首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developing rainbow trout were chronically exposed to silver (as AgNO(3)) from fertilization to swim-up, in moderately hard water (120 mg CaCO(3)(x)l(-1)) in the presence and absence of an additional 12 mg C/L of dissolved organic carbon (DOC, as humic acid, Aldrich). Nominal silver concentrations were 0, 0.1 and 10 microg l(-1) total silver in a flow-through set-up maintained at 12 degrees C. The objectives of the study were to investigate the possible protective effects of DOC on growth, mortality, time to hatch and swim-up, and sublethal ionoregulatory disturbances during chronic exposure to ionic silver. Throughout development, there was a large increase in % daily mortality at 10 microg(x)l(-1) total silver (in the absence of DOC), that was associated with an ionoregulatory disturbance, in particular a 35% reduction in whole body Na(+) just prior to hatch. At nominal 10 microg(x)l(-1) total silver, the presence of additional DOC (reducing dissolved silver to 4.7+/-0.3 microg l(-1)) resulted in a significant reduction in % daily mortality up to hatch, demonstrating a protective effect of DOC. Interestingly, DOC did not appear to mitigate the ionoregulatory disturbance, with the exception of whole body [Cl(-)] on day 44 of exposure. Exposure to 0.1 microg(x)l(-1) total silver (in the absence of DOC) resulted in a statistically significant reduction in growth, and DOC did not prevent an ionoregulatory disturbance [based upon (J(in) Na(+)), whole body Na(+),K(+) ATPase activity and whole body (Na(+))] at this silver concentration relative to controls+DOC. DOC exerted a direct effect on growth and ionoregulatory development that complicates interpretation of the data, however, these data indicate that protective effects of DOC (in the form of Aldrich humic acid) during chronic silver exposure appear to be less than that observed during acute exposure. The ultimate goal of this and future studies is to develop a model that can predict chronic toxicity on a site-specific basis, taking into account protective effects of various ligands present in different waters, as is presently being employed for some metals during acute exposure.  相似文献   

2.
Rainbow trout embryos and larvae were continuously exposed (at 12.5 degrees C) to waterborne silver in a flow-through setup, from fertilization to swim-up, at nominal silver concentrations of 0, 0.1, or 1.0 microg/L total silver (as AgNO(3)) at three different water Cl(-) levels (30, 300, and 3,000 microM, added as KCl). Exposures were conducted in synthetic soft water (hardness 20 mg CaCO(3)/L generated from reconstituted reverse osmosis freshwater). Continuous exposure to 1.0 microg/L total silver for 58 d at 30 microM water Cl(-) resulted in a pronounced ionoregulatory disturbance (as indicated by a reduction in whole body Na(+),K(+)-ATPase activity, unidirectional Na(+) uptake [Jin Na(+)], and whole body Na(+) and Cl(-) levels) and a reduction in extractable protein and wet weight. Thus, the mechanism of chronic silver toxicity appears to be similar to that observed during acute silver exposure in juvenile and adult fish, specifically an ionoregulatory disturbance. Higher water Cl(-) levels (300 and 3,000 microM Cl(-)) offered some degree of protection from the ionoregulatory disturbance, with only minor protective effects in terms of mortality. The protective effects of water Cl(-) on the toxicity of silver (as AgNO(3)) appear to be far less during chronic than during acute exposure. Mortality and larval Na(+) concentration, Jin Na(+), and Na(+),K(+)-ATPase activity all appear to be correlated with silver body burden and calculated water Ag(+) during chronic silver exposure. Thus, there appears to be potential to model chronic toxicity but not simply by recalibration of an acute model. A chronic model must be based on real chronic data because the protective effects of various ligands appear to be quantitatively very different from those in the acute situation.  相似文献   

3.
Juvenile rainbow trout were exposed to 0, 0.1, 1, 3, and 5 micro g/l silver (Ag, as AgNO3) for 23 days. Specific growth rate, cumulative food consumption, food-conversion efficiency, and critical swimming speed (U(crit)) were significantly reduced during 5 micro g/l Ag exposure, demonstrating a physiological cost of silver acclimation. Only the 5 microg/l Ag treatment had significant cumulative mortality (5.2%). Fish were most susceptible to silver on days 5 and 15. Exposure to 5 microg/l Ag significantly lowered plasma Na+ and Cl- on days 5 and 10, but plasma ion concentration recovered thereafter. Unidirectional Na+ uptake and gill Na/K-ATPase activity were significantly inhibited by 3 and 5 microg/l Ag exposure. Na+ uptake was inhibited by 3 micro g/l Ag at day 5 alone, whereas the effects at the highest Ag exposure persisted until day 15. Gill Na/K-ATPase was inhibited on day 5 in both the 3 and 5 microg/l Ag treatments but increased to approx. 1.5 times of control levels by day 23. Only the 3 and 5 microg/l Ag treatments produced toxicological acclimation (at least twofold elevations in 168-h LC50 values in fish subsampled on days 15 and 23). We conclude that physiological acclimation results from compensatory changes in Na+ transport at the gills, and that these changes may eventually lead to toxicological acclimation.  相似文献   

4.
This study examines the effects of Fenoxycarb on larval growth, and lipid class and fatty acid composition in first crabs of the mud crab Rhithropanopeus harrisii reared through total larval development in nominal water concentrations from 1 to 100 microg/l. In first crabs of R. harrisii, dry weight (microg) decreased significantly (P < 0.05) from 228.8+/-38.2 microg (n = 9) in the controls to 131.8+/-10.1 microg (n = 4) in animals exposed throughout larval development to 100 microg/l. A significant (P < 0.05) reduction was found between total lipid content in the controls and first crabs reared at concentrations greater than 50 microg/l. In relative terms (% dry weight), different lipid classes predominated in the controls and the various fenoxycarb exposure concentrations. There were no significant (P > 0.05) differences among the treatment groups in phospholipid level, while the triglyceride content was significantly lower in crabs exposed to 10 and 100 microg/l. No significant differences in the percent of free fatty acids were found in crabs exposed to 1-10 microg/l and the controls. Free sterols in crabs exposed to concentrations higher than 10 microg/l were below the detection limit. Control animal fatty acid profiles were dominated by palmitic, stearic, and oleic acid, accounting for 48% of total fatty acids (TFA). The fatty acid composition of crabs exposed to 100 microg/l significantly (P < 0.05) differed from the controls. The results suggest that fenoxycarb has substantial effects on growth, lipid class and fatty acid composition in developing larvae of R. harrisii at water concentrations greater than 10 microg/l.  相似文献   

5.
Daphnia magna were exposed to a total concentration of 5.0+/-0.04 microg Ag/l, added as AgNO(3) (dissolved concentration, as defined by 0.45 microm filtration = 2.0+/-0.01 microg Ag/l) in moderately hard synthetic water under static conditions (total organic carbon = 4.80+/-1.32 mg/l) with daily feeding and water renewal, for 21 days. There was no mortality in control daphnids and 20% mortality in silver-exposed animals. Silver exposure caused a small but significant reduction of reproductive performance manifested as a 13.7% decrease in the number of neonates produced per adult per reproduction day over the 21-day exposure. However, silver exposed daphnids also exhibited a much more marked ionoregulatory disturbance, which was characterized by a 65% decrease in whole body Na(+) concentration, and an 81% inhibition of unidirectional whole body Na(+) uptake. Previous work on the acute toxicity of Ag(+) to daphnids has shown that Na(+) uptake inhibition is directly related to inhibition of Na(+),K(+)-ATPase activity. Therefore, we suggest that the Na(+) uptake inhibition seen in response to chronic silver exposure was explained by an inhibition of the Na(+) channels at the apical 'gill' membrane, since a 60% increase in whole body Na(+),K(+)-ATPase activity was observed in the chronically silver-exposed daphnids. Our findings demonstrate that, in broad view, the key mechanism involved in chronic silver toxicity in D. magna, the most acutely sensitive freshwater organism tested up to now, resembles that described for acute toxicity-i.e. ionoregulatory disturbance associated with inhibition of active Na(+) uptake, though the fine details may differ. Our results provide encouragement for future extension of the current acute version of the Biotic Ligand Model (BLM) to one that predicts chronic silver toxicity for environmental regulation and risk assessment. The results strongly suggest that Na(+) uptake inhibition is the best endpoint to determine sensitivity to both acute and chronic toxicity in the scope of future versions of the BLM for silver.  相似文献   

6.
The growth and development of rainbow trout, Salmo gairdneri , from hatch to first feeding depends upon the nutrients stored in the yolk sac. The efficiency ( E ) with which yolk can be converted to larval biomass is a useful measurement in chronic toxicity tests, and it can be simply estimated by comparing the gain in larval weight ( L ) to the loss in yolk weight ( Y ) at hatch (time 0) and at any time t after hatch: E =( L 1− L 0)/( Y 0− Y 1); E may be calculated on a wet or dry weight basis. Although the rates of weight change were constant for the first 15 days after hatch at 10.5° C, E was not. E increased from near 0 and approached a value of 2.1 on a wet weight basis or 0.70 on a dry weight basis after 5–8 days. The variability of E was also very high shortly after hatch, but declined and stabilized within 5–9 days. For toxicity testing, we recommend that E be measured 10–15 days post-hatch to ensure precision with a minimum bias due to dissection error.  相似文献   

7.
Carotenoid (astaxanthin and canthaxanthin) concentrations in everted intestine from rainbow trout (Oncorhynchus mykiss, Walbaum) and Atlantic salmon (Salmo salar, L.) exposed to micelle solubilised carotenoid, have been determined. Following exposure (1 h) to astaxanthin solution (5 mg l(-1)), trout pyloric caeca and mid intestine had higher (P<0.05) mean tissue astaxanthin concentrations (0.50+/-0.08 microg g(-1) and 0.54+/-0.09 microg g(-1), respectively) compared to hind intestine (0.04+/-0.01 microg g(-1); n=11+/-S.E.). Furthermore, the astaxanthin concentration in pyloric caeca (0.50+/-0.08 microg g(-1)) was greater (P<0.05) than that of canthaxanthin (0.11+/-0.01 microg g(-1); n=11, +/-S.E.) when exposed to solutions of similar carotenoid concentration (5.11+/-0.16 mg l(-1) and 5.35+/-0.16 mg l(-1), respectively; n=3+/-S.E.). However, no differences (P>0.05) were recorded between trout and salmon intestinal tissue in terms of astaxanthin concentration following exposure. Trout caeca exposed to astaxanthin solution had significantly (P<0.05) more vitamin A (514.1+/-36.4 microg g(-1)) compared to control tissues (316.5+/-61.7 microg g(-1); n=8+/-S.E.). Vitamin A(1) concentrations in caeca (287.7+/-11.0 microg g(-1)) exposed to astaxanthin solution were significantly higher (P<0.05) compared to controls (174.9+/-26.9 microg g(-1)). However, vitamin A(2) concentrations were not significantly (P>0.05) different (226.3+/-28.2 microg g(-1) and 141.6+/-35.2 microg g(-1), respectively).  相似文献   

8.
The main objective of this study was to determine the effects of copper exposure on copper accumulated in branchial tissue, gill Na+/K+-ATPase activity and plasma Na+, Cl-, osmolality, protein, glucose and cortisol, in Oreochromis niloticus. Fish were experimentally exposed to 40 and 400 microg L(-1) of waterborne copper and sacrified after 0, 3, 7, 14 and 21 days. Copper accumulation and Na+/K+-ATPase activity were determined in branchial tissue, whereas osmolality, Na+, Cl-, protein, glucose and cortisol concentrations were measured in plasma samples. Gill copper accumulation increased linearly with exposure time and concentration, whereas gill Na+/K+-ATPase activity was maximally inhibited after 3 days of exposure and showed a significant negative correlation with copper tissue levels. Plasma Cl- values decreased with time of exposure but only at 400 microg L(-1) of copper. Plasma Na+, protein and osmolality decreased with exposure time at the highest copper concentration tested, whereas at 40 microg L(-1) of copper this effect was only observed after 21 days of exposure. Plasma glucose and cortisol levels increased in a dose and time dependent manner, while showing complex fluctuations during the intermediate exposure times. In conclusion, copper induces an early maximum inhibition of gill Na+/K+-ATPase activity in O. niloticus. The subsequent slow decrease in ion plasma levels was related to compensatory mechanisms involving a non-specific stress response that appeared overcome at long-term exposures.  相似文献   

9.
A time course analysis using (110m)Ag, (24)Na(+), and (36)Cl(-) examined gill silver accumulation and the mechanism by which waterborne silver (4.0 x 10(-8) M; 4.3 microg/l) inhibits Na(+) and Cl(-) uptake in gills of freshwater rainbow trout. Analyses of gill and body fluxes allowed calculation of apical uptake and basolateral export rates for silver, Na(+), and Cl(-). To avoid changes in silver bioavailability, flow-through conditions were used to limit the buildup of organic matter in the exposure water. For both Na(+) and Cl(-) uptake, apical entry, rather than basolateral export, was the rate-limiting step; Na(+) and Cl(-) uptake declined simultaneously and equally initially, with both uptakes reduced by approximately 500 nmol.g(-1).h(-1) over the 1st h of silver exposure. There was a further progressive decline in Na(+) uptake until 24 h. Carbonic anhydrase activity was inhibited by 1 h, whereas Na(+)-K(+)-ATPase activity was not significantly inhibited until 24 h of exposure. These results indicate that carbonic anhydrase inhibition can explain the early decline in Na(+) and Cl(-) uptake, whereas the later decline is probably related to Na(+)-K(+)-ATPase blockade. Contrary to previous reports, gill silver accumulation increased steadily to a plateau. Despite the rapid inhibition of apical Na(+) and Cl(-) uptake, apical silver uptake (and basolateral export) increased until 10 h, before decreasing thereafter. Thus silver did not inhibit its own apical uptake in the short term. These results suggest that reduced silver bioavailability is the mechanism behind the pattern of peak and decline in gill silver accumulation previously reported for static exposures to silver.  相似文献   

10.
Seasonal changes in endogenous Na+, K(+)-ATPase activity were measured in pyloric ceca and posterior intestine of juvenile chinook salmon (Oncorhynchus tshawytscha) maintained in fresh water over 18 months. In tissues from these same fish, the in vitro responsiveness of Na+, K(+)-ATPase activity to 10 microg cortisol/ml was assessed. There were pronounced increases in endogenous Na+, K(+)-ATPase activity in summer for both intestinal regions, in underyearlings and yearlings. In pyloric ceca, a significant positive response of Na+, K(+)-ATPase activity to cortisol, in vitro, was restricted to the months preceding increases in endogenous Na+, K(+)-ATPase and the month afterward. Na+, K(+)-ATPase activity of the posterior intestine was only responsive to cortisol in underyearlings in the period before the peak in endogenous enzyme activity. At a time when explants were responsive to cortisol, in vitro exposure to 0.1-10 microg cortisol/ml resulted in dose-dependent elevations of Na+, K(+)-ATPase activity over controls (0 microg cortisol/ml). The results show that the intestine exhibits increased enzymatic potential for water absorption that is indicative of parr-smolt transformation. Alterations in tissue responsiveness to cortisol may contribute to these changes in Na+, K(+)-ATPase activity of pyloric ceca.  相似文献   

11.
Glucocorticoids hypersensitivity may be involved in the development of abdominal obesity and insulin resistance. Eight normal weight and eight obese women received on two occasions a 3-h intravenous infusion of saline or hydrocortisone (HC) (1.5 microg x kg(-1) x min(-1)). Plasma cortisol, insulin, and glucose levels were measured every 30 min from time(-30) (min) (time(-30)) to time(240). Free fatty acids, adiponectin, and plasminogen activator inhibitor-1 (PAI-1) levels were measured at time(-30), time(180), and time(240). At time(240), subjects underwent an insulin tolerance test to obtain an index of insulin sensitivity (K(ITT)). Mean(30-240) cortisol level was similar in control and obese women after saline (74 +/- 16 vs. 75 +/- 20 microg/l) and HC (235 +/- 17 vs. 245 +/- 47 microg/l). The effect of HC on mean(180-240) insulin, mean(180-240) insulin resistance obtained by homeostasis model assessment (HOMA-IR), and K(ITT) was significant in obese (11.4 +/- 2.0 vs. 8.2 +/- 1.3 mU/l, P < 0.05; 2.37 +/- 0.5 vs. 1.64 +/- 0.3, P < 0.05; 2.81 +/- 0.9 vs. 3.32 +/- 1.02%/min, P < 0.05) but not in control women (3.9 +/- 0.6 vs. 2.8 +/- 0.5 mU/l; 0.78 +/- 0.1 vs. 0.49 +/- 0.1; 4.36 +/- 1.1 vs. 4.37 +/- 1.2%/min). In the whole population, the quantity of visceral fat, estimated by computerized tomography scan, was correlated with the increment of plasma insulin and HOMA-IR during HC infusion [Delta mean(30-240) insulin (r = 0.61, P < 0.05), Delta mean(30-240) HOMA-IR (r = 0.66, P < 0.01)]. The increase of PAI-1 between time(180) and time(240) after HC was higher in obese women (+25%) than in controls (+12%) (P < 0.05), whereas no differential effect between groups was observed for free fatty acids or adiponectin. A moderate hypercortisolism, equivalent to that induced by a mild stress, has more pronounced consequences on insulin sensitivity in abdominally obese women than in controls. These deleterious effects are correlated with the amount of visceral fat.  相似文献   

12.
A suite of respiratory, acid-base, ionoregulatory, hematological, and stress parameters were examined in adult rainbow trout (Oncorhynchus mykiss) after chronic exposure to a sublethal level of dietary Cd (500 mg/kg diet) for 45 days and during a subsequent challenge to waterborne Cd (10 microg/L) for 72 h. Blood sampling via an indwelling arterial catheter revealed that dietary Cd had no major effects on blood gases, acid-base balance, and plasma ions (Ca(2+), Mg(2+), K(+), Na(+), and Cl(-)) in trout. The most notable effects were an increase in hematocrit (49%) and hemoglobin (74%), and a decrease in the plasma total ammonia (43%) and glucose (49%) of the dietary Cd-exposed fish relative to the nonexposed controls. Dietary Cd resulted in a 26-fold increase of plasma Cd level over 45 days (approximately 24 ng/mL). The fish exposed to dietary Cd showed acclimation with increased protection against the effects of waterborne Cd on arterial blood P(aCO2) and pH, plasma ions, and stress indices. After waterborne Cd challenge, nonacclimated fish, but not Cd-acclimated fish, exhibited respiratory acidosis. Plasma Ca(2+) levels declined from the prechallenge level, but the effect was more pronounced in nonacclimated fish (44%) than in Cd-acclimated fish (14%) by 72 h. Plasma K(+) was elevated only in the nonacclimated fish. Similarly, waterborne Cd caused an elevation of all four traditional stress parameters (plasma total ammonia, cortisol, glucose, and lactate) only in the nonacclimated fish. Thus, chronic exposure to dietary Cd protects rainbow trout against physiological stress caused by waterborne Cd and both dietary and waterborne Cd should be considered in determining the extent of Cd toxicity to fish.  相似文献   

13.
The aim of this study was to determine the effects of chronic waterborne copper (Cu) exposure on the acute stress-induced cortisol response and associated physiological consequences in rainbow trout (Oncorhynchus mykiss). Trout were exposed to 30 μg Cu/L in moderately hard water (120 mg/L as CaCO(3)) for 40 days, following which time the acute cortisol response was examined with a series of stressors. At 40 days, a 65% increase in Cu was observed in the gill, but no accumulation was observed in the liver, brain or head kidney. Stressors such as air exposure or confinement did not elicit an increase in circulating cortisol levels for Cu-exposed fish, in contrast to controls. However, this inhibitory effect on the acute cortisol response appeared to have few implications on the ability of Cu-exposed fish to maintain ion and carbohydrate homeostasis. For example, plasma Na(+), Ca(2+) and glucose levels as well as hepatic glycogen levels were the same post-stress in control and Cu-exposed fish. Trout were also challenged with exposure to 50% seawater for 48 h, where Cu-exposed trout maintained plasma Na(+), glucose and hepatic glycogen levels. However, Cu-exposed fish experienced decreased plasma K(+) levels throughout the Cu exposure and stress tests. In conclusion, chronic Cu exposure resulted in the abolition of an acute cortisol response post-stress. There was no Cu accumulation in the hypothalamus-pituitary-interrenal axis (HPI axis) suggesting this was not a direct toxic effect of Cu on the cortisol regulatory pathway. However, the lack of an acute cortisol response in Cu-exposed fish did not impair the ability of the fish to maintain ion and carbohydrate homeostasis. This effect on cortisol may be a strategy to reduce costs during the chronic stress of Cu exposure, and not endocrine disruption as a result of toxic injury.  相似文献   

14.
The effects of cadmium and zinc mixtures at concentrations ranging from 0.1 to 10,000 microg l(-1) on the life-span of decaudized cercarial bodies (cercariae that have shed their tails) of Diplostomum spathaceum (Trematoda: Diplostomatidae) was investigated. Cercariae were exposed to metal mixtures of equal and unequal concentrations, and a low-dose pre-treatment followed by a high-dose exposure mixtures. Metal mixtures demonstrated variable effects on decaudized cercariae either by increasing or reducing their life-span compared to single metal exposures dependent on concentration and the type of mixed metal treatment. Prolonged exposure to equal metal mixtures at low concentrations (0.1-100 microg l(-1)) resulted in a reduction in the life-span of decaudized cercariae at 0.1 and 100 microg l(-1) in those individuals decaudized during the initial 24 h exposure period compared with those decaudized during the final 24 h period of cercarial survival, whilst in controls there was no significant life-span change between the two time periods. Decaudized cercariae which were exposed to low concentrations (0.1-100 microg l(-1)) of equal metal mixtures were also evaluated for their role as an indicator of larval 'fitness' for migrating through the tissues of their target fish host for those individuals decaudized during the initial 24 h exposure period, and demonstrated only a limited change in their life-span compared to control and single metal exposures. The importance of metal mixtures in parasite establishment in the fish host is discussed.  相似文献   

15.
Pentachlorophenol (PCP) is widely used to control termites and protect wood from fungal-rot and wood-boring insects, and is often detected in the aquatic environment. Few studies have evaluated PCP as an environmental endocrine disruptor. In the present work, Japanese medaka (Oryzias latipes) was exposed to PCP for 28 days (F0 generation) with subsequent measurements of vitellogenin (VTG), hepatic 7-ethoxyresorufin-O-deethylase (EROD), and reproductive endpoints. Plasma VTG significantly increased in male fish treated with PCP concentrations lower than 200 microg/l and decreased in male and female animals exposed to 200 microg/l. Hepatic EROD from female fish increased when PCP exposure concentrations exceeded 20 microg/l, but decreased in the 200 microg/l PCP treatment group. Fecundity and mean fertility of female medaka decreased significantly in the second and third week following exposure concentrations greater than 100 microg/l, and testis-ova of male medaka was observed at PCP concentrations greater than 50 microg/l. Histological lesions of liver and kidney occurred when exposure concentrations exceeded 50 microg/l. In F1 generations, the hatching rates and time to hatch of offspring were significantly affected in fish exposed to 200 microg/l. These results indicated that PCP exposure caused responses consistent with estrogen and aryl hydrocarbon receptor activation as well as reproductive impairment at environmentally relevant concentrations.  相似文献   

16.
Cadmium (Cd) is a ubiquitous element and an important anthropogenic metal contaminant. A series of assays were modified or developed for Japanese medaka (Oryzias latipes), and used to compare the effects of Cd exposure on indicators of endocrine function in adult animals previously exposed in ovo or as hatchlings. Adults were raised either from eggs produced during a 2 week exposure to 0-10 microg/l Cd or from fry exposed for 2 weeks beginning 2 days after hatching. The reproductive capacity of the resulting adults was determined during a 2 week period during which half of the animals were re-exposed to Cd. Two week Cd exposure did not result in reproductive impairment despite producing some changes in circulating steroid concentration. In addition, 1 microg/l cadmium exposure in ovo elevated male hepatic vitellogenin (VTG) relative to controls. Hence, steroid parameters were a better biomarker of cadmium exposure than changes in VTG. However, reproductive impairment was not correlated to change in VTG or plasma steroids.  相似文献   

17.
Sixteen castrated male goats were randomly allocated into two groups (Control n=8; Experiment n=8) to investigate the effects of cysteamine on surgery-induced cellular immune suppression. The experiment commenced with 13 d of pre-operation (pre-Op), which contained 3 d of roughage-fed period (RP) and 10 d of roughage + concentrate-fed period (RCP), followed by first operation (Op-1) and then the second operation (Op-2). The goats were allowed to have 14 d of recovery between two operations. The fistulas were fixed to rumen walls in Op-1 and to duodenal walls in Op-2. Cysteamine (15 mg x kg(-1) x BW x d(-1)) was added to diet and fed to goats in Exp. group since RCP of pre-Op through whole experimental period. Blood was sampled through jugular vein from goats of both groups at pre-feeding of the last day of RP and RCP, 8 d after Op-1, 4 d and 13 d after Op-2, respectively to determine serum concentration of interlukin-2 (IL-2), cortisol, as well as PHA-stimulated lymphocytic proliferation rate (SI). In pre-operative periods there were no significant differences in concentration of IL-2 (0.82+/-0.1 vs 1.03+/-0.22 microg l(-1)) and cortisol (20.48+/-4.52 vs 20.80+/-9.93 microg l(-1)), as well as lymphocytic SI (90.72+/-7.25 vs 129.22+/-18.59) between Control and Exp. groups. The concentrations of IL-2 (0.82+/-0.1 vs 0.73+/-0.08 vs 0.55+/-0.12 microg l(-1)) and lymphocytic SI (90.72+/-7.25 vs 49.31+/-6.4 vs 7.09+/-1.66) in Control were depressed acutely (P<0.05), but cortisol concentration elevated (20.48+/-4.52 vs 26.67+/-10.51 vs 32.33+/-3.29 microg l(-1)) in post-operative periods (8 d after Op-1 and 4 d after Op-2), compared with those in RCP. While they remained unaltered in Exp. group except a slight decrease of lymphocytic SI at 4 d after Op-2. The different responses of Control and Exp. groups to surgery stress led to a 80-90% higher of IL-2 and about 3 times greater of SI in Exp. than those in Control, which was contributed by cysteamine administration. Our data show that in operated goats the cellular immune was suppressed by surgery stress, cysteamine administration prevented decreases of IL-2 and lymphocytic SI and increase of cortisol induced by surgery stress, consequently attenuates surgery-induced suppression of cellular immune activity.  相似文献   

18.
Short sleep appears to be strongly associated with obesity and altered metabolic function, and sleep and growth hormone (GH) secretion seems interlinked. In obesity, both the GH-insulin-like-growth-factor-I (GH-IGF-I) axis and sleep have been reported to be abnormal, however, no studies have investigated sleep in relation to the GH-IGF-I axis and weight loss in obese subjects. In this study polygraphic sleep recordings, 24-h GH release, 24-h leptin levels, free-IGF-I, total-IGF-I, IGF-binding protein-3 (IGFBP-3), acid-labile subunit (ALS), cortisol and insulin sensitivity were determined in six severely obese subjects (BMI: 41+/-1 kg/m(2), 32+/-2 years of age), cross-sectional at baseline, and longitudinal after a dramatically diet-induced weight loss (36+/-7 kg). Ten age- and gender-matched nonobese subjects served as controls. Sleep duration (360+/-17 vs. 448+/-15 min/night; P<0.01), 24-h GH (55+/-9 vs. 344+/-55 mU/l.24 h; P<0.01), free-IGF-I (2.3+/-0.42 vs. 5.7+/-1.2 microg/l; P<0.01), and total-IGF-I (186+/-21 vs. 301+/-18 microg/l; P<0.01) were significantly decreased and 24-h leptin levels were increased (35+/-5 vs. 12+/-3 microg/l; P<0.01) in obese subjects at pre-weight loss compared with nonobese subjects After diet-induced weight loss the differences in GH, free IGF-I, and leptin were no longer present between previously obese and nonobese subjects, whereas a significant difference in sleep duration and total IGF-I levels persisted. Rapid eye movement (REM) sleep, non-REM sleep, IGFBP-3, ALS, and cortisol levels were similar in obese and nonobese subjects. Sleep duration, 24-h GH, and IGF-I levels were decreased and 24-h leptin levels were increased in obese subjects. We conclude that hyposomatotropism and hyperleptinemia in obesity are transient phenomena reversible with weight loss, whereas short sleep seems to persist after weight has been reduced dramatically.  相似文献   

19.
We examined the influence of dissolved organic carbon (DOC) on the bioavailability of waterborne Cu to rainbow trout (Oncorhynchus mykiss) during chronic sublethal exposure. Juvenile rainbow trout were exposed to Cu (as CuSO(4)) and DOC as humic acid (HA, as sodium salt) for one month in synthetic soft water to give treatments with varying combinations of free ionic and HA complexed Cu. The total Cu concentration was 7 microg/l for all treatments (except controls) and HA was added at levels of 0, 2.5 and 7.5 mg/l which corresponded to DOC levels of 1.2, 2.2 and 4.0 mg/l. Fish grew well in all treatments and no mortalities occurred. Cu was highly bioavailable in the treatment with no added HA; gill and liver Cu accumulation occurred as well as a disruption of Na(+) regulation. In Cu treatments with additions of both 2.5 and 7.5 mg/l HA, there was no significant tissue accumulation of Cu. The addition of HA alleviated and delayed the disruption of iono-regulatory mechanisms. A recovery of plasma Na(+) losses was observed and this was associated with an increase in gill Na(+)/K(+) ATPase activity by the end of the exposure. Following the month of chronic exposure the uptake and turnover rates of Cu at the gills and into various tissue compartments were measured through radioisotopic techniques ((64)Cu). While chronic Cu exposure did not result in acclimation (i.e. increased LC50), the uptake rate and extent of Cu uptake into the gills and liver was increased. This study demonstrates that growth and tissue accumulation of Cu are poor predictors of the chronic effects of Cu, and illustrates that HA moderates chronic Cu bioavailability. The lack of a link between Cu bioaccumulation and Cu impact and the role of organic matter in reducing the bioavailability of Cu are important considerations in the context of ecological risk assessment.  相似文献   

20.
In ovo feeding (IOF) of l-arginine (Arg) can affect growth performance of broilers, but the response of IOF of Arg on breast muscle growth is unclear, and the mechanism involved in protein deposition remains unknown. Hense, this experiment was conducted to evaluate the effects of IOF of Arg on breast muscle growth and protein-deposited signalling in post-hatch broilers. A total of 720 fertile eggs were collected from 34-week-old Arbor Acres breeder hens and distributed to three treatments: (1) non-injected control group; (2) 7.5 g/l (w/v) NaCl diluent-injected control group; (3) 0.6 mg Arg/egg solution-injected group. At 17.5 days of incubation, fertile eggs were injected 0.6 ml solutions into the amnion of the injected groups. Upon hatching, 80 male chicks were randomly assigned to eight replicates of 10 birds each and fed ad libitum for 21 days. The results indicated that IOF of Arg increased relative breast muscle weight compared with those of control groups at hatch, 3-, 7- and 21-day post-hatch (P<0.05). In the Arg-injected group, the plasma total protein and albumen concentrations were higher at 7- and 21-day post-hatch than those of control groups (P<0.05). The alanine aminotransferase activity in Arg group was higher at hatch than that of control groups (P<0.05). The levels of triiodothyronine at four time points and thyroxine hormones at hatch, 7- and 21-day post-hatch in Arg group were higher than those of control groups (P<0.05). In addition, IOF of Arg increased the amino acid concentrations of breast muscle at hatch, 7- and 21-day post-hatch (P<0.05). In ovo feeding of Arg also enhanced mammalian target of rapamycin, ribosomal protein S6 kinase-1 and eIF4E-bindingprotein-1 messenger RNA expression levels at hatch compared with those of control groups (P<0.05). It was concluded that IOF of Arg treatment improved breast muscle growth, which might be associated with the enhancement of protein deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号