rat brain synaptosomes, we demonstrated that all Css toxins compete with 125I-Css II to bind to site 4 and should be considered as beta-scorpion toxins. Specific binding parameters for Css VI, one of the most active toxins, were determined: KD = 100 pM; capacity in binding sites, 2.2 pmol of toxin/mg of synaptosomal protein. Css VI was shown to inhibit gamma-aminobutyric acid uptake by synaptosomes: K 0.5 = 100 pM, which agrees with its KD. Competition experiments between the seven Css toxins and 125I-Css II for antiserum raised against Css II demonstrated that all these toxins have common antigenic properties.  相似文献   

15.
Depressant insect-selective neurotoxins derived from scorpion venoms (a) induce in blowfly larvae a short, transient phase of contraction similar to that induced by excitatory neurotoxins followed by a prolonged flaccid paralysis and (b) displace excitatory toxins from their binding sites on insect neuronal membranes. The present study was undertaken in order to examine the basis of these similarities by comparing the primary structures and neuromuscular effects of depressant and excitatory toxins. A new depressant toxin (LqhIT2) was purified from the venom of the Israeli yellow scorpion. The effects of this toxin on a prepupal housefly neuromuscular preparation mimic the effects on the intact animal; i.e., a brief period of repetitive bursts of junction potentials is followed by suppression of their amplitude and finally by a block of neuromuscular transmission. Loose patch clamp recordings indicate that the repetitive activity has a presynaptic origin in the motor nerve and closely resembles the effect of the excitatory toxin AaIT. The final synaptic block is attributed to neuronal membrane depolarization, which results in an increase in spontaneous transmitter release; this effect is not induced by excitatory toxin. The amino acid sequences of three depressant toxins were determined by automatic Edman degradation. The depressant toxins comprise a well-defined family of polypeptides with a high degree of sequence conservation. This group differs considerably in primary structure from the excitatory toxin, with which it shares identical or related binding sites, and from the two groups of scorpion toxins that affect sodium conductance in mammals. The two opposing pharmacological effects of depressant toxins are discussed in light of the above data.  相似文献   

16.
In this study, the effect of the scorpion alpha-like toxin BmK M1 was investigated on isolated DUM neurons from Locusta migratoria and compared with the effect on para/tipE voltage-gated Na(+) channels (VGSC), cloned from Drosophila melanogaster. The two insects display different pharmacological properties regarding alpha-like toxins. Moreover, with the aid of the alpha-like toxin BmK M1 and 5 of its mutants, the importance of aromatic residues for the interaction of the toxin with the VGSC in L. migratoria and D. melanogaster, is shown.  相似文献   

17.
Two novel toxins, Lqh6 and Lqh7, isolated from the venom of the scorpion Leiurus quinquestriatus hebraeus, have in their sequence a molecular signature (8Q/KPE10) associated with a recently defined group of alpha-toxins that target Na channels, namely the alpha-like toxins [reviewed in Gordon, D., Savarin, P., Gurevitz, M. & Zinn-Justin, S. (1998) J. Toxicol. Toxin Rev. 17, 131-159]. Lqh6 and Lqh7 are highly toxic to insects and mice, and inhibit the binding of alpha-toxins to cockroach neuronal membranes. Although they kill rodents by intracerebroventricular injection, they do not inhibit the binding of antimammal alpha-toxins (e.g. Lqh2) to rat brain synaptosomes, not even at high concentrations. Furthermore, in voltage-clamp experiments, rat brain Na channels IIA (rNav1.2A) expressed in Xenopus oocytes are not affected by Lqh6 nor by Lqh7 below 3 micro m. In contrast, muscular Na channels (rNav1.4 and hNav1.5) expressed in the same cells respond to nanomolar concentrations of Lqh6 and Lqh7 by slowing of Na current inactivation and a leftward shift of the peak conductance-voltage curve. The structural and pharmacological properties of the new toxins are compared to those of other scorpion alpha-toxins in order to re-examine the hallmarks previously set for the alpha-like toxin group.  相似文献   

18.
The present study investigates the electrophysiological actions of BmK M1, an alpha-like toxin purified from the venom of the scorpion Buthus martensi Karsch, on voltage-gated Na+ channels. Using the voltage clamp technique, we assessed the BmK M1 activity on the cardiac Na+ channel (hH1) functionally expressed in Xenopus oocytes. The main actions of the toxin are a concentration-dependent slowing of the inactivation process and a hyperpolarizing shift of the steady-state inactivation. This work is the first electrophysiological characterization of BmK M1 on a cloned Na+ channel, demonstrating that this toxin belongs to the class of scorpion alpha-toxins. Our results also show that BmK M1 can be considered as a cardiotoxin.  相似文献   

19.
Scorpion alpha-neurotoxins can be classified into distinct subgroups according to their sequence and pharmacological properties. Using toxicity tests, binding studies, and electrophysiological recordings, BmK M1, a toxin from the Asian scorpion Buthus martensi Karsch, was experimentally identified as an alpha-like toxin. Being the first alpha-like toxin available in a recombinant form, BmK M1 was then modified by site-directed mutagenesis for investigation of the molecular basis of its activity. The results suggested a functional site which protrudes from the molecular scaffold as a unique tertiary arrangement, constituted by the five-residue reverse turn 8-12 and the C-terminal segment. The C-terminal basic residues Lys62 and His64 together with Lys8 in the turn, which are critical for the bioactivities, may directly interact with the receptor site on the sodium channel. Residues Asn11 and Arg58, indispensable for the activities, are mainly responsible for stabilizing the distinct conformation of the putative bioactive site. Among others, His10 and His64 seem to be involved in the preference of BmK M1 for phylogenetically distinct target sites. The comparison of BmK M1 with Aah2 (classical alpha-toxin) and Lqh(alpha)IT (alpha-insect toxin) showed that the specific orientation of the C-terminus mediated by the reverse turn might be relevant to the preference of alpha-toxin subgroups for phylogenetically distinct yet closely related receptor sites. The Y5G mutation indicated the "conserved hydrophobic surface" might be structurally important for stabilizing the beta-sheet in the alpha/beta-scaffold. The observations in this work shed light on the nature and roles of the residues possibly involved in the biological activity of a scorpion alpha-like toxin.  相似文献   

20.
Scorpion alpha-like toxins are proteins that act on mammalian and insect voltage-gated Na+ channels. Therefore, these toxins constitute an excellent target for examining the foundations that underlie their target specificity. With this motive we dissected the role of six critical amino acids located in the five-residue reverse turn (RT) and C-tail (CT) of the scorpion alpha-like toxin BmK M1. These residues were individually substituted resulting in 11 mutants and were subjected to a bioassay on mice, an electrophysiological characterization on three cloned voltage-gated Na+ channels (Nav1.2, Nav1.5 and para), a CD analysis and X-ray crystallography. The results reveal two molecular sites, a couplet of residues (8-9) in the RT and a hydrophobic surface consisting of residues 57 and 59-61 in the CT, where the substitution with specific residues can redirect the alpha-like characteristics of BmK M1 to either total insect or much higher mammal specificity. Crystal structures reveal that the pharmacological ramification of these mutants is accompanied by the reshaping of the 3D structure surrounding position 8. Furthermore, our results also reveal that residues 57 and 59-61, located at the CT, enclose the critical residue 58 in order to form a hydrophobic "gasket". Mutants of BmK M1 that interrupt this hydrophobic surface significantly gain insect selectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号