首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Corn stover is a potential substrate for fermentation processes. Previous work with corn stover demonstrated that lime pretreatment rendered it digestible by cellulase; however, high sugar yields required very high enzyme loadings. Because cellulase is a significant cost in biomass conversion processes, the present study focused on improving the enzyme efficiency using Tween 20 and Tween 80; Tween 20 is slightly more effective than Tween 80. The recommended pretreatment conditions for the biomass remained unchanged regardless of whether Tween was added during the hydrolysis. The recommended Tween loading was 0.15 g Tween/g dry biomass. (The critical relationship was the Tween loading on the biomass, not the Tween concentration in solution.) The 72-h enzymic conversion of pretreated corn stover using 5 FPU cellulase/g dry biomass at 50 degrees C with Tween 20 as part of the medium was 0.85 g/g for cellulose, 0.66 g/g for xylan, and 0.75 for total polysaccharide; addition of Tween improved the cellulose, xylan, and total polysaccharide conversions by 42, 40, and 42%, respectively. Kinetic analyses showed that Tween improved the enzymic absorption constants, which increased the effective hydrolysis rate compared to hydrolysis without Tween. Furthermore, Tween prevented thermal deactivation of the enzymes, which allows for the kinetic advantage of higher temperature hydrolysis. Ultimate digestion studies showed higher conversions for samples containing Tween, indicating a substrate effect. It appears that Tween improves corn stover hydrolysis through three effects: enzyme stabilizer, lignocellulose disrupter, and enzyme effector. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

2.
Freezing constitutes an important unit operation of biotechnological protein production. Effects of freeze‐and‐thaw (F/T) process parameters on stability and other quality attributes of the protein product are usually not well understood. Here a design of experiments (DoE) approach was used to characterize the F/T behavior of L‐lactic dehydrogenase (LDH) in a 700‐mL pilot‐scale freeze container equipped with internal temperature and pH probes. In 24‐hour experiments, target temperature between –10 and –38°C most strongly affected LDH stability whereby enzyme activity was retained best at the highest temperature of –10°C. Cooling profile and liquid fill volume also had significant effects on LDH stability and affected the protein aggregation significantly. Parameters of the thawing phase had a comparably small effect on LDH stability. Experiments in which the standard sodium phosphate buffer was exchanged by Tris‐HCl and the non‐ionic surfactant Tween 80 was added to the protein solution showed that pH shift during freezing and protein surface exposure were the main factors responsible for LDH instability at the lower freeze temperatures. Collectively, evidence is presented that supports the use of DoE‐based systematic analysis at pilot scale in the identification of F/T process parameters critical for protein stability and in the development of suitable process control strategies.  相似文献   

3.
Sugars inhibit protein unfolding during the drying step of lyophilization by replacing hydrogen bonds to the protein lost upon removal of water. In many cases, polymers fail to inhibit dehydration-induced damage to proteins because steric hindrance prevents effective hydrogen bonding of the polymer to the protein's surface. However, in certain cases, polymers have been shown to stabilize multimeric enzymes during lyophilization. Here we test the hypothesis that this protection is due to inhibition of dissociation into subunits during freezing. To test this hypothesis, as a model system we used mixtures of lactate dehydrogenase isozymes that form electrophoretically distinguishable hybrid tetramers during reversible dissociation. We examined hybridization and recovery of catalytic activity during freeze-thawing and freeze-drying in the presence of polymers (dextran, Ficoll, and polyethylene glycol), sugars (sucrose, trehalose, glucose), and surfactants (Tween 80, Brij 35, hydroxy-propyl beta-cyclodextrin). The surfactants did not protect LDH during freeze-thawing or freeze-drying. Rather, in the presence of Brij 35, enhanced damage was seen during both freeze-thawing and freeze-drying, and the presence of Tween 80 exacerbated loss of active protein during freeze-drying. Polymers and sugars prevented dissociation of LDH during the freezing step of lyophilization, resulting in greater recovery of enzyme activity after lyophilization and rehydration. This beneficial effect was observed even in systems that do not form glassy solids during freezing and drying. We suggest that stabilization during drying results in part from greater inherent stability of the assembled holoenzyme relative to that of the dissociated monomers. Polymers inhibit freezing-induced dissociation thermodynamically because they are preferentially excluded from the surface of proteins, which increases the free energy of dissociation and denaturation.  相似文献   

4.
The objectives of the present study were to validate the presence of cytoplasmic and membrane-associated pools of choline acetyltransferase (ChAT) in rat brain synaptosomes, and to evaluate inhibition of these different forms of the enzyme by the nitrogen mustard analogue of choline, choline mustard aziridinium ion (ChM Az). The relative distribution of ChAT and lactate dehydrogenase (LDH) was followed in subfractions of synaptosomes to establish whether ChAT activity associated with salt-washed presynaptic membranes represents membrane-bound protein rather than cytosolic enzyme trapped within undisrupted synaptosomes or revesiculated membrane fragments. The percentage of total synaptosomal ChAT activity (14%) recovered in the final membrane pellet always exceeded that of LDH (6%), lending support to the hypothesis that much of the ChAT associated with the membranes was a membrane bound form of the enzyme. Incubation of purified synaptosomes with ChM Az led to irreversible inhibition of ChAT activity; this loss of enzyme activity could not be accounted for by lysis of nerve terminals during incubation in the presence of the mustard analogue. Subfractionation of the ChM Az-treated nerve terminals revealed that the membrane-bound form of ChAT was inhibited to the greatest extent, followed by the ionically membrane-associated enzyme, with the activity of the water-solubilized enzyme not differing significantly from control. Preparation of the synaptosomal ChAT subfractions from untreated nerve terminals prior to incubation with varying concentrations of ChM Az or naphthylvinylpyridine revealed that under these conditions water-solubilized, ionically membrane-associated, and detergent-solubilized membrane-bound pools of ChAT were not differentially inhibited by either compound.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The enzyme guanylate cyclase is present in both particulate and soluble form in rat lung homogenates. As previously reported, the soluble enzyme can be activated by preincubation in the presence of O2. The inactive (nonactivated) soluble enzyme is also stimulated by nonionic detergents, in the order Tween 20 > Lubrol PX > Triton X-67 > Triton X-100. The activated enzyme, however, was inhibited by these detergents in the reverse order. Sodium deoxycholate and lysolecithin were potent inhibitors of both inactive and activated enzyme. The activity of the particulate enzyme was stimulated by Lubrol PX > Triton X-100 > Triton X-67 > Tween 20. At a low concentration of lysolecithin or deoxycholate the particulate activity was increased; however, when detergent/protein > 1, inhibition was seen. In the case of deoxycholate, the inhibition could be reversed if excess deoxycholate was removed either by chromatography or by forming mixed micelles with Lubrol PX; however, deoxycholate inhibition of the soluble enzyme was irreversible. The stimulation by detergents of the particulate enzyme was apparently the result of solubilization. The effects upon the activity of the soluble enzyme were interpreted in terms of a model which assumes two hydrophobic regions on the enzyme surface. The two regions differ in hydrophobicity with the more hydrophobic region only being exposed as a result of activation. Interaction of a nonionic detergent with the less hydrophobic region stimulates activity, while interaction with the more hydrophobic region results in inhibition.  相似文献   

6.
Lactate dehydrogenase (LDH) is one of the glycolytic enzymes, which have been proved to have the capability to reverse non-specific adsorption on cellular membranous structures in vitro, as well as on the structural proteins of the contractile system of muscle cells. It has been suggested that this binding may play a physiological role, as it alters the enzyme's kinetic properties. Our previous studies on this enzyme showed that its interaction with some anionic phospholipids reveals similar characteristics and similar effect on the activity of the enzyme to those which had been observed for the interaction with membranous structures. Disruption of the lipid bilayers by nonionic detergent (Tween 20) restored the enzyme activity inhibited by the presence of phosphatidylserine (PS) liposomes. In this study, we used the measurement of enzyme tryptophanyl fluorescence spectra to monitor the interaction and possible changes in the enzyme conformation. The investigation provided further evidence of the importance of the bilayer structure in this interaction. Similarly to the effect on the activity of the enzyme, the addition of Tween 20 diminishes the quenching of the LDH tryptophanyl fluorescence, and finally completely restores the fluorescence.  相似文献   

7.
Preparations of heterocysts of Anabaena cylindrica Lemm. had 7- to 8-fold higher activities of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, 2-fold more hexokinase activity, and 0.02 to 0.06 times as much ribulose diphosphate carboxylase and glyceraldehyde 3-phosphate dehydrogenase activities as did whole filaments per milligram soluble protein in cell-free extracts. Time courses of solubilization of glucose 6-phosphate dehydrogenase activity indicated that heterocysts contain 74 to 80% of the total activity of this enzyme in filaments.  相似文献   

8.
A procedure for isolating staphylococcal membranes including preprocessing of the cells with 0.1 M solution of cysteine hydrochloride and subsequent differential centrifugation was developed. The procedure is based on enzymatic lysis with an enzyme preparation from Streptomyces recifensis subsp. lyticus 2435. The membrane preparations had oxidase and dehydrogenase activity and were characterized by a high specific activity of the membrane-bound ATPase. Determination of the cytochrome differential spectra revealed the presence of cytochromes a, b and o in the membrane preparations.  相似文献   

9.
Lactate dehydrogenase is one of the enzymes of the glycolytic path. It has been shown to be able to bind in vitro to cellular membranes. The presence of anionic phospholipids induces changes in the catalytic properties of the enzyme similar to those found when the enzyme is bound to natural membranes. In this study, a nonionic detergent (Tween 20), at concentrations not affecting the catalytic activity of LDH, was used to study the role of the lipid supra-molecular structure in the interaction between pig skeletal muscle lactate dehydrogenase and phosphatidylserine. Tween 20 changes the equilibrium of concentrations between the lipid supra-molecular forms. The detergent at the used concentration values did not alter the activity of the enzyme when it was used on its own, but did diminish the level of inhibition induced by the studied phospholipid. The obtained results showed that the interaction is reversible and that the bilayer structure of the lipid is essential for the inhibition.  相似文献   

10.
Lactate dehydrogenase isozyme X (LDH X), malate dehydrogenase (MDH) and total soluble protein have been determined in lysates of spermatozoa isolated from caput, corpus and cauda of rat epididymis. Transit of spermatozoa through epididymis is accompanied by a reduction of LDH X, MDH and total protein per cell in sexually rested animals. The profiles of reduction along epididymal segments are different for the three variables studied. Mating with receptive females during the 5 days prior to determinations increases significantly the levels of MDH in spermatozoa from all sections of epididymis and produces increase of total soluble protein in the cells contained in cauda.  相似文献   

11.
In connection with transfer of sheep from the lowland near Oslo to mountain pastures at an altitude of 1,200 m above sea level, investigations were carried out in 37 animals to study the effect of physical stress on serum enzymes and other blood constituents. The sheep were adult ewes and lambs. About half of the animals had been accustomed to outdoor life on pasture for more than one month, while the others were moved directly from indoor feeding. Blood was collected before departure, after six hrs. of long-distance transportation by lorry, and after three hrs. of subsequent continuous herding on foot. The following blood components were determined: Aspartate aminotransferase (AspAT = GOT), alanine aminotransferase (A1AT = GPT), α-hydroxybutyrate dehydrogenase (HBD), total lactate dehydrogenase (LDH), LDH isoenzymes, alkaline phosphatase, calcium, inorganic phosphorus, magnesium, blood sugar, total serum proteins, and haemoglobin. In summary, it may be said that the lambs reacted with greater changes of the blood components than adult animals, and that untrained, indoor fed lambs were distinctly more sensitive than those taken from pasture. The “indoor” lambs showed a statistical significant increase from the initial values in AspAT, HBD, total LDH, the isoenzymes LDH3 and LDH4, and blood sugar. Significantly decreased values were recorded in Ga, P, Mg, and total serum protein. Some of these changes, as in Mg and P, were most pronounced after transportation, while elevations of serum enzyme levels continued to increase during the subsequent herding. Based upon the shift in LDH isoenzyme distribution towards a more cathodically dominated pattern it is supposed that the main origin of increased serum enzyme activity was skeletal muscle.  相似文献   

12.
An esterase hydrolyzing Tween 80 (polyoxyethylene sorbitan monooleate) was purified from sonicated cell lysates of Mycobacterium smegmatis ATCC 14468 by DEAE-cellulose, Sephadex G-150, phenyl Sepharose, and diethyl-(2-hydroxypropyl) aminoethyl column chromatography and by subsequent preparative polyacrylamide gel electrophoresis. The molecular weight was estimated to be 36,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 41,000 by gel filtration on a Sephadex G-150 column. The esterase contained a single polypeptide. The esterase was stable to heat treatment at 100 degrees C and to a wide range of pH. The temperature and pH optima for the hydrolysis of Tween 80 were 50 degrees C and 8.3, respectively. The esterase had a narrow substrate specificity; it exhibited a high activity only on compounds having both polyoxyethylene and fatty acyl moieties, such as Tweens. Monoacylglyceride was hydrolyzed more slowly by this esterase and this enzyme exhibited a nonspecific esterase activity on p-nitrophenyl acyl esters, especially those having short chain acyl moieties. The Km and Vmax were 19.2 mM and 1,670 mumol/min per mg of protein for Tween 20, 6.6 mM and 278 mumol/min per mg of protein for Tween 80, and 0.25 mM and 196 mumol/min per mg of protein for p-nitrophenyl acetate, respectively. Observations of the effects of various chemical modifications on the activity of the esterase indicated that tyrosine, histidine, arginine, and methionine (with tryptophan) residues may be active amino acids which play important roles in the expression of Tween 80-hydrolyzing activity of the enzyme.  相似文献   

13.
We have previously demonstrated that synthesis of a 34 kD protein having specific, high affinity for single-stranded DNA (34kD-ssb protein), is markedly inhibited by nerve growth factor (NGF) in the neoplastic clonal cell line PC12. We report here that total content as well as mRNA for this protein are progressively reduced in PC12 cells undergoing mitotic arrest and morphological differentiation induced by NGF. It is also shown that binding of the 34K-ssb protein to ssDNA is fully inhibited by NADH but not by NAD+ or by several other nucleotides. Enzymatic tests on the possible NADH/NAD+-dependent dehydrogenase activity of the 34K-ssb protein have demonstrated that it has lactic dehydrogenase activity (LDH) with a specific activity comparable to that of rabbit muscle. Furthermore, the 34K-ssb protein has the same peptide mapping as LDH purified from rat muscle. Antibodies directed against the 34K-ssb protein cross-react with the rabbit muscle enzyme and, vice versa, antibodies raised against rabbit LDH cross-react with the 34K-ssb protein. It is concluded that the 34K-ssb protein is identifiable with the type M of LDH, although possible differences in primary structure of the two proteins may have escaped the present studies. We hypothesize that interaction of the PC12 lactic dehydrogenase with ssDNA occurs also in vivo, as indicated by the findings reported in the accompanying paper, and may be modulated by the cellular content of NADH which, in turn, is related to energy metabolism.  相似文献   

14.
Plasmodium lactate dehydrogenase (pLDH), owing to unique structural and kinetic properties, is a well known target for antimalarial compounds. To explore a new approach for high level soluble expression of Plasmodium falciparum lactate dehydrogenase (PfLDH) in E. coli, PfLDH encoding sequence was cloned into pQE-30 Xa vector. When transformed E. coli SG13009 cells were induced at 37 °C with 0.5 mM isopropyl β-d-thiogalactoside (IPTG) concentration, the protein was found to be exclusively associated with inclusion bodies. By reducing cell growth temperature to 15 °C and IPTG concentration to 0.25 mM, it was possible to get approximately 82% of expressed protein in soluble form. Recombinant PfLDH (rPfLDH) was purified to homogeneity yielding 18 mg of protein/litre culture. rPfLDH was found to be biologically active with specific activity of 453.8 μmol/min/mg. The enzyme exhibited characteristic reduced substrate inhibition and enhanced kcat [(3.2 ± 0.02) × 104] with 3-acetylpyridine adenine dinucleotide (APAD+). The procedure described in this study may provide a reliable and simple method for production of large quantities of soluble and biologically active PfLDH.  相似文献   

15.
Several oxidative enzymes [NADH-TR (reduced nicotinamide-adenine dinucleotide-tetrazolium reductase), NADPH-TR (reduced nicotinamide-adenine dinucleotide phosphate-tetrazolium reductase), SDH (succinic dehydrogenase) and LDH (lactate dehydrogenase)] were studied by histochemical means during early development of rat and mouse. All investigated enzymes could be easily demonstrated in zygote and also to some extent in somitic stages without any pretreatment. However, in cleavage and early postimplantation stages enzyme activity could be revealed only after the embryos were pretreated in some way. This pretreatment can be fixation with formalin or acetone, freezing and thawing, slight mechanical damage or very prolonged incubation time. The formazan granules as a sign of enzymatic activity were present in all stages of embryonic development and were more abundant in reactions for NADH-TR and LDH than in reactions for NADPH-TR and SDH. Our results suggest that the investigated enzymes are present in all embryonic cells during early development. It seems that the permeability of embryonic cells for histochemical media must be increased otherwise the histochemical reactions cannot be accomplished.  相似文献   

16.
The Escherichia coli genes encoding purine nucleoside phosphorylase, uridine phosphorylase, and thymidine phosphorylase were cloned into pET plasmids to generate highly effective E. coli BL21(DE3) strains producing each of these enzymes. Optimum conditions for biosynthesis of each enzyme as a soluble protein with intact biological activity were found. The crude preparations are approximately 80% pure and can be used immediately for enzymatic transglycosylation. The enzyme preparations were purified to homogeneity by two steps including fractional precipitation with ammonium sulfate and subsequent chromatography on Sephadex G-100 and DEAE-Sephacel.  相似文献   

17.
亮氨酸脱氢酶 (Leucine dehydrogenase,LDH) 是制备l-2-氨基丁酸的关键限速酶,针对该酶的Loop区域进行改造以提高关键酶的酶活及稳定性从而高效合成l-2-氨基丁酸。通过亮氨酸脱氢酶的分子动力学模拟分析均方根涨落 (Root mean square fluctuation,RMSF) 值,对其波动非常明显的Loop区域合理设计以得到比酶活提高的截短突变体EsLDHD2,其比酶活为野生型的123.2%;此外,由于l-2-氨基丁酸制备过程中苏氨酸脱氨酶催化l-苏氨酸制备2-酮丁酸的速率过快导致多酶催化不平衡,因此双拷贝亮氨酸脱氢酶及甲酸脱氢酶以平衡多酶催化速率,构建多酶级联催化的单细胞E. coli BL21/pACYCDuet-RM,其摩尔转化率相较于E. coli BL21/pACYCDuet-RO提高74.6%;对菌株E. coli BL21/pACYCDuet-RM的全细胞转化条件进行优化,其最适pH、温度、底物浓度分别为7.5、35 ℃和80 g/L,此时摩尔转化率大于99%;在1 L转化体系和最适转化条件下分批加入l-苏氨酸80 g和40 g,l-2-氨基丁酸的产量达97.2 g。总之,该策略为l-2-氨基丁酸的制备提供了绿色、高效的合成方法,具有工业化制备药物前体的巨大潜力。  相似文献   

18.
Lactate dehydrogenase from the thermophilic organism Geobacillus stearothermophilus (formerly Bacillus stearothermophilus) (bsLDH) has a crucial role in producing chirally pure hydroxyl compounds. α-Hydroxy acids are used in many industrial situations, ranging from pharmaceutical to cosmetic dermatology products. One drawback of this enzyme is its limited substrate specificity. For instance, l-lactate dehydrogenase exhibits no detectable activity towards the large side chain of 2-hydroxy acid l-mandelic acid, an α-hydroxy acid with anti-bacterial activity. Despite many attempts to engineer bsLDH to accept α-hydroxy acid substrates, there have been no attempts to introduce the industrially important l-mandelic acid to bsLDH. Herein, we describe attempts to change the reactivity of bsLDH towards l-mandelic acid. Using the Insight II molecular modelling programme (except ‘program’ in computers) and protein engineering techniques, we have successfully introduced substantial mandelate dehydrogenase activity to the enzyme. Energy minimisation modelling studies suggested that two mutations, T246G and I240A, would allow the enzyme to utilise l-mandelic acid as a substrate. Genes encoding for the wild-type and mutant enzymes were constructed, and the resulting bsLDH proteins were overexpressed in Escherichia coli and purified using the TAGZyme system. Enzyme assays showed that insertion of this double mutation into highly purified bsLDH switched the substrate specificity from lactate to l-mandelic acid.  相似文献   

19.
The specific activity and total activity of glucose 6-phosphate dehydrogenase (EC 1.1.1.49) under conditions of complete cell breakage fall 10-20-fold during a 3h period of spore germination and outgrowth. The spores must germinate (lose refractility), but do not have to undergo outgrowth, for the loss of activity to occur. Glucose 6-phosphate dehydrogenase activity from cells as any stage of development is completely stable in extracts at 4 degrees C or 30 degrees C. All of the enzyme activity is found in a soluble (50000g supernatant) fraction and remains completely soluble throughout development. Soluble protein and total cellular protein remain constant for about 2h. Proteinases could not be detected or protein turnover demonstrated during the morphogenetic process. Phenylmethanesuophony fluoride and o-phenanthroline, inhibitors of proteolytic enzymes, do not prevent glucose 6-phosphate dehydrogenase inactivation when added to whole cells. Mixing experiments show no inhibitor of glucose 6-phosphate dehydrogenase to be present in late-stage cells. The enzyme is not excreted into the culture medium. Chloramphenicol and rifampicine immediately stop protein synthesis and development but not the inactivation of glucose 6-phosphate dehydrogenase. NaN3, 2,4-dinitrophenol or anaerobiosis immediately stop development and prevent the loss of enzyme activity. A requirement for metabolic energy is therefore probable. Extracts of spores pre-labelled with L[14C]leucine were made at various stages of morphogenesis and subjected to polyacrylamide-gel electrophoresis. Glucose 6-phosphate dehydrogenase, which was identified by a specific stain, did not lose 14C label, and therefore may not be degraded during the inactivation process.  相似文献   

20.
The retina is characterized by glycolysis under aerobic conditions, mediated by lactate dehydrogenase isoenzyme-5 (LDH-5) as well as by the soluble isoenzyme of malate dehydrogenase. Bovine retina LDH and MDH isoenzymes and their activities were studied after polyamine treatment. Our results showed that LDH-5 isoenzyme presented the highest activity in untreated as well as in putrescine-treated retina. Decreased activity was present when the retina was treated with spermidine or spermine. It was demonstrated that retinic LDH-5 had a high affinity for lactate which enabled the isoenzyme to be more effective than the other LDH isoenzymes in the conversion of NADH to NAD. Therefore, the putrescine enhancing LDH-5 activity appeared to be capable of stimulating NAD-mediated rhodopsin regeneration. Putrescine induced a marked increase of both MDH isoenzymes--soluble (s-MDH) and mitochondrial (m-MDH), while spermine and spermidine mostly affected the soluble form of the enzyme. Putrescine induced a three-fold increase in s-MDH and m-MDH activities, while spermine and spermidine induced a four to five-fold increase in s-MDH. These results document the differential effects of polyamine treatment on LDH and MDH isoenzyme activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号