首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The properties of substrates and extracellular matrices (ECM) are important factors governing the functions and fates of mammalian adherent cells. For example, substrate stiffness often affects cell differentiation. At focal adhesions, clustered–integrin bindings link cells mechanically to the ECM. In order to quantitate the affinity between cell and substrate, the cell adhesion force must be measured for single cells. In this study, forcible detachment of a single cell in the vertical direction using AFM was carried out, allowing breakage of the integrin–substrate bindings. An AFM tip was fabricated into an arrowhead shape to detach the cell from the substrate. Peak force observed in the recorded force curve during probe retraction was defined as the adhesion force, and was analyzed for various types of cells. Some of the cell types adhered so strongly that they could not be picked up because of plasma membrane breakage by the arrowhead probe. To address this problem, a technique to reinforce the cellular membrane with layer-by-layer nanofilms composed of fibronectin and gelatin helped to improve insertion efficiency and to prevent cell membrane rupture during the detachment process, allowing successful detachment of the cells. This method for detaching cells, involving cellular membrane reinforcement, may be beneficial for evaluating true cell adhesion forces in various cell types.  相似文献   

2.
In this paper a new nanostructured support for the culture of cells is presented. The support consists of fields of sharp and high-aspect-ratio nanoneedles. The support is obtained through a specifically developed process that allows controlling the nanoneedles’s densities and height. The nanoneedles are typically 10 μm high with tip diameters under 200 nm. Cell viability on this support was evaluated through long-term cells cultures. The narrow interface between the cells’ membrane and the nanoneedles has been carefully observed to conclude on the perforation of the cells’ membrane thanks to the sharp nanoneedles. Such a nanostructured chip, allowing specific interaction, opens the door to a large number of exciting and valuable applications such as nanoporation for transfection or internal cell potential recording.  相似文献   

3.
We have developed a device for pinpoint delivery of chemicals, proteins, and nucleic acids into cultured cells. The principle underlying the technique is the flow of molecules from the culture medium into cells through a rupture in the plasma membrane made by a needle puncture. DNA transfection is achieved by stabbing the needle tip into the nucleus. The CellBee device can be attached to any inverted microscope, and molecular delivery can be coupled with conventional live cell imaging. Because the position of the needle relative to the targeted cultured cells is computer-controlled, efficient delivery of molecules such as rhodamine into as many as 100 HeLa cells can be completed in 10 min. Moreover, specific target cells within a single dish can be transfected with multiple DNA constructs by simple changes of culture medium containing different plasmids. In addition, the nano-sized needle tip enables gentle molecular delivery, minimizing cell damage. This method permits DNA transfection into specific hippocampal neurons without disturbing neuronal circuitry established in culture.  相似文献   

4.
Dielectrophoretic force microscopy (DEPFM) and spectroscopy have been performed on individual intact surface-immobilized mammalian red blood cells. Dielectrophoretic force spectra were obtained in situ in ~125 ms and could be acquired over a region comparable in dimension to the effective diameter of a scanning probe microscopy tip. Good agreement was observed between the measured dielectrophoretic spectra and predictions using a single-shell cell model. In addition to allowing for highly localized dielectric characterization, DEPFM provided a simple means for noncontact imaging of mammalian blood cells under aqueous conditions. These studies demonstrate the feasibility of using DEPFM to monitor localized changes in membrane capacitance in real time with high spatial resolution on immobilized cells, complementing previous studies of mobile whole cells and cell suspensions.  相似文献   

5.
In neural cells, nerve growth factor (NGF) initiates its survival signal through the binding to its cell surface receptor tyrosine kinase A (TrkA). Understanding the pattern of TrkA distribution and association in living cells can provide a fingerprint for the diagnostic comparison with alterations underlying ligand-receptor dysfunction seen in various neurological diseases. In this study, we use the NGF-TrkA-specific interaction as a probe to identify TrkA on living PC12 cell by atomic force microscopy (AFM). An NGF-modified AFM tip was used to perform force volume (FV) imaging, generating a 2D force map to illustrate the distribution and association of TrkA on PC12 cell membrane. It is found that TrkA is highly aggregated at local regions of the cell. This unique protein association may be required to promote its function as a receptor of NGF. The methodology that we developed in this study can be adapted by other systems, thus providing a general tool for investigating protein association in its natural environment.  相似文献   

6.
Identification of TrkA on living PC12 cells by atomic force microscopy   总被引:3,自引:0,他引:3  
In neural cells, nerve growth factor (NGF) initiates its survival signal through the binding to its cell surface receptor tyrosine kinase A (TrkA). Understanding the pattern of TrkA distribution and association in living cells can provide a fingerprint for the diagnostic comparison with alterations underlying ligand-receptor dysfunction seen in various neurological diseases. In this study, we use the NGF-TrkA-specific interaction as a probe to identify TrkA on living PC12 cell by atomic force microscopy (AFM). An NGF-modified AFM tip was used to perform force volume (FV) imaging, generating a 2D force map to illustrate the distribution and association of TrkA on PC12 cell membrane. It is found that TrkA is highly aggregated at local regions of the cell. This unique protein association may be required to promote its function as a receptor of NGF. The methodology that we developed in this study can be adapted by other systems, thus providing a general tool for investigating protein association in its natural environment.  相似文献   

7.
Mechanical responses during insertion of a silicon nanoneedle into a living melanocyte were observed by using an atomic force microscope (AFM). In order to study the dependence of the mechanical response on the shape of the nanoneedle, we prepared various shapes of silicon AFM tips by focused-ion beam (FIB) etching. The force curves showed increases up to 0.65-1.9 nN after contact on the cell surface, and then the force dropped corresponding with the penetration of the needle through the cell membrane. The force required for penetration was significantly smaller than that using a normal pyramidal tip. The force curves with a cylindrical tip showed a shorter indenting distance before penetration than that with the cone-shaped tip. It is considered that the information about the geometry of penetrating material leads to the development of more suitable micro- and nano-materials to insert into a living cell for cell surgery.  相似文献   

8.
We studied nanoscale mechanical properties of PC12 living cells with a Force Feedback Microscope using two experimental approaches. The first one consists in measuring the local mechanical impedance of the cell membrane while simultaneously mapping the cell morphology at constant force. As the interaction force is increased, we observe the appearance of the sub-membrane cytoskeleton. We compare our findings with the outcome of other techniques. The second experimental approach consists in a spectroscopic investigation of the cell while varying the tip indentation into the membrane and consequently the applied force. At variance with conventional dynamic Atomic Force Microscopy techniques, here it is not mandatory to work at the first oscillation eigenmode of the cantilever: the excitation frequency of the tip can be chosen arbitrary leading then to new spectroscopic AFM techniques. We found in this way that the mechanical response of the PC12 cell membrane is found to be frequency dependent in the 1 kHz - 10 kHz range. In particular, we observe that the damping coefficient consistently decreases when the excitation frequency is increased.  相似文献   

9.
In probing adhesion and cell mechanics by atomic force microscopy (AFM), the mechanical properties of the membrane have an important if neglected role. Here we theoretically model the contact of an AFM tip with a cell membrane, where direct motivation and data are derived from a prototypical ligand-receptor adhesion experiment. An AFM tip is functionalized with a prototypical ligand, SIRPalpha, and then used to probe its native receptor on red cells, CD47. The interactions prove specific and typical in force, and also show in detachment, a sawtooth-shaped disruption process that can extend over hundreds of nm. The theoretical model here that accounts for both membrane indentation as well as membrane extension in tip retraction incorporates membrane tension and elasticity as well as AFM tip geometry and stochastic disruption. Importantly, indentation depth proves initially proportional to membrane tension and does not follow the standard Hertz model. Computations of detachment confirm nonperiodic disruption with membrane extensions of hundreds of nm set by membrane tension. Membrane mechanical properties thus clearly influence AFM probing of cells, including single molecule adhesion experiments.  相似文献   

10.
Li S  Shi R  Wang Q  Cai J  Zhang S 《Gene》2012,495(2):189-193
Spermatogonial stem cells (SSCs) provide the foundation for spermatogenesis and male fertility. However, spermatogenesis has direct links with some adhesion molecules on SSCs membrane. Β1-integrin (CD29) is such a kind of adhesion molecule and a biomarker of pig's SSCs. Therefore, quantitative characteristics of β1-integrin expression level in a single cell could help us to capture the signal switch and understand the mechanism of spermatogenesis. In this study, atomic force microscopy (AFM) was used to obtain the morphology and ultrastructure of SSCs at nanometer level, and the CD29 Ab-functionalized AFM tip was used to examine β1-integrin distribution on the cell membrane. There were many force-binding spots on about 50% of cell membrane binding to the CD29 Ab-functionalized AFM tip, and the mean bind rupture force was 283.63±12.56PN which was much larger than the non-specific average force 70.75±10.95PN. Meanwhile, β1-integrin on SSCs membrane was distributed non-uniformly, and there were some β1-integrins appeared to be expressed as 150-350 nm nanoclusters on the membrane. Our results discovered the structure of SSCs at nanometer level by AFM. The force between β1-integrin antigen-antibody interactions and the distribution of β1-integrin protein on SSCs membrane were also firstly demonstrated.  相似文献   

11.
Although CD69 is well known as an early T cell‐activation marker, the possibility that CD69 are distributed as nano‐structures on membrane for immune regulation during T cell activation has not been tested. In this study, nanoscale features of CD69 expression on activated T cells were determined using the atomic force microscopy (AFM) topographic and force‐binding nanotechnology as well as near‐field scanning optical microscopy (NSOM)‐/fluorescence quantum dot (QD)‐based nanosacle imaging. Unstimulated CD4+ T cells showed neglectable numbers of membrane CD69 spots binding to the CD69 Ab‐functinalized AFM tip, and no detectable QD‐bound CD69 as examined by NSOM/QD‐based imaging. In contrast, Phytohemagglutinin (PHA)‐activated CD4+ T cells expressed CD69, and displayed many force‐binding spots binding to the CD69 Ab‐functionalized AFM tip on about 45% of cell membrane, with mean binding‐rupture forces 276 ± 71 pN. Most CD69 molecules appeared to be expressed as 100–200 nm nanoclusters on the membrane of PHA‐activated CD4+ T cells. Meanwhile, NSOM/QD‐based nanoscale imaging showed that CD69 were non‐uniformly distributed as 80–200 nm nanoclusters on cell‐membrane of PHA‐activated CD4+ T cells. This study represents the first demonstration of the nano‐biology of CD69 expression during T cell activation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
ABSTRACT: BACKGROUND: Transferring genes and drugs into cells is central to how we now study, identify and treat diseases. Several non-viral gene therapy methods that rely on the mechanical disruption of the plasma membrane have been proposed, but the success of these methods has been limited due to a lack of understanding of the mechanical parameters that lead to cell membrane permeability. METHODS: We use a simple jet of inert gas to induce local transfection of plasmid DNA both in vitro (HeLa cells) and in vivo (chicken chorioallantoic membrane). Five different capillary tube inner diameters and three different gases were used to treat the cells to understand the dependency of transfection efficiency on the dynamic parameters. RESULTS: The simple setup has the advantage of allowing us to calculate the forces acting on cells during transfection. We found permeabilization efficiency was related to the dynamic pressure of the jet. The range of dynamic pressures that led to transfection in HeLa cells was small (200 +/- 20 Pa) above which cell stripping occurred. We determined that the temporary pores allow the passage of dextran up to 40 kDa and reclose in less than 5 seconds after treatment. The optimized parameters were also successfully tested in vivo using the chorioallantoic membrane of the chick embryo. CONCLUSIONS: The results show that the number of cells transfected with the plasmid scales with the dynamic pressure of the jet. Our results show that mechanical methods have a very small window in which cells are permeabilized without injury (200 to 290 Pa). This simple apparatus helps define the forces needed for physical cell transfection methods.  相似文献   

13.
Membrane tension underlies a range of cell physiological processes. Strong adhesion of the simple red cell is used as a simple model of a spread cell with a finite membrane tension-a state which proves useful for studies of both membrane rupture kinetics and atomic force microscopy (AFM) probing of native structure. In agreement with theories of strong adhesion, the cell takes the form of a spherical cap on a substrate densely coated with poly-L-lysine. The spreading-induced tension, sigma, in the membrane is approximately 1 mN/m, which leads to rupture over many minutes; and sigma is estimated from comparable rupture times in separate micropipette aspiration experiments. Under the sharpened tip of an AFM probe, nano-Newton impingement forces (10-30 nN) are needed to penetrate the tensed erythrocyte membrane, and these forces increase exponentially with tip velocity ( approximately nm/ms). We use the results to clarify how tapping-mode AFM imaging works at high enough tip velocities to avoid rupturing the membrane while progressively compressing it to a approximately 20-nm steric core of lipid and protein. We also demonstrate novel, reproducible AFM imaging of tension-supported membranes in physiological buffer, and we describe a stable, distended network consistent with the spectrin cytoskeleton. Additionally, slow retraction of the AFM tip from the tensed membrane yields tether-extended, multipeak sawtooth patterns of average force approximately 200 pN. In sum we show how adhesive tensioning of the red cell can be used to gain novel insights into native membrane dynamics and structure.  相似文献   

14.
Hematoporphyrin monomethyl ether (HMME) has been effectively used to treat solid tumors of some types. However, its application in nasopharyngeal carcinoma has not been studied yet. In this paper, the detailed sonodynamic effects of HMME‐SDT (sonodynamic therapy) on CNE‐2 cells including cell growth inhibition, apoptosis induction, and membrane toxicity were investigated. It was found that HMME alone had less cytotoxicity whereas HMME‐SDT could suppress the cell proliferation in a dose‐dependent manner as detected by MTT assay. The annexin V‐based flow cytometric data indicated that upon SDT, different concentrations of HMME induce distinct types of cell death, apoptosis by low concentration (60 µg/ml) of HMME and necrosis by higher concentration (120 µg/ml). The immunofluorescence of cytoskeleton and nuclei morphology showed that upon HMME‐SDT, the cells became rounding and the cytoskeletal network disappeared, and, the nuclei represented a total fragmented morphology of nuclear bodies. These alternations showed the apoptosis induction by HMME‐SDT. Further AFM study showed that the cell membrane structure and cytoskeleton networks were destroyed, and, the Young's modulus, tip‐cell‐surface adhesion force decreased to 0.22 ± 0.11 Mpa, 35.4 ± 12.8 pN of cells with 120 µg/ml HMME‐SDT from 0.48 ± 0.21 Mpa, 69.6 ± 22.3 pN of native cells, respectively. These membrane changes caused the collapse of mitochondrial transmembrane potential and disturbance of intracellular calcium homeostasis, which was consistent with the results detected by flow cytometry. Therefore, membrane toxicity and cytoskeleton disrupture induced by HMME‐SDT maybe important factors to induce cell apoptosis, and, the disturbance of mitochondrial transmembrane potential and calcium channels might be the apoptosis mechanisms. J. Cell. Biochem. 112: 169–178, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
We have developed a gene transfection method called water-in-oil droplet electroporation (EP) that uses a dielectric oil and a liquid droplet containing live cells and exogenous DNA. When a cell suspension droplet is placed between a pair of electrodes, an intense DC electric field can induce droplet deformation, resulting in an instantaneous short circuit caused by the droplet elongating and contacting the two electrodes simultaneously. Small transient pores are generated in the cell membrane during the short, allowing the introduction of exogenous DNA into the cells. The droplet EP was characterized by varying the following experimental parameters: applied voltage, number of short circuits, type of medium (electric conductivity), concentration of exogenous DNA, and size of the droplet. In addition, the formation of transient pores in the cell membrane during droplet EP and the transfection efficiency were evaluated.  相似文献   

16.
A force-conveying role of the lipid membrane across various mechanoreceptors is now an accepted hypothesis. However, such a mechanism is still not fully understood for mechanotransduction in the hair bundle of auditory sensory hair cells. A major goal of this theoretical assessment was to investigate the role of the lipid membrane in auditory mechanotransduction, especially in generating nonlinear bundle force versus displacement measurements, one of the main features of auditory mechanotransduction. To this end, a hair bundle model that generates lipid membrane tented deformation in the stereocilia was developed. A computational analysis of the model not only reproduced nonlinear bundle force measurements but also generated membrane energy that is potentially sufficient to activate the mechanosensitive ion channel of the hair cell. In addition, the model provides biophysical insight into 1) the likelihood that the channel must be linked in some way to the tip link; 2) how the interplay of the bending and stretching of the lipid bilayer may be responsible for the nonlinear force versus displacement response; 3) how measurements of negative stiffness may be a function of the rotational stiffness of the rootlets; and 4) how the standing tension of the tip link is required to interpret migration of the nonlinear force versus displacement and activation curves. These are all features of hair cell mechanotransduction, but the underlying biophysical mechanism has proved elusive for the last three decades.  相似文献   

17.
The force curve mode of the atomic force microscope (AFM) was applied to extract intrinsic membrane proteins from the surface of live cells using AFM tips modified by amino reactive bifunctional covalent crosslinkers. The modified AFM tips were individually brought into brief contact with the living cell surface to form covalent bonds with cell surface molecules. The force curves recorded during the detachment process from the cell surface were often characterized by an extension of a few hundred nanometers followed mostly by a single step jump to the zero force level. Collection and analysis of the final rupture force revealed that the most frequent force values (of the force) were in the range of 0.4–0.6 nN. The observed rupture force most likely represented extraction events of intrinsic membrane proteins from the cell membrane because the rupture force of a covalent crosslinking system was expected to be significantly larger than 1.0 nN, and the separation force of noncovalent ligand-receptor pairs to be less than 0.2 nN, under similar experimental conditions. The transfer of cell surface proteins to the AFM tip was verified by recording characteristic force curves of protein stretching between the AFM tips used on the cell surface and a silicon surface modified with amino reactive bifunctional crosslinkers. This method will be a useful addition to bionanotechnological research for the application of AFM.  相似文献   

18.
19.
We investigate the mechanical strength of adhesion and the dynamics of detachment of the membrane from the cytoskeleton of red blood cells (RBCs). Using hydrodynamical flows, we extract membrane tethers from RBCs locally attached to the tip of a microneedle. We monitor their extrusion and retraction dynamics versus flow velocity (i.e., extrusion force) over successive extrusion-retraction cycles. Membrane tether extrusion is carried out on healthy RBCs and ATP-depleted or -inhibited RBCs. For healthy RBCs, extrusion is slow, constant in velocity, and reproducible through several extrusion-retraction cycles. For ATP-depleted or -inhibited cells, extrusion dynamics exhibit an aging phenomenon through extrusion-retraction cycles: because the extruded membrane is not able to retract properly onto the cell body, each subsequent extrusion exhibits a loss of resistance to tether growth over the tether length extruded at the previous cycle. In contrast, the additionally extruded tether length follows healthy dynamics. The extrusion velocity L depends on the extrusion force f according to a nonlinear fashion. We interpret this result with a model that includes the dynamical feature of membrane-cytoskeleton association. Tether extrusion leads to a radial membrane flow from the cell body toward the tether. In a distal permeation regime, the flow passes through the integral proteins bound to the cytoskeleton without affecting their binding dynamics. In a proximal sliding regime, where membrane radial velocity is higher, integral proteins can be torn out, leading to the sliding of the membrane over the cytoskeleton. Extrusion dynamics are governed by the more dissipative permeation regime: this leads to an increase of the membrane tension and a narrowing of the tether, which explains the power law behavior of L(f). Our main result is that ATP is necessary for the extruded membrane to retract onto the cell body. Under ATP depletion or inhibition conditions, the aging of the RBC after extrusion is interpreted as a perturbation of membrane-cytoskeleton linkage dynamics.  相似文献   

20.
Cell poking is an experimental technique that is widely used to study the mechanical properties of plant cells. A full understanding of the mechanical responses of plant cells to poking force Is helpful for experimental work. The aim of this study was to numerically investigate the stress distribution of the cell wall, cell turgor, and deformation of plant cells in response to applied poking force. Furthermore, the locations damaged during poking were analyzed. The model simulates cell poking, with the cell treated as a spherical, homogeneous, isotropic elastic membrane, filled with incompressible, highly viscous liquid. Equilibrium equations for the contact region and the non-contact regions were determined by using membrane theory. The boundary conditions and continuity conditions for the solution of the problem were found. The forcedeformation curve, turgor pressure and tension of the cell wall under cell poking conditions were obtained. The tension of the cell wall circumference was larger than that of the meridian. In general, maximal stress occurred at the equator around. When cell deformation increased to a certain level, the tension at the poker tip exceeded that of the equator. Breakage of the cell wall may start from the equator or the poker tip, depending on the deformation. A nonlinear model is suitable for estimating turgor, stress, and stiffness, and numerical simulation is a powerful method for determining plant cell mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号