首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
We have examined the interaction of hepatic phenylalanine hydroxylase with the phenylalanine analogs, tryptophan and the diastereomers of 3-phenylserine (beta-hydroxyphenylalanine). Both isomers of phenylserine are substrates for native phenylalanine hydroxylase at pH 6.8 and 25 degrees C, when activity is measured with the use of the dihydropteridine reductase assay coupled with NADH in the presence of the synthetic cofactor, 6-methyl-5,6,7,8-tetrahydropterin. However, while erythro-phenylserine exhibits simple Michaelis-Menten kinetics (Km = 1.2 mM, Vmax = 1.2 mumol/min X min) under these conditions, the threo isomer exhibits strong positive cooperativity (S0.5 = 4.8 mM Vmax = 1.4 mumol/min X mg, nH = 3). Tryptophan also exhibits cooperativity under these conditions (S0.5 = 5 mM, Vmax = 1 mumol/min X mg, nH = 3). The presence of 1 mM lysolecithin results in a hyperbolic response of phenylalanine hydroxylase to tryptophan (Km = 4 mM, Vmax = 1 mumol/min X mg) and threo-phenylserine (Km = 2 mM, Vmax = 1.4 mumol/min X mg). erythro-Phenylserine is a substrate for native phenylalanine hydroxylase in the presence of the natural cofactor, L-erythro-tetrahydrobiopterin (BH4) (Km = 2 mM, Vmax 0.05 mumol/min X mg, nH = 2). Preincubation of phenylalanine hydroxylase with erythro-phenylserine results in a 26-fold increase in activity upon subsequent assay with BH4 and erythro-phenylserine, and hyperbolic kinetic plots are observed. In contrast, both threo-phenylserine and tryptophan exhibit negligible activity in the presence of BH4 unless the enzyme has been activated. The product of the reaction of phenylalanine hydroxylase with either isomer of phenylserine was identified as the corresponding p-hydroxyphenylserine by reaction with sodium periodate and nitrosonaphthol. With erythro-phenylserine, the hydroxylation reaction is tightly coupled (i.e. 1 mol of hydroxyphenylserine is formed for every mole of tetrahydropterin cofactor consumed), while with threo-phenylserine and tryptophan the reaction is largely uncoupled (i.e. more cofactor consumed than product formed). Erythro-phenylserine is a good activator, when preincubated with phenylalanine hydroxylase (A0.5 = 0.2 mM), with a potency about one-third that of phenylalanine (A0.5 = 0.06 mM), while threo-phenylserine (A0.5 = 6 mM) and tryptophan (A0.5 approximately 10 mM) are very poor activators. Addition of 4 mM tryptophan or threo-phenylserine or 0.2 mM erythro-phenylserine to assay mixtures containing BH4 and phenylalanine results in a dramatic increase in the hydroxylation at low concentrations of phenylalanine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The eukaryotic translation initiation factor eIF-4D is the only protein known to contain the unusual amino acid hypusine, a posttranslationally modified lysine. For the production of monoclonal antibodies the hypusine-containing protein (HP) was isolated from Dictyostelium discoideum. Using these monoclonal antibodies, a full-length cDNA clone was isolated from a lambda gt11 library. The D. discoideum HP consists of 169 amino acids and has a molecular mass of 18.3 kDa. It is encoded by a single gene. Tryptic and cyanogen bromide peptides were prepared from the purified protein and sequenced. The hypusine residue is located at amino acid position 65 of the HP. The corresponding mRNA of approx. 0.6 kb is present throughout the life cycle of D. discoideum.  相似文献   

6.
Two different cDNA clones denoted pTO270-6 and pTO270-11 represent two mRNAs that are developmentally regulated during spore germination in Dictyostelium discoideum. The respective mRNAs are found only during early germination and are not present in other stages of growth or multicellular development. Four different genomic clones that hybridize to sequences that are common to both of the 270 cDNA clones were isolated from Dictyostelium libraries and sequenced. Two are the genes for the two cDNAs, and the other two represent genes that do not seem to be transcribed. All four genomic sequences possess a very unusual internal feature in the deduced protein sequences composed of a monotonous repeat of the tetrapeptide threonine-glutamic acid-threonine-proline. The other portions of the proteins have no homology among themselves. The deduced protein corresponding to the 270-6 gene is very similar to avocado (Persea americana) cellulase. Since cellulose in the spore wall has to be digested during spore germination this suggests that this protein may function as an endo-(1,4)-beta-D-glucanase during germination.  相似文献   

7.
Cao J  Shi F  Liu X  Huang G  Zhou M 《FEBS letters》2010,584(23):4775-4782
A study was performed to investigate the phylogenetic relationship among AAAH members and to statistically evaluate sequence conservation and functional divergence. In total, 161 genes were identified from 103 species. Phylogenetic analysis showed that well-conserved subfamilies exist. Exon-intron structure analysis showed that the gene structures of AAAH were highly conserved across some different lineage species, while some species-specific introns were also found. The dynamic distribution of ACT domain suggested one gene fusion event has occurred in eukaryota. Significant functional divergence was found between some subgroups. Analysis of the site-specific profiles revealed critical amino acid residues for functional divergence. This study highlights the molecular evolution of this family and may provide a starting point for further experimental verifications.  相似文献   

8.
9.
10.
11.
PH8 monoclonal antibody has previously been shown to react with all three aromatic amino acid hydroxylases, being particularly useful for immunohistochemical staining of brain tissue [Haan, Jennings, Cuello, Nakata, Chow, Kushinsky, Brittingham & Cotton (1987) Brain Res. 426, 19-27]. Western-blot analysis of liver extracts showed that PH8 reacted with phenylalanine hydroxylase from a wide range of vertebrate species. The epitope for antibody PH8 has been localized to the human phenylalanine hydroxylase sequence between amino acid residues 139 and 155. This highly conserved region of the aromatic amino acid hydroxylases has 11 out of 17 amino acids identical in phenylalanine hydroxylase, tyrosine hydroxylase and tryptophan hydroxylase.  相似文献   

12.
13.
Activation of phenylalanine hydroxylase by phenylalanine   总被引:5,自引:0,他引:5  
  相似文献   

14.
Acholeplasma laidlawii possesses a biochemical pathway for tyrosine and phenylalanine biosynthesis, while Mycoplasma iowae and Mycoplasma gallinarum do not. The detection of 7-phospho-2-dehydro-3-deoxy-D-arabino-heptonate (DAHP) synthase (EC 4.1.2.15), dehydro-shikimate reductase (EC 1.1.1.25) and 3-enol-pyruvoylshikimate-5-phosphate synthase (EC 2.5.1.19) activities in cell-free extracts established the presence in A. laidlawii of a functional shikimate pathway. L-Phenylalanine synthesis occurs solely through the phenylpyruvate route via prephenate dehydratase (EC 4.2.1.51), no arogenate dehydratase activity being found. Although arogenate dehydrogenase was detected, L-tyrosine synthesis appears to occur mainly through the 4-hydroxyphenylpyruvate route, via prephenate dehydrogenase (EC 1.3.1.12), which utilized NAD+ as a preferred coenzyme substrate. L-Tyrosine was found to be the key regulatory molecule governing aromatic biosynthesis. DAHP synthase was feedback inhibited by L-tyrosine, but not by L-phenylalanine or L-tryptophan; L-tyrosine was a potent feedback inhibitor of prephenate dehydrogenase and an allosteric activator of prephenate dehydratase. Chorismate mutase (EC 5.4.99.5) was sensitive to product inhibition by prephenate. Prephenate dehydratase was feedback inhibited by L-phenylalanine. It was also activated by hydrophobic amino acids (L-valine, L-isoleucine and L-methionine), similar to results previously found in a number of other genera that share the Gram-positive line of phylogenetic descent. Aromatic-pathway-encoded cistrons present in saprophytic large-genome mycoplasmas may have been eliminated in the parasitic small-genome mycoplasmas.  相似文献   

15.
Pseudomonad bacterial are a phylogenetically diverse assemblage of species named within contemporary genera that includePseudomonas, Xanthomonas andAlcaligenes. Thus far, five distinct rRNA homology groups (Groups I through V) have been established by oligonucleotide cataloging and by rRNA/DNA hybridization. A pattern of enzymic features of aromatic amino acid biosynthesis (enzymological patterning) is conserved at the level of rRNA homology, five distinct and unambiguous patterns therefore existing in correspondence with the rRNA homology groups. We sorted 87 pseudomonad strains into Groups (and Subgroups) by aromatic pathway patterning. The reliability of this methodology was tested in a blind study using coded cultures of diverse pseudomonad organisms provided by American Type Culture Collection. Fourteen of 14 correct assignments were made at the Group level (the level of rRNA homology), and 12 of 14 correct assignments were made at the finer-tuned Subgroup levels. Many strains of unknown rRNA-homology affiliation had been placed into tentative rRNA groupings based upon enzymological patterning. Positive confirmation of such strains as members of the predicted rRNA homology groups was demonstrated by DNA/rRNA hybridization in nearly every case. It seems clear that the combination of these molecular approaches will make it feasible to deduce the evolution of biochemical-pathway construction and regulation in parallel with the emerging phylogenies of microbes housing these pathways.  相似文献   

16.
Dictyostelium discoideum cells were allowed to differentiate on agar for 600 min at room temperature. All of the cells were then competent to relay or amplify a cAMP signal, but none to produce a cAMP signal autonomously. The cells were stimulated with cAMP concentrations ranging from 10?9 to 3.5 × 10?7M. Populations of 106 cells could amplify an initial cAMP concentration of 2.5 × 10?9M with a low probability, while an initial cAMP concentration of 5 × 10?8M always induced a response. An initial cAMP concentration of 1.2 × 10?7M induced the maximum cellular release of cAMP observed; this corresponded to 3 × 107 molecules per cell. No cellular release of cAMP was detected for initial cAMP concentrations of 3 × 10?7M or more. The amplification of a 10?7M cAMP stimulus was complete within 8 sec, indicating the pulsatile nature of the cellular release of cAMP. The phosphodiesterase (PDE) activities of D. discoideum cells were measured over a wide range of cell densities. At densities above 7.5 × 104 cells/cm2, both cell-bound and extracellular (ePDE) activities declined, per cell, as cell density increased. These results are compared to ePDE activities derived from critical density measurements. We found that PDE activities were in the range of 10?13–10?14 moles of cAMP converted/cell/min under culture conditions consistent with normal aggregation.  相似文献   

17.
Sensitivity of Dictyostelium discoideum to nucleic acid analogues   总被引:29,自引:0,他引:29  
  相似文献   

18.
We have developed a simple and versatile oxygraphic assay procedure that can be used for determination of kinetic constants and enzyme reaction mechanisms of wild-type and mutant aromatic amino acid hydroxylases. The oxygen concentration and rate of oxygen consumption were measured continuously throughout the enzyme reaction, while aliquots of the reaction mixture were removed at regular intervals for measurement of other substrates and products. Using (6R)-tetrahydrobiopterin as electron donor in the phenylalanine hydroxylase (PAH) reaction, a stable stoichiometry of 1:1 was obtained between the amount of oxygen consumed and the tyrosine formation. In comparison, low and variable coupling efficiency values between oxygen consumption and tyrosine formation were found using the parent unsubstituted tetrahydropterin. The application of this assay procedure to study mechanisms of disease-associated mutations was also demonstrated. Thus, the phenylketonuria-associated PAH mutant R158Q had a coupling efficiency of about 80%, compared to the wild-type enzyme under similar conditions. Furthermore, the amount of H(2)O(2) produced in the reaction catalyzed by R158Q PAH was about four times higher than the amount produced by the wild-type PAH, demonstrating a possible pathogenetic mechanism of the mutant enzyme.  相似文献   

19.
A phosphodiesterase activity is shown to copurify with the plasma membrane fraction prepared by the two-phase partition method. The enrichment in phosphodiesterase parallels that of alkaline phosphatase, which is thought to be a typical membranous enzyme. Up to 66% of the phosphodiesterase activity can be solubilized by a treatment with 0.2% Triton X-100. Higher doses were ineffective in solubilizing more activity. Analysis by native gel electrophoresis showed that an activity extracted by 2 M NaCl migrated at the same position as 'soluble' phosphodiesterase of cytosolic or extracellular origin. In contrast, the Triton-solubilized enzyme had an apparently higher molecular weight. When subjected to charge shift electrophoresis on agarose gels in the presence of an ionic detergent, the Triton-solubilized phosphodiesterase displayed a hydrophobic character. This behaviour contrasts with that of 'soluble' phosphodiesterases, the electrophoretic mobility of which is unaffected by the presence of an anionic detergent. The hydrophobic character of the membranous enzyme was lost after gentle hydrolysis by papain.  相似文献   

20.
A 4a-carbinolamine intermediate is generated stoichiometrically during the tetrahydrobiopterin-dependent phenylalanine hydroxylation reaction catalyzed by phenylalanine hydroxylase. The dehydration of the carbinolamine is catalyzed by the enzyme, 4a-hydroxytetrahydropterin dehydratase. We have now examined the distribution of the dehydratase activity in various rat tissues by activity measurements and by immunoblot analysis to explore the possibility that the dehydratase may also play a role in tyrosine and tryptophan hydroxylation. The only two tissues that express relatively high dehydratase activity are liver and kidney, which are also the only two tissues that express phenylalanine hydroxylase activity. The dehydratase activity was generally very low in those tissues which contain high levels of tyrosine and tryptophan hydroxylase activity, except for the pineal gland. These results suggest that the dehydratase may not play an important role in the regulation of the synthesis of those neurotransmitters which are derived from the hydroxylated aromatic amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号