共查询到20条相似文献,搜索用时 15 毫秒
1.
Edoardo Daly Sari Palmroth Paul Stoy Mario Siqueira A. Christopher Oishi Jehn-Yih Juang Ram Oren Amilcare Porporato Gabriel G. Katul 《Biogeochemistry》2009,94(3):271-287
Profiles of subsurface soil CO2 concentration, soil temperature, and soil moisture, and throughfall were measured continuously during the years 2005 and
2006 in 16 locations at the free air CO2 enrichment facility situated within a temperate loblolly pine (Pinus taeda L.) stand. Sampling at these locations followed a 4 by 4 replicated experimental design comprised of two atmospheric CO2 concentration levels (ambient [CO2]a, ambient + 200 ppmv, [CO2]e) and two soil nitrogen (N) deposition levels (ambient, ambient + fertilization at 11.2 gN m−2 year−1). The combination of these measurements permitted indirect estimation of belowground CO2 production and flux profiles in the mineral soil. Adjacent to the soil CO2 profiles, direct (chamber-based) measurements of CO2 fluxes from the soil–litter complex were simultaneously conducted using the automated carbon efflux system. Based on the
measured soil CO2 profiles, neither [CO2]e nor N fertilization had a statistically significant effect on seasonal soil CO2, CO2 production, and effluxes from the mineral soil over the study period. Soil moisture and temperature had different effects
on CO2 concentration depending on the depth. Variations in CO2 were mostly explained by soil temperature at deeper soil layers, while water content was an important driver at the surface
(within the first 10 cm), where CO2 pulses were induced by rainfall events. The soil effluxes were equal to the CO2 production for most of the time, suggesting that the site reached near steady-state conditions. The fluxes estimated from
the CO2 profiles were highly correlated to the direct measurements when the soil was neither very dry nor very wet. This suggests
that a better parameterization of the soil CO2 diffusivity is required for these soil moisture extremes. 相似文献
2.
Development of gypsy moth larvae feeding on red maple saplings at elevated CO<Subscript>2</Subscript> and temperature 总被引:3,自引:0,他引:3
Predicted increases in atmospheric CO2 and global mean temperature may alter important plant-insect associations due to the direct effects of temperature on insect development and the indirect effects of elevated temperature and CO2 enrichment on phytochemicals important for insect success. We investigated the effects of CO2 and temperature on the interaction between gypsy moth (Lymantria dispar L.) larvae and red maple (Acer rubrum L.) saplings by bagging first instar larvae within open-top chambers at four CO2/temperature treatments: (1) ambient temperature, ambient CO2, (2) ambient temperature, elevated CO2
(+300 l l-1
CO2), (3) elevated temperature (+3.5°C), ambient CO2, and (4) elevated temperature, elevated CO2. Larvae were reared to pupation and leaf samples taken biweekly to determine levels of total N, water, non-structural carbohydrates, and an estimate of defensive phenolic compounds in three age classes of foliage: (1) immature, (2) mid-mature and (3) mature. Elevated growth temperature marginally reduced (P <0.1) leaf N and significantly reduced (P <0.05) leaf water across CO2 treatments in mature leaves, whereas leaves grown at elevated CO2 concentration had a significant decrease in leaf N and a significant increase in the ratio of starch:N and total non-structural carbohydrates:N. Leaf N and water decreased and starch:N and total non-structural carbohydrates:N ratios increased as leaves aged. Phenolics were unaffected by CO2 or temperature treatment. There were no interactive effects of CO2 and temperature on any phytochemical measure. Gypsy moth larvae reached pupation earlier at the elevated temperature (female =8 days,
P <0.07; male =7.5 days,
P <0.03), whereas mortality and pupal fresh weight of insects were unrelated to either CO2, temperature or their interaction. Our data show that CO2 or temperature-induced alterations in leaf constituents had no effect on insect performance; instead, the long-term exposure to a 3.5°C increase in temperature shortened insect development but had no effect on pupal weight. It appears that in some tree-herbivorous insect systems the direct effects of an increased global mean temperature may have greater consequences for altering plant-insect interactions than the indirect effects of an increased temperature or CO2 concentration on leaf constituents. 相似文献
3.
Yoko Watanabe Hiroyuki Tobita Mitsutoshi Kitao Yutaka Maruyama DongSu Choi Kaichiro Sasa Ryo Funada Takayoshi Koike 《Trees - Structure and Function》2008,22(4):403-411
Wood structure might be altered through the physiological responses to atmospheric carbon dioxide concentration ([CO2]) and nitrogen (N) deposition. We investigated growth, water relations and wood structure of 1-year-old seedlings of two
deciduous broad-leaved tree species, Quercus mongolica (oak, a ring-porous species) and Alnus hirsuta (alder, a diffuse-porous species and N2–fixer), grown under a factorial combination of two levels of [CO2] (36 and 72 Pa) and nitrogen supply (N; low and high) for 141 days in phytotron chambers. In oak, there was no significant
effect of [CO2] on wood structure, although elevated [CO2] tended to decrease stomatal conductance (g
s) and increased water use efficiency regardless of the N treatment. However, high N supply increased root biomass and induced
wider earlywood and larger vessels in the secondary xylem in stems, leading to increased hydraulic conductance. In alder,
there was significant interactive effect of [CO2] and N on vessel density, and high N supply increased the mean vessel area. Our results suggest that wood structures related
to water transport were not markedly altered, although elevated [CO2] induced changes in physiological parameters such as g
s and biomass allocation, and that N fertilization had more pronounced effects on non-N2-fixing oak than on N2-fixing alder. 相似文献
4.
Plant growth and adaptation to cold and freezing temperatures in a CO2-enriched atmosphere have received little attention despite the predicted effects of elevated CO2 on plant distribution and productivity. Norway spruce [Picea abies (L.) Karst.] seedlings from latitudinally distinct seed sources (66°N and 60°N) were grown for one simulated growth season under controlled conditions in an atmosphere enriched in CO2 (70 Pa) and at ambient CO2 (40 Pa), combined factorially with low (3.6 mM) or high (15.7 mM) concentrations of nitrogen fertilization. There was a clear difference between the two provenances in height growth, in the timing of bud set, and in freezing tolerance. Nitrogen fertilization increased height growth in both provenances, while CO2
enrichment stimulated height growth only in the southern provenance. We found no significant effects of elevated CO2 or nitrogen fertilization on the timing of bud set. During cold acclimation, freezing tolerance increased from –10°C to –35°C, and there was a marked increase in all soluble sugars except inositol. Elevated CO2 in combination with high nitrogen led to a slight increased freezing tolerance in both provenances during the early stages of cold acclimation. However, towards the end of cold acclimation, elevated CO2
and high nitrogen led to reduced freezing tolerance in the southern provenance, while elevated CO2
and low nitrogen reduced freezing tolerance in the northern provenance. These results suggest that CO2 enrichment influences the development of freezing tolerance, and that these responses differ with available nitrogen and between provenances. 相似文献
5.
Effects of elevated CO<Subscript>2</Subscript> and nitrogen on wheat growth and photosynthesis 总被引:1,自引:0,他引:1
The effects of nitrogen [75 and 150 kg (N) ha−1] and elevated CO2 on growth, photosynthetic rate, contents of soluble leaf proteins and activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and nitrate reductase (NR) were studied on wheat (Triticum aestivum L. cv. HD-2285) grown in open top chambers under either ambient (AC) or elevated (EC) CO2 concentration (350 ± 50, 600 ± 50 μmol mol−1) and analyzed at 40, 60 and 90 d after sowing. Plants grown under EC showed greater photosynthetic rate and were taller and attained greater leaf area along with higher total plant dry mass at all growth stages than those grown under AC. Total soluble and Rubisco protein contents decreased under EC but the activation of Rubisco was higher at EC with higher N supply. Nitrogen increased the NR activity whereas EC reduced it. Thus, EC causes increased growth and PN ability per unit uptake of N in wheat plants, even if N is limiting. 相似文献
6.
Plant communities around natural CO2 springs have been exposed to elevated CO2 levels over many generations and give us a unique opportunity to investigate the effects of long-term elevated CO2 levels on wild plants. We searched for natural CO2 springs in cool temperate climate regions in Japan and found three springs that were suitable for studying long-term responses
of plants to elevated levels of CO2: Ryuzin-numa, Yuno-kawa and Nyuu. At these CO2 springs, the surrounding air was at high CO2 concentration with no toxic gas emissions throughout the growth season, and there was natural vegetation around the springs.
At each site, high-CO2 (HC) and low-CO2 (LC) plots were established, and three dominant species at the shrub layers were used for physiological analyses. Although
the microenvironments were different among the springs, dicotyledonous species growing at the HC plots tended to have more
starch and less nitrogen per unit dry mass in the leaves than those growing at the LC plots. In contrast, monocotyledonous
species growing in the HC and LC plots had similar starch and nitrogen concentrations. Photosynthetic rates at the mean growth
CO2 concentration were higher in HC plants than LC plants, but photosynthetic rates at a common CO2 concentration were lower in HC plants. Efficiency of water and nitrogen use of leaves at growth CO2 concentration was greatly increased in HC plants. These results suggest that natural plants growing in elevated CO2 levels under cool temperate climate conditions have down-regulated their photosynthetic capacity but that they increased
photosynthetic rates and resource use efficiencies due to the direct effect of elevated CO2 concentration. 相似文献
7.
Isoprene is the most abundant biogenic hydrocarbon released from vegetation and it plays a major role in tropospheric chemistry. Because of its link to climate change, there is interest in understanding the relationship between CO2, water availability and isoprene emission. We explored the effect of atmospheric elevated CO2 concentration and its interaction with vapour pressure deficit (VPD) and water stress, on gross isoprene production (GIP) and net ecosystem exchange of CO2 (NEE) in two Populus deltoides plantations grown at ambient and elevated atmospheric CO2 concentration in the Biosphere 2 Laboratory facility. Although GIP and NEE showed a similar response to light and temperature, their responses to CO2 and VPD were opposite; NEE was stimulated by elevated CO2 and depressed by high VPD, while GIP was inhibited by elevated CO2 and stimulated by high VPD. The difference in response between isoprene production and photosynthesis was also evident during water stress. GIP was stimulated in the short term and declined only when the stress was severe, whereas NEE started to decrease from the beginning of the experiment. This contrasting response led the carbon lost as isoprene in both the ambient and the elevated CO2 treatments to increase as water stress progressed. Our results suggest that water limitation can override the inhibitory effect of elevated CO2 leading to increased global isoprene emissions in a climate change scenario with warmer and drier climate. 相似文献
8.
Tricker PJ Trewin H Kull O Clarkson GJ Eensalu E Tallis MJ Colella A Doncaster CP Sabatti M Taylor G 《Oecologia》2005,143(4):652-660
Using a free-air CO2 enrichment (FACE) experiment, poplar trees (Populus × euramericana clone I214) were exposed to either ambient or elevated [CO2] from planting, for a 5-year period during canopy development, closure, coppice and re-growth. In each year, measurements
were taken of stomatal density (SD, number mm−2) and stomatal index (SI, the proportion of epidermal cells forming stomata). In year 5, measurements were also taken of leaf
stomatal conductance (g
s, μmol m−2 s−1), photosynthetic CO2 fixation (A, mmol m−2 s−1), instantaneous water-use efficiency (A/E) and the ratio of intercellular to atmospheric CO2 (Ci:Ca). Elevated [CO2] caused reductions in SI in the first year, and in SD in the first 2 years, when the canopy was largely open. In following
years, when the canopy had closed, elevated [CO2] had no detectable effects on stomatal numbers or index. In contrast, even after 5 years of exposure to elevated [CO2], g
s was reduced, A/E was stimulated, and Ci:Ca was reduced relative to ambient [CO2]. These outcomes from the long-term realistic field conditions of this forest FACE experiment suggest that stomatal numbers
(SD and SI) had no role in determining the improved instantaneous leaf-level efficiency of water use under elevated [CO2]. We propose that altered cuticular development during canopy closure may partially explain the changing response of stomata
to elevated [CO2], although the mechanism for this remains obscure. 相似文献
9.
This study examined the effects of carbon dioxide (CO2)-, ozone (O3)-, and genotype-mediated changes in quaking aspen (Populus tremuloides) chemistry on performance of the forest tent caterpillar (Malacosoma disstria) and its dipteran parasitoid (Compsilura concinnata) at the Aspen Free-Air CO2 Enrichment (FACE) site. Parasitized and non-parasitized forest tent caterpillars were reared on two aspen genotypes under elevated levels of CO2 and O3, alone and in combination. Foliage was collected for determination of the chemical composition of leaves fed upon by forest tent caterpillars during the period of endoparasitoid larval development. Elevated CO2 decreased nitrogen levels but had no effect on concentrations of carbon-based compounds. In contrast, elevated O3 decreased nitrogen and phenolic glycoside levels, but increased concentrations of starch and condensed tannins. Foliar chemistry also differed between aspen genotypes. CO2, O3, genotype, and their interactions altered forest tent caterpillar performance, and differentially so between sexes. In general, enriched CO2 had little effect on forest tent caterpillar performance under ambient O3, but reduced performance (for insects on one aspen genotype) under elevated O3. Conversely, elevated O3 improved forest tent caterpillar performance under ambient, but not elevated, CO2. Parasitoid larval survivorship decreased under elevated O3, depending upon levels of CO2 and aspen genotype. Additionally, larval performance and masses of mature female parasitoids differed between aspen genotypes. These results suggest that host-parasitoid interactions in forest systems may be altered by atmospheric conditions anticipated for the future, and that the degree of change may be influenced by plant genotype. 相似文献
10.
The increasing CO2 concentration in Earths atmosphere is expected to cause a greater decline in the nutritional quality of C3 than C4 plants. As a compensatory response, herbivorous insects may increase their feeding disproportionately on C3 plants. These hypotheses were tested by growing the grasses Lolium multiflorum C3) and Bouteloua curtipendula C4) at ambient (370 ppm) and elevated (740 ppm) CO2 levels in open top chambers in the field, and comparing the growth and digestive efficiencies of the generalist grasshopper Melanoplus sanguinipes on each of the four plant × CO2 treatment combinations. As expected, the nutritional quality of the C3 grass declined to a greater extent than did that of the C4 grass at elevated CO2; protein levels declined in the C3 grass, while levels of carbohydrates (sugar, fructan and starch) increased. However, M. sanguinipes did not significantly increase its consumption rate to compensate for the lower nutritional quality of the C3 grass grown under elevated CO2. Instead, these grasshoppers appear to use post-ingestive mechanisms to maintain their growth rates on the C3 grass under elevated CO2. Consumption rates of the C3 and C4 grasses were also similar, demonstrating a lack of compensatory feeding on the C4 grass. We also examined the relative efficiencies of nutrient utilization from a C3 and C4 grass by M. sanguinipes to test the basis for the C4 plant avoidance hypothesis. Contrary to this hypothesis, neither protein nor sugar was digested with a lower efficiency from the C4 grass than from the C3 grass. A novel finding of this study is that fructan, a potentially large carbohydrate source in C3 grasses, is utilized by grasshoppers. Based on the higher nutrient levels in the C3 grass and the better growth performance of M. sanguinipes on this grass at both CO2 levels, we conclude that C3 grasses are likely to remain better host plants than C4 grasses in future CO2 conditions. 相似文献
11.
Do short-term fluctuations in CO2 concentrations at elevated CO2 levels affect net CO2 uptake rates of plants? When exposed to 600 μl CO2 l?1, net CO2 uptake rates in shoots or leaves of seedlings of two tropical C3 tree species, teak (Tectona grandis L. f.) and barrigon [Pseudobombax septenatum (Jacq.) Dug.], increased by 28 and 52% respectively. In the presence of oscillations with half-cycles of 20 s, amplitude of ca. 170 μl CO2 l?1 and mean of 600 μl CO2 l?1, the stimulation in net CO2 uptake by the two species was reduced to 19 and 36%, respectively, i.e. the CO2 stimulation in photosynthesis associated with a change in exposure from 370 to 600 μl CO2 l?1 was reduced by a third in both species. Similar reductions in CO2-stimulated net CO2 uptake were observed in T. grandis exposed to 40-s oscillations. Rates of CO2 efflux in the dark by whole shoots of T. grandis decreased by 4.8% upon exposure of plants grown at 370 μl CO2 l?1 to 600 μl CO2 l?1. The potential implications of the observations on CO2 oscillations and dark respiration are discussed in the context of free-air CO2 enrichment (FACE) systems in which short-term fluctuations of CO2 concentration are a common feature. 相似文献
12.
The effect of ectomycorrhizal Pisolithus tinctorius (Pt) infection was studied on the growth and photosynthetic characteristics of Pinus densiflora seedlings grown at ambient (360 µmol mol−1, AC) and elevated (720 µmol mol−1, EC) CO2 concentrations. After 18 weeks, Pt inoculation had led to significantly increased dry mass and stem diameter of P. densiflora at both CO2 concentrations, relative to non-inoculated seedlings. Moreover, EC significantly increased the ectomycorrhizal development. The phosphate content in needles inoculated with Pt was about three times higher than without inoculation at both CO2 concentrations. The PAR saturated net photosynthetic rates (P
sat) of P. densiflora inoculated with Pt were clearly higher than for control seedlings at both CO2 concentrations, and the maximum net photosynthetic rate (P
N) at saturated CO2 concentration (P
max) was higher than in controls. Moreover, the carboxylation efficiency (CE) and RuBP regeneration rate of the P
N/C
i curve for P. densiflora inoculated with Pt were significantly higher than for non-inoculated seedlings at both CO2 concentrations, especially at EC. The water use efficiency (WUE) of seedlings inoculated with Pt grown at EC was significantly raised. Allocation of photosynthates to roots was greater in Pt inoculated pine seedlings, because of the enhanced activity of ectomycorrhiza associated with seedlings at EC. Moreover, P
N of non-inoculated seedlings grown for 18 weeks at EC tended to be down regulated; in contrast, Pt inoculated seedlings showed no down-regulation at EC. The activity of ectomycorrhiza may therefore be enhanced physiological function related to water and phosphate absorption in P. densiflora seedlings at EC.This study was partly sponsored by the Ministry of Education, Sport, Culture, Science and Technology of Japan (RR2002, Basic Research B and Sprout study). 相似文献
13.
While it is well-established that the spatial distribution of soil nutrients (soil heterogeneity) influences the competitive
ability and survival of individual plants, as well as the productivity of plant communities, there is a paucity of data on
how soil heterogeneity and global change drivers interact to affect plant performance and ecosystem functioning. To evaluate
the effects of elevated CO2, soil heterogeneity and diversity (species richness and composition) on productivity, patterns of biomass allocation and
root foraging precision, we conducted an experiment with grassland assemblages formed by monocultures, two- and three-species
mixtures of Lolium perenne, Plantago lanceolata and Holcus lanatus. The experiment lasted for 90 days, and was conducted on microcosms built out of PVC pipe (length 38 cm, internal diameter
10 cm). When nutrients were heterogeneously supplied (in discrete patches), assemblages exhibited precise root foraging patterns,
and had higher total, above- and belowground biomass. Greater aboveground biomass was observed under elevated CO2. Species composition affected the below:aboveground biomass ratio and interacted with nutrient heterogeneity to determine
belowground and total biomass. Species richness had no significant effects, and did not interact with either CO2 or nutrient heterogeneity. Under elevated CO2 conditions, the two- and three-species mixtures showed a clear trend towards underyielding. Our results show that differences
among composition levels were dependent on soil heterogeneity, highlighting its potential role in modulating diversity–productivity
relationships.
Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible to authorized users. 相似文献
14.
A controlled environment experiment was conducted to determine the impact of enhanced carbon dioxide and temperature on competition between the C3 grasses Austrodanthonia eriantha and Vulpia myuros. Plants were grown in mixtures and monocultures to compare the responses both with and without an interspecific competitor. Temperature and CO2 were set at current levels (350 ppm CO2; 20 °C day and 10 °C night temperature), in factorial combination with enhanced levels (700 ppm CO2; 23 °C day and 13 °C night temperature). To examine the potential impact of initial seedling size on competition under elevated CO2 and temperature, the two species were combined in mixtures of differing initial sizes. Above-ground growth of all plants was enhanced by increased CO2 and temperature alone, however the combined temperature and CO2 treatment showed a sub-additive effect, where growth was less than expected based on the responses to each factor independently. Austrodanthonia in mixture with Vulpia plants of the same initial size experienced a 27 reduction in growth. Austrodanthonia grown in the presence of an initially larger Vulpia plant experienced a 58 reduction in growth. When the Vulpia plant was initially smaller than Austrodanthonia, growth of the Austrodanthonia was reduced by 16%. The growth of Vulpia appeared to be largely unaffected by the presence of Austrodanthonia. Variation in the CO2 and temperature environment did not affect the pattern of these interspecific interactions, although there was some evidence to suggest that the degree of suppression of Austrodanthonia by Vulpia was less under elevated CO2. These results do not support the initial advantage hypothesis, as Vulpia was always able to suppress Austrodanthonia, regardless of the initial relative sizes of the competitors. Furthermore, the lack of an effect of changing the CO2 or temperature environment on the direction of interspecific competition suggests that the competitiveness of the invasive Vulpia will be minimally affected by changes in atmospheric CO2 concentration or temperature. 相似文献
15.
We describe the long-term effects of a CO2 exhalation, created more than 70 years ago, on a natural C4 dominated sub-tropical grassland in terms of ecosystem structure and functioning. We tested whether long-term CO2 enrichment changes the competitive balance between plants with C3 and C4 photosynthetic pathways and how CO2 enrichment has affected species composition, plant growth responses, leaf properties and soil nutrient, carbon and water dynamics. Long-term effects of elevated CO2 on plant community composition and system processes in this sub-tropical grassland indicate very subtle changes in ecosystem functioning and no changes in species composition and dominance which could be ascribed to elevated CO2 alone. Species compositional data and soil δ13C isotopic evidence suggest no detectable effect of CO2 enrichment on C3:C4 plant mixtures and individual species dominance. Contrary to many general predictions C3 grasses did not become more abundant and C3 shrubs and trees did not invade the site. No season length stimulation of plant growth was found even after 5 years of exposure to CO2 concentrations averaging 610 μmol mol−1. Leaf properties such as total N decreased in the C3 but not C4 grass under elevated CO2 while total non-structural carbohydrate accumulation was not affected. Elevated CO2 possibly lead to increased end-of-season soil water contents and this result agrees with earlier studies despite the topographic water gradient being a confounding problem at our research site. Long-term CO2 enrichment also had little effect on soil carbon storage with no detectable changes in soil organic matter found. There were indications that potential soil respiration and N mineralization rates could be higher in soils close to the CO2 source. The conservative response of this grassland suggests that many of the reported effects of elevated CO2 on similar ecosystems could be short duration experimental artefacts that disappear under long-term elevated CO2 conditions. 相似文献
16.
Makoto Watanabe Masahiro Yamaguchi Chikako Tabe Mayumi Iwasaki Rie Yamashita Ryo Funada Motohiro Fukami Hideyuki Matsumura Yoshihisa Kohno Takeshi Izuta 《Trees - Structure and Function》2007,21(4):421-432
The objectives of this study were to clarify the influences of nitrogen (N) load on the growth and photosynthetic responses
of Quercus serrata seedlings to O3 and to obtain basic data for evaluating the critical levels of O3 for protecting Q. serrata forests in Japan. The effects of O3 and/or N load on growth and photosynthetic activity of Q. serrata seedlings were investigated during the two growing seasons. Two-year-old seedlings were assigned to 12 experimental treatments,
which were comprised of the combination of four gas treatments (charcoal-filtered air and three levels of O3 at 1.0, 1.5 and 2.0 times ambient concentration) and three N treatments (0, 20 and 50 kg ha−1 year−1). During the second growing season, no significant interactive effects of O3 and N load on the growth and net photosynthetic rate of the seedlings were detected. Threrfore, we concluded that N supply
to the soil at ≤50 kg ha−1 year−1 does not significantly influence the growth and photosynthetic responses of Q. serrata seedlings to O3. Based on the O3 exposure-response relationships for the whole-plant growth of the seedlings, the critical level of O3 for Q. serrata was estimated to be approximately 36 nmol mol−1 as the average 15-h O3 concentration during the one growing season. 相似文献
17.
To obtain basic information for evaluating critical loads of acid deposition for protecting Japanese beech forests, growth, net photosynthesis and leaf nutrient status of Fagus crenata seedlings grown for two growing seasons in brown forest soil acidified with H2SO4 or HNO3 solution were investigated. The whole-plant dry mass of the seedlings grown in the soil acidified by the addition of H2SO4 or HNO3 solution was significantly less than that of the seedlings grown in the control soil not supplemented with H+ as H2SO4 or HNO3 solution. However, the degrees of reduction in the whole-plant dry mass and net photosynthetic rate of the seedlings grown in the soil acidified by the addition of H+ as H2SO4 solution at 100 mg l–1 on the basis of air-dried soil volume (S-100 treatment) were greater than those of the seedlings grown in the soil acidified by the addition of H+ as HNO3 solution at 100 mg l–1 (N-100 treatment). The concentrations of Al and Mn in the leaves of the seedlings grown in the S-100 treatment were significantly higher than those in the N-100 treatment. A positive correlation was obtained between the molar ratio of (Ca+Mg+K)/(Al+Mn) in the soil solution and the relative whole-plant dry mass of the seedlings grown in the acidified soils to that of the seedlings grown in the control soil. Based on the results, we concluded that the negative effects of soil acidification due to sulfate deposition are greater than those of soil acidification due to nitrate deposition on growth, net photosynthesis and leaf nutrient status of F. crenata, and that the molar ratio of (Ca+Mg+K)/(Al+Mn) in soil solution is a suitable soil parameter for evaluating critical loads of acid deposition in efforts to protect F. crenata forests in Japan. 相似文献
18.
The maize (Zea mays L.) glyceraldehyde-3-phosphate dehydrogenase gene 4 (GapC4) promoter confers anaerobic gene expression in tobacco (Nicotiana tabacum L.), potato (Solanum tuberosum L.) and Arabidopsis thaliana (L.) Heynh. Here we have investigated its expression in hybrid poplar (Populus tremula × P. alba). Our results show that the promoter is not expressed in leaves and stems under normoxic conditions while anaerobiosis induces reporter gene expression in leaves up to a level observed for the STLS-1 promoter from potato that is shown to confer leaf-specific gene expression in transgenic poplar. Anaerobic induction is cell autonomous and requires a CO2 atmosphere and light. As in tobacco, the GapC4 promoter in poplar is wound inducible. The induction by CO2
and light may reflect a natural situation because flooding, a natural cause of anaerobiosis, is often accompanied by high CO2 concentrations in the floodwater. Our results show that the GapC4
promoter is suitable as an anaerobic reporter and as an inducible gene expression system in poplar.Abbreviations CaMV
cauliflower mosaic virus
- GapC4
glyceraldehyde-3-phosphate dehydrogenase gene 4
- GUS
-glucuronidase
- 4-MU
methylumbelliferone
- STLS-1
stem- and leaf-specific promoter 1 相似文献
19.
Leaf dynamics of a deciduous forest canopy: no response to elevated CO<Subscript>2</Subscript> 总被引:1,自引:0,他引:1
Leaf area index (LAI) and its seasonal dynamics are key determinants of terrestrial productivity and, therefore, of the response of ecosystems to a rising atmospheric CO2 concentration. Despite the central importance of LAI, there is very little evidence from which to assess how forest LAI will respond to increasing [CO2]. We assessed LAI and related leaf indices of a closed-canopy deciduous forest for 4 years in 25-m-diameter plots that were exposed to ambient or elevated CO2 (542 ppm) in a free-air CO2 enrichment (FACE) experiment. LAI of this Liquidambar styraciflua (sweetgum) stand was about 6 and was relatively constant year-to-year, including the 2 years prior to the onset of CO2 treatment. LAI throughout the 1999–2002 growing seasons was assessed through a combination of data on photosynthetically active radiation (PAR) transmittance, mass of litter collected in traps, and leaf mass per unit area (LMA). There was no effect of [CO2] on any expression of leaf area, including peak LAI, average LAI, or leaf area duration. Canopy mass and LMA, however, were significantly increased by CO2 enrichment. The hypothesized connection between light compensation point (LCP) and LAI was rejected because LCP was reduced by [CO2] enrichment only in leaves under full sun, but not in shaded leaves. Data on PAR interception also permitted calculation of absorbed PAR (APAR) and light use efficiency (LUE), which are key parameters connecting satellite assessments of terrestrial productivity with ecosystem models of future productivity. There was no effect of [CO2] on APAR, and the observed increase in net primary productivity in elevated [CO2] was ascribed to an increase in LUE, which ranged from 1.4 to 2.4 g MJ–1. The current evidence seems convincing that LAI of non-expanding forest stands will not be different in a future CO2-enriched atmosphere and that increases in LUE and productivity in elevated [CO2] are driven primarily by functional responses rather than by structural changes. Ecosystem or regional models that incorporate feedbacks on resource use through LAI should not assume that LAI will increase with CO2 enrichment of the atmosphere. 相似文献
20.
The consequences for plant-insect interactions of atmospheric changes in alpine ecosystems are not well understood. Here, we tested the effects of elevated CO2 on leaf quality in two dwarf shrub species (Vaccinium myrtillus and V. uliginosum) and the response of the alpine grasshopper (Miramella alpina) feeding on these plants in a field experiment at the alpine treeline (2,180 m a.s.l.) in Davos, Switzerland. Relative growth rates (RGR) of M. alpina nymphs were lower when they were feeding on V. myrtillus compared to V. uliginosum, and were affected by elevated CO2 depending on plant species and nymph developmental stage. Changes in RGR correlated with CO2-induced changes in leaf water, nitrogen, and starch concentrations. Elevated CO2 resulted in reduced female adult weight irrespective of plant species, and prolonged development time on V. uliginosum only, but there were no significant differences in nymphal mortality. Newly molted adults of M. alpina produced lighter eggs and less secretion (serving as egg protection) under elevated CO2. When grasshoppers had a choice among four different plant species grown either under ambient or elevated CO2, V. myrtillus and V. uliginosum consumption increased under elevated CO2 in females while it decreased in males compared to ambient CO2-grown leaves. Our findings suggest that rising atmospheric CO2 distinctly affects leaf chemistry in two important dwarf shrub species at the alpine treeline, leading to changes in feeding behavior, growth, and reproduction of the most important insect herbivore in this system. Changes in plant-grasshopper interactions might have significant long-term impacts on herbivore pressure, community dynamics and ecosystem stability in the alpine treeline ecotone. 相似文献