首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human plasma contains a lipoprotein-associated coagulation inhibitor (LACI) which inactivates factor Xa directly, and in a Xa-dependent fashion also inhibits the VIIa-tissue factor complex of the extrinsic coagulation pathway. Rabbit polyclonal anti-LACI antiserum was used to screen human placental and fetal liver lambda gt11 cDNA libraries for the expression of LACI antigens. Immunologically positive clones were further tested for their ability to bind 125I-factor Xa. Seven clones were obtained which are immunologically and functionally active. The longest cDNA insert (lambda P9) of these isolates is 1.4 kilobases (kb) while other clones are 1.0 kb in length. Nucleotide sequence analysis shows that lambda P9 consists of 1431 bases that include a 5'-noncoding sequence of 132 nucleotides, an open reading frame of 912 nucleotides, and a 3'-noncoding region of 387 nucleotides. The open reading frame encodes a signal peptide of 28 residues followed by a 32-kilodalton protein of 276 residues. The predicted sequence of mature LACI contains 18 cysteines and three potential N-linked glycosylation sites. The amino acid sequence analysis of purified LACI's NH2 terminus and two of its proteolytic fragments match exactly those deduced from the cDNA sequence, indicating that the cDNA codes for LACI. The translated amino acid sequence of LACI shows several discernible domains, including a highly negatively charged NH2 terminus, three tandem Kunitz-type inhibitory domains, and a highly positively charged carboxyl terminus. Northern blot analysis shows that the following liver-derived cell lines, Chang liver, HepG2 hepatoma, and SK hepatoma all, contain two major species of mRNA (1.4 and 4.4 kb) which hybridize with LACI cDNA.  相似文献   

2.
Protein Z-dependent protease inhibitor (ZPI) is a plasma serpin, which can rapidly inactivate factor Xa (fXa) in the presence of protein Z (PZ), negatively charged phospholipids, and Ca2+. To investigate the mechanism by which ZPI inactivates fXa, we expressed the serpin in mammalian cells and characterized its reactivity with both wild-type and selected mutants of fXa that 1) contained substitutions in the autolysis loop and the heparin binding exosite, 2) lacked the first EGF-like domain (fXa-des-EGF-1), or 3) contained the Gla domain of protein C (fXa/PC-Gla). Inhibition studies in both the presence and absence of PZ revealed that Arg-143, Lys-147, and Arg-154 of the autolysis loop and Lys-96, Lys-169, and Lys-236 of the heparin binding exosite are required for recognition of ZPI, with Arg-143 being essential for the interaction. Similar studies with fXa-des-EGF-1 and fXa/PC-Gla suggested that protein-protein interaction with either the Gla or the EGF-1 domain may not play a dominant role in the PZ-dependent recognition of fXa by the serpin on phospholipid vesicles. Further studies showed that an inactive Ser-195 to Ala mutant of fXa effectively competes with wild-type fXa for binding to the non-serpin inhibitors tissue factor pathway inhibitor and recombinant tick anticoagulant peptide, but does not compete for binding to ZPI. This suggests that the catalytic residue of fXa is required for interaction with ZPI.  相似文献   

3.
Protein Z-dependent protease inhibitor (ZPI) is a recently identified member of the serpin superfamily that functions as a cofactor-dependent regulator of blood coagulation factors Xa and XIa. Here we provide evidence that, in addition to the established cofactors, protein Z, lipid, and calcium, heparin is an important cofactor of ZPI anticoagulant function. Heparin produced 20-100-fold accelerations of ZPI reactions with factor Xa and factor XIa to yield second order rate constants approaching the physiologically significant diffusion limit (k(a) = 10(6) to 10(7) M(-1) s(-1)). The dependence of heparin accelerating effects on heparin concentration was bell-shaped for ZPI reactions with both factors Xa and XIa, consistent with a template-bridging mechanism of heparin rate enhancement. Maximal accelerations of ZPI-factor Xa reactions required calcium, which augmented the heparin acceleration by relieving Gla domain inhibition as previously shown for heparin bridging of the antithrombin-factor Xa reaction. Heparin acceleration of both ZPI-protease reactions was optimal at heparin concentrations and heparin chain lengths comparable with those that produce physiologically significant rate enhancements of other serpin-protease reactions. Protein Z binding to ZPI minimally affected heparin rate enhancements, indicating that heparin binds to a distinct site on ZPI and activates ZPI in its physiologically relevant complex with protein Z. Taken together, these results suggest that whereas protein Z, lipid, and calcium cofactors promote ZPI inhibition of membrane-associated factor Xa, heparin activates ZPI to inhibit free factor Xa as well as factor XIa and therefore may play a physiologically and pharmacologically important role in ZPI anticoagulant function.  相似文献   

4.
Protein Z-dependent protease inhibitor (ZPI) is a recently identified member of the serpin superfamily that functions as a cofactor-dependent regulator of blood coagulation factors Xa (FXa) and XIa. Here we show that ZPI and its cofactor, protein Z (PZ), inhibit procoagulant membrane-bound factor Xa by the branched pathway acyl-intermediate trapping mechanism used by other serpins, but with significant variations of this mechanism that are unique to ZPI. Rapid kinetic analyses showed that the reaction proceeded by the initial assembly of a membrane-associated PZ-ZPI-FXa Michaelis complex (K(M) 53+/-5 nM) followed by conversion to a stable ZPI-FXa complex (k(lim) 1.2+/-0.1 s(-1)). Cofactor premixing experiments together with independent kinetic analyses of ZPI-PZ and factor Xa-PZ-membrane complex formation suggested that assembly of the Michaelis complex through either ZPI-PZ-lipid or factor Xa-PZ-lipid intermediates was rate-limiting. Reaction stoichiometry analyses and native PAGE showed that for every factor Xa molecule inhibited by ZPI, two serpin molecules were cleaved. Native PAGE and immunoblotting showed that PZ dissociated from ZPI once ZPI forms a stable complex with FXa, and kinetic analyses confirmed that PZ acted catalytically to accelerate the membrane-dependent ZPI-factor Xa reaction. The ZPI-FXa complex was only transiently stable and dissociated with a rate constant that showed a bell-shaped pH dependence indicative of participation of factor Xa active-site residues. The complex was detectable by SDS-PAGE when denatured at low pH, consistent with it being a kinetically trapped covalent acyl-intermediate. Together our findings show that ZPI functions like other serpins to regulate the activity of FXa but in a manner uniquely dependent on protein Z, procoagulant membranes, and pH.  相似文献   

5.
Several clones encoding serine protease inhibitors were isolated from larval and adult flea cDNA expression libraries by immunoscreening and PCR amplification. Each cDNA contained an open reading frame encoding a protein of approximately 45 kDa, which had significant sequence similarity with the serpin family of serine protease inhibitors. The thirteen cDNA clones isolated to date encode serpin proteins, which share a primary structure that includes a nearly identical constant region of about 360 amino acids, followed by a C-terminal variable region of about 40-60 amino acids. The variable C-terminal sequences encode most of the reactive site loop (RSL) and are generated by mutually exclusive alternative exon splicing, which may confer unique protease selectivity to each serpin. Utilization of an alternative exon splicing mechanism has been verified by sequence analysis of a flea serpin genomic clone and adjacent genomic sequences. RNA expression patterns of the cloned genes have been examined by Northern blot analysis using variable region-specific probes. Several putative serpins have been overexpressed using the cDNA clones in Escherichia coli and baculovirus expression systems. Two purified baculovirus-expressed recombinant proteins have N-terminal amino acid sequences identical to the respective purified native mature flea serpins indicating that appropriate N-terminal processing occurred in the virus-infected insect cells.  相似文献   

6.
Protein Z-dependent protease inhibitor (ZPI) and antithrombin III (AT3) are members of the serpin superfamily of protease inhibitors that inhibit factor Xa (FXa) and other proteases in the coagulation pathway. While experimental structural information is available for the interaction of AT3 with FXa, at present there is no structural data regarding the interaction of ZPI with FXa, and the precise role of this interaction in the blood coagulation pathway is poorly understood. In an effort to gain a structural understanding of this system, we have built a solvent equilibrated three-dimensional structural model of the Michaelis complex of human ZPI/FXa using homology modeling, protein–protein docking and molecular dynamics simulation methods. Preliminary analysis of interactions at the complex interface from our simulations suggests that the interactions of the reactive center loop (RCL) and the exosite surface of ZPI with FXa are similar to those observed from X-ray crystal structure-based simulations of AT3/FXa. However, detailed comparison of our modeled structure of ZPI/FXa with that of AT3/FXa points to differences in interaction specificity at the reactive center and in the stability of the inhibitory complex, due to the presence of a tyrosine residue at the P1 position in ZPI, instead of the P1 arginine residue in AT3. The modeled structure also shows specific structural differences between AT3 and ZPI in the heparin-binding and flexible N-terminal tail regions. Our structural model of ZPI/FXa is also compatible with available experimental information regarding the importance for the inhibitory action of certain basic residues in FXa. Figure Solvent equilibrated models for protein z-dependent protease inhibitor and its initial reactive complex with coagulation factor Xa (show here) are developed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. V.C. and C.J.L. contributed equally to this work. The solvent-equilibrated PDB structure of the ZPI/FXa will be made available upon request. Conflict of interest statement  The authors state that they have no conflict of interest.  相似文献   

7.
Protein Z (PZ) is a multidomain vitamin K-dependent plasma protein that functions as a cofactor to promote the inactivation of factor Xa (fXa) by PZ-dependent protease inhibitor (ZPI) by three orders of magnitude. To understand the mechanism by which PZ improves the reactivity of fXa with ZPI, we expressed wild-type PZ, PZ lacking the gamma-carboxyglutamic acid domain (GD-PZ), and a chimeric PZ mutant in which both Gla and EGF-like domains of the molecule were substituted with identical domains of fXa. The ZPI binding and the cofactor function of the PZ derivatives were characterized in both binding and kinetic assays. The binding assay indicated that all PZ derivatives interact with ZPI with a similar dissociation constant (K(D)) of approximately 7 nm. However, the apparent K(D) for the chimeric PZ-mediated ZPI inhibition of fXa was elevated 6-fold on PC/PS vesicles and its capacity to function as a cofactor to accelerate the ZPI inhibition of fXa was also decreased 6-fold. The cofactor activity of GD-PZ was dramatically impaired; however, the deletion mutant exhibited a normal cofactor function in solution. A chimeric activated protein C mutant containing the Gla domain of fXa was susceptible to inhibition by ZPI in the presence of PZ. These results suggest that: (i) the ZPI interactive site of PZ is located within the C-terminal domain of the cofactor and (ii) a specific interaction between the Gla domains of PZ and fXa contributes approximately 6-fold to the acceleration of the ZPI inhibition of fXa on phospholipid membranes.  相似文献   

8.
Rat glial cells release a neurite-promoting factor with serine protease inhibitory activity. By using a rat glioma cDNA clone as a probe, it was possible to isolate rat cDNAs containing the entire sequence coding for this neurite-promoting factor. The largest rat cDNA (approximately 2100 bp) was characterized by DNA sequencing. It contained the entire coding region, 135 bp of the 5' nontranslated region, and about 750 bp of the 3' nontranslated region. The open reading frame coded for 397 amino acids including a putative signal peptide of 19 amino acids. The correct identity of the coding sequence was substantiated by the fact that the sequence of tryptic peptides, derived from the purified rat factor, matched exactly with the deduced amino acid sequence. The rat protein sequence had 84% homology with the corresponding protein from human glioma cells. Both amino acid sequences indicated that the proteins belong to the protease nexins [Baker, B.J., Low, D. A., Simmer, R. L., & Cunningham, D.D. (1980) Cell (Cambridge, Mass.) 21, 37-45] and therefore can be defined as glia-derived nexins (GDNs). Further analysis showed that both rat and human GDN belong to the serpin superfamily and share 41%, 32%, and 25% homology with human endothelial-cell-type plasminogen activator inhibitor, antithrombin III, and alpha-1 proteinase inhibitor, respectively.  相似文献   

9.
Yang L  Ding Q  Huang X  Olson ST  Rezaie AR 《Biochemistry》2012,51(19):4078-4085
High-molecular weight heparins promote the protein Z-dependent protease inhibitor (ZPI) inhibition of factors Xa (FXa) and XIa (FXIa) by a template mechanism. To map the heparin-binding site of ZPI, the role of basic residues of the D-helix (residues Lys-113, Lys-116, and Lys-125) in the interaction with heparin was evaluated by either substituting these residues with Ala (ZPI-3A) or replacing the D-helix with the corresponding loop of the non-heparin-binding serpin α(1)-proteinase inhibitor (ZPI-D-helix(α1-PI)). Furthermore, both the C-helix (contains two basic residues, Lys-104 and Arg-105) and the D-helix of ZPI were substituted with the corresponding loops of α(1)-proteinase inhibitor (ZPI-CD-helix(α1-PI)). All mutants exhibited near normal reactivity with FXa and FXIa in the absence of cofactors and in the presence of protein Z and membrane cofactors. By contrast, the mutants interacted with heparin with a lower affinity and the ~48-fold heparin-mediated enhancement in the rate of FXa inhibition by ZPI was reduced to ~30-fold for ZPI-3A, ~15-fold for ZPI-D-helix(α1-PI), and ~8-fold for ZPI-CD-helix(α1-PI). Consistent with a template mechanism for heparin cofactor action, ZPI-CD-helix(α1-PI) inhibition of a FXa mutant containing a mutation in the heparin-binding site (FXa-R240A) was minimally affected by heparin. A significant decrease (~2-5-fold) in the heparin template effect was also observed for the inhibition of FXIa by ZPI mutants. Interestingly, ZPI derivatives exhibited a markedly elevated stoichiometry of inhibition with FXIa in the absence of heparin. These results suggest that basic residues of both helices C and D of ZPI interact with heparin to modulate the inhibitory function of the serpin.  相似文献   

10.
The plasma protein alpha 2-antiplasmin is the main physiological inhibitor of the serine protease plasmin, which is responsible for the dissolution of fibrin clots. We have determined the primary structure of mature human alpha 2-antiplasmin by DNA sequencing of overlapping cDNA fragments prepared from human liver mRNA. cDNA clones were identified by hybridization with a 48-base pair deoxyoligonucleotide probe deduced from the sequence of a 16-amino acid peptide of alpha 2-antiplasmin. Mature human alpha 2-antiplasmin contains 452 amino acids. It is homologous (23-28%) with five other proteins belonging to the serine protease inhibitor (serpin) superfamily. Its reactive site, i.e. the peptide bond cleaved by reaction with its primary target enzyme, plasmin, consists of Arg364-Met365. This dipeptide corresponds to the reactive site Met358-Ser359 of the archetypal serpin, alpha 1-antitrypsin.  相似文献   

11.
Using RACE techniques we have cloned and sequenced one of the hamster liver 3-hydroxy-hexobarbital dehydrogenases which catalyze not only cyclic alcohols but also 17beta-hydroxy-steroids and 3alpha-hydroxysteroids. The gene specific primers to 3-hydroxyhexobarbital dehydrogenase 1 (G2) were synthesized on the basis of its partial peptide sequences. The sequence of full length cDNA generated by 3'- and 5'-RACE PCR consisted of 1225 nucleotides including an open reading frame of 972 nucleotides encoding a protein of 323 amino acids. The deduced amino acid sequence matched exactly with the partial peptide sequences of hamster liver 3-hydroxyhexobarbital dehydrogenase 1 (G2). The sequence showed 84.5% identity to mouse liver 17beta-dehydrogenase(A-specific), and 74-76% identity to human liver bile acid binding protein/3alpha-hydroxysteroid dehydrogenase (DD2), human liver 3alpha-hydroxysteroid dehydrogenase type I (DD4) and type II (DD3), and rabbit ovary 20alpha-hydroxysteroid dehydrogenase. The protein contains catalytic residues of aldo-keto reductases, Asp50, Tyr55, Lys84, His117. These results suggest that the hamster liver 3-hydroxyhexobarbital/17beta(3alpha)-hydroxysteroid dehydrogenase belongs to aldo-keto reductase superfamily. The insert containing the full-length cDNA of 3-hydroxyhexobarbital dehydrogenase and vector specific overhang produced by PCR was annealed with pET-32 Xa/LIC vector. The plasmid was transformed into BL21 (DE3) cells containing pLysS. The recombinant enzyme was induced 1 mM IPTG. The expressed enzyme was produced as fusion protein and purified by nickel chelating affinity chromatography followed by POROS CM column chromatography and superdex 75 gel filtration. Molecular weight of the recombinant enzyme fused thioredoxin and his*tag was about 55000 and that was 35000 after Factor Xa protease treatment. The recombinant enzyme dehydrogenated 3-hydroxy-hexobarbital, 1-acenaphthenol, 2-cyclohexen-1-ol, testosterone, glycolithocholic acid as well as the native enzyme purified from hamster liver.  相似文献   

12.
Protein Z-dependent protease inhibitor (ZPI) is a serpin inhibitor of coagulation factor (F) Xa dependent on protein Z, Ca2+, and phospholipids. In new studies, ZPI inhibited FIXa in the FXase complex. Since this observation could merely represent inhibition of the FXa product whose activity was measured, inhibition of FIXa was investigated five ways. 1) FXase incubation mixtures with/without ZPI/protein Z were diluted in EDTA; FXa activity was measured after reversal of its inhibition. 2) FXase incubation mixtures were immunoblotted for FXa product. 3) FX activation peptide region was 3H-labeled; release of 3H was used to measure FXase activity. 4) Activity was monitored in a FIXa-based clotting assay. 5) FIXa amidolytic activity was measured. In all cases, FIXa was inhibited by subphysiologic levels of ZPI. Unlike inhibition of FXa, inhibition of FIXa did not strictly require protein Z. Low concentrations of FVIIIa increased the efficiency of ZPI inhibition of FIXa; FVIIIa in molar excess was not protective of FIXa unless FIXa/FVIIIa interacted prior to ZPI exposure. Unusual time courses were observed for inhibition of both FIXa in the FXase complex and FXa in the prothrombinase complex. Activity loss stabilized in <100 s at a level dependent on ZPI concentration, suggesting equilibrium interactions rather than typical covalent serpin-protease interactions. Surface plasmon resonance binding experiments revealed binding and dissociation of ZPI/FIXa with Kd (app) of 9-12 nm, similar to the concentration of ZPI needed for 50% inhibition. ZPI may be an unusual physiologic regulator of both the intrinsic FXase and the prothrombinase complexes.  相似文献   

13.
14.
A soybean cDNA clone, pSAT1, which encodes both the cytosolic and glyoxysomal isozymes of aspartate aminotransferase (AAT; EC 2.6.1.1) was isolated. Genomic Southern blots and analysis of genomic clones indicated pSAT1 was encoded by a single copy gene. pSAT1 contained an open reading frame with ca. 90% amino acid identity to alfalfa and lupin cytosolic AAT and two in-frame start codons, designated ATG1 and ATG2. Alignment of this protein with other plant cytosolic AAT isozymes revealed a 37 amino acid N-terminal extension with characteristics of a peroxisomal targeting signal, designated PTS2, including the modified consensus sequence RL-X5-HF. The second start codon ATG2 aligned with previously reported start codons for plant cytosolic AAT cDNAs. Plasmids constructed to express the open reading frame initiated by each of the putative start codons produced proteins with AAT activity in Escherichia coli. Immune serum raised against the pSAT1-encoded protein reacted with three soybean AAT isozymes, AAT1 (glyoxysomal), AAT2 (cytosolic), and AAT3 (subcellular location unknown). We propose the glyoxysomal isozyme AAT1 is produced by translational initiation from ATG1 and the cytosolic isozyme AAT2 is produced by translational initiation from ATG2. N-terminal sequencing of purified AAT1 revealed complete identity with the pSAT1-encoded protein and was consistent with the processing of the PTS2. Analysis of cytosolic AAT genomic sequences from several other plant species revealed conservation of the two in-frame start codons and the PTS2 sequence, suggesting that these other species may utilize a single gene to generate both cytosolic and glyoxysomal or peroxisomal forms of AAT.  相似文献   

15.
We have previously isolated several cDNA clones specific for mRNA species that increase in abundance during the retinoic acid-associated differentiation of F9 teratocarcinoma stem cells. One of these mRNAs, J6, encodes a approximately 40 kDa protein as assayed by hybrid selection and in vitro translation (Wang, S.-Y., LaRosa, G., and Gudas, L. J. (1985) Dev. Biol. 107, 75-86). The time course of J6 mRNA expression is similar to those of both laminin B1 and collagen IV (alpha 1) messages following retinoic acid addition. To address the functional role of this protein, we have isolated a full-length cDNA clone complementary to this approximately 40-kDa protein mRNA. Sequence analysis reveals an open reading frame of 406 amino acids (Mr 45,652). The carboxyl-terminal portion of this predicted protein contains a region that is homologous to the reactive sites found among members of the serpin (serine protease inhibitor) family. The predicted reactive site (P1-P1') of this J6 protein is Arg-Ser, which is the same as that of antithrombin III. Like ovalbumin and human monocyte-derived plasminogen activator inhibitor (mPAI-2), which are members of the serpin gene family, the J6 protein appears to have no typical amino-terminal signal sequence.  相似文献   

16.
The complete amino acid sequence of rat kidney ornithine aminotransferase [EC 2.6.1.13] is presented. The 404-residue sequence was determined by analysis of peptides generated by digestion of the S-carboxyamidomethylated protein with CNBr, Achromobacter protease I, arginylendopeptidase, or Staphylococcus aureus V8 protease. Mueckler and Pitot have reported the amino acid sequence of the rat liver enzyme (440 residues) as predicted from the nucleotide sequence of the cDNA [Mueckler, M.M. & Pitot, H.C. (1985) J. Biol. Chem. 260, 12993-12997]. The amino acid sequence of the rat kidney enzyme presented herein coincides with residue 36 (Gly) through 440 (Phe) of the predicted precursor protein, indicating that the liver and kidney enzymes are identical, and that the enzyme is processed at the amino-terminal region after translation.  相似文献   

17.
18.
The amino acid sequence of rat brain prostaglandin D synthetase (Urade, Y., Fujimoto, N., and Hayaishi, O. (1985) J. Biol. Chem. 260, 12410-12415) was determined by a combination of cDNA and protein sequencing. cDNA clones specific for this enzyme were isolated from a lambda gt11 rat brain cDNA expression library. Nucleotide sequence analyses of cloned cDNA inserts revealed that this enzyme consisted of a 564- or 549-base pair open reading frame coding for a 188- or 183-amino acid polypeptide with a Mr of 21,232 or 20,749 starting at the first or second ATG. About 60% of the deduced amino acid sequence was confirmed by partial amino acid sequencing of tryptic peptides of the purified enzyme. The recognition sequence for N-glycosylation was seen at two positions of amino acid residues 51-53 (-Asn-Ser-Ser-) and 78-80 (-Asn-Leu-Thr-) counted from the first Met. Both sites were considered to be glycosylated with carbohydrate chains of Mr 3,000, since two smaller proteins with Mr 23,000 and 20,000 were found during deglycosylation of the purified enzyme (Mr 26,000) with N-glycanase. The prostaglandin D synthetase activity was detected in fusion proteins obtained from lysogens with recombinants coding from 34 and 19 nucleotides upstream and 47 and 77 downstream from the first ATG, indicating that the glycosyl chain and about 20 amino acid residues of N terminus were not essential for the enzyme activity. The amino acid composition of the purified enzyme indicated that about 20 residues of hydrophobic amino acids of the N terminus are post-translationally deleted, probably as a signal peptide. These results, together with the immunocytochemical localization of this enzyme to rough-surfaced endoplasmic reticulum and other nuclear membrane of oligodendrocytes (Urade, Y., Fujimoto, N., Kaneko, T., Konishi, A., Mizuno, N., and Hayaishi, O. (1987) J. Biol. Chem. 262, 15132-15136) suggest that this enzyme is a membrane-associated protein.  相似文献   

19.
The anticoagulant serpin, protein Z-dependent protease inhibitor (ZPI), circulates in blood as a tight complex with its cofactor, protein Z (PZ), enabling it to function as a rapid inhibitor of membrane-associated factor Xa. Here, we show that N,N′-dimethyl-N-(acetyl)-N′-(7-nitrobenz-3-oxa-1,3-diazol-4-yl)ethylenediamine (NBD)-fluorophore-labeled K239C ZPI is a sensitive, moderately perturbing reporter of the ZPI-PZ interaction and utilize the labeled ZPI to characterize in-depth the thermodynamics and kinetics of wild-type and variant ZPI-PZ interactions. NBD-labeled K239C ZPI bound PZ with ∼3 nm KD and ∼400% fluorescence enhancement at physiologic pH and ionic strength. The NBD-ZPI-PZ interaction was markedly sensitive to ionic strength and pH but minimally affected by temperature, consistent with the importance of charged interactions. NBD-ZPI-PZ affinity was reduced ∼5-fold by physiologic calcium levels to resemble NBD-ZPI affinity for γ-carboxyglutamic acid/EGF1-domainless PZ. Competitive binding studies with ZPI variants revealed that in addition to previously identified Asp-293 and Tyr-240 hot spot residues, Met-71, Asp-74, and Asp-238 made significant contributions to PZ binding, whereas Lys-239 antagonized binding. Rapid kinetic studies indicated a multistep binding mechanism with diffusion-limited association and slow complex dissociation. ZPI complexation with factor Xa or cleavage decreased ZPI-PZ affinity 2–7-fold by increasing the rate of PZ dissociation. A catalytic role for PZ was supported by the correlation between a decreased rate of PZ dissociation from the K239A ZPI-PZ complex and an impaired ability of PZ to catalyze the K239A ZPI-factor Xa reaction. Together, these results reveal the energetic basis of the ZPI-PZ interaction and suggest an important role for ZPI Lys-239 in PZ catalytic action.  相似文献   

20.
L-Gulono-gamma-lactone oxidase, one of the microsomal flavin enzymes, catalyzes the last step of L-ascorbic acid biosynthesis in many animals; however, it is missing in scurvy-prone animals such as humans, primates, and guinea pigs. A cDNA clone for this enzyme was isolated by screening a rat liver cDNA expression library in lambda gt11 using antibody directed against the enzyme. The cDNA clone contained 2120 nucleotides and an open reading frame of 1320 nucleotides encoding 440 amino acids of the protein with a molecular weight of 50,605. The amino-terminal sequence (residues 1-33) of the enzyme isolated from rat liver completely coincided with the corresponding part of the deduced amino acid sequence. The identity of the cDNA clone was further confirmed by the agreement of the composition of the deduced amino acids with that determined by amino acid analysis of the enzyme. Hydropathy analysis of the deduced amino acid sequence revealed several hydrophobic regions, suggesting that they anchor the protein into the microsomal membrane. The deduced amino acid sequence showed no obvious homology with the flavin-binding regions of other eight flavoenzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号