首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Extensive measurements and analysis of thermodynamic stability and kinetics of urea-induced unfolding and folding of hisactophilin are reported for 5-50 degrees C, at pH 6.7. Under these conditions hisactophilin has moderate thermodynamic stability, and equilibrium and kinetic data are well fit by a two-state transition between the native and the denatured states. Equilibrium and kinetic m values decrease with increasing temperature, and decrease with increasing denaturant concentration. The betaF values at different temperatures and urea concentrations are quite constant, however, at about 0.7. This suggests that the transition state for hisactophilin unfolding is native-like and changes little with changing solution conditions, consistent with a narrow free energy profile for the transition state. The activation enthalpy and entropy of unfolding are unusually low for hisactophilin, as is also the case for the corresponding equilibrium parameters. Conventional Arrhenius and Eyring plots for both folding and unfolding are markedly non-linear, but these plots become linear for constant DeltaG/T contours. The Gibbs free energy changes for structural changes in hisactophilin have a non-linear denaturant dependence that is comparable to non-linearities observed for many other proteins. These non-linearities can be fit for many proteins using a variation of the Tanford model, incorporating empirical quadratic denaturant dependencies for Gibbs free energies of transfer of amino acid constituents from water to urea, and changes in fractional solvent accessible surface area of protein constituents based on the known protein structures. Noteworthy exceptions that are not well fit include amyloidogenic proteins and large proteins, which may form intermediates. The model is easily implemented and should be widely applicable to analysis of urea-induced structural transitions in proteins.  相似文献   

2.
The relationship between the unfolding pseudo free energies of reduced and detailed atomic models of the GCN4 leucine zipper is examined. Starting from the native crystal structure, a large number of conformations ranging from folded to unfolded were generated by all-atom molecular dynamics unfolding simulations in an aqueous environment at elevated temperatures. For the detailed atomic model, the pseudo free energies are obtained by combining the CHARMM all-atom potential with a solvation component from the generalized Born, surface accessibility, GB/SA, model. Reduced model energies were evaluated using a knowledge-based potential. Both energies are highly correlated. In addition, both show a good correlation with the root mean square deviation, RMSD, of the backbone from native. These results suggest that knowledge-based potentials are capable of describing at least some of the properties of the folded as well as the unfolded states of proteins, even though they are derived from a database of native protein structures. Since only conformations generated from an unfolding simulation are used, we cannot assess whether these potentials can discriminate the native conformation from the manifold of alternative, low-energy misfolded states. Nevertheless, these results also have significant implications for the development of a methodology for multiscale modeling of proteins that combines reduced and detailed atomic models.  相似文献   

3.
An essential requirement for theoretical protein structure prediction is an energy function that can discriminate the native from non-native protein conformations. To date most of the energy functions used for this purpose have been extracted from a statistical analysis of the protein structure database, without explicit reference to the physical interactions responsible for protein stability. The use of the statistical functions has been supported by the widespread belief that they are superior for such discrimination to physics-based energy functions. An effective energy function which combined the CHARMM vacuum potential with a Gaussian model for the solvation free energy is tested for its ability to discriminate the native structure of a protein from misfolded conformations; the results are compared with those obtained with the vacuum CHARMM potential. The test is performed on several sets of misfolded structures prepared by others, including sets of about 650 good decoys for six proteins, as well as on misfolded structures of chymotrypsin inhibitor 2. The vacuum CHARMM potential is successful in most cases when energy minimized conformations are considered, but fails when applied to structures relaxed by molecular dynamics. With the effective energy function the native state is always more stable than grossly misfolded conformations both in energy minimized and molecular dynamics-relaxed structures. The present results suggest that molecular mechanics (physics-based) energy functions, complemented by a simple model for the solvation free energy, should be tested for use in the inverse folding problem, and supports their use in studies of the effective energy surface of proteins in solution. Moreover, the study suggests that the belief in the superiority of statistical functions for these purposes may be ill founded.  相似文献   

4.
本文介绍了毛细管电泳分析蛋白质酶解产物中含巯基多肽的方法。还原的及天然的牛红细胞超氧化物歧化酶(SOD)经4-乙烯吡啶修饰后,由TPCK-胰蛋白酶水解,在254nm检测到还原的SOD水解物中含3个巯基多肽,天然的SOD为1个疏基多肽且其毛细管电泳行为与上述3个多肽之一相一致。分析它们的氨基酸顺序,证实Cys-6为游离的巯基,Cys-55和Cys~(-144)形成二硫键。  相似文献   

5.
Current theoretical views of the folding process of small proteins (< approximately 100 amino acids) postulate that the landscape of potential mean force (PMF) for the formation of the native state has a funnel shape and that the free energy barrier to folding arises from the chain configurational entropy only. However, recent theoretical studies on the formation of hydrophobic clusters with explicit water suggest that a barrier should exist on the PMF of folding, consistent with the fact that protein folding generally involves a large positive activation enthalpy at room temperature. In addition, high-resolution structural studies of the hidden partially unfolded intermediates have revealed the existence of non-native interactions, suggesting that the correction of the non-native interactions during folding should also lead to barriers on PMF. To explore the effect of a PMF barrier on the folding behavior of proteins, we modified Zwanzig's model for protein folding with an uphill landscape of PMF for the formation of transition states. We found that the modified model for short peptide segments can satisfy the thermodynamic and kinetic criteria for an apparently two-state folding. Since the Levinthal paradox can be solved by a stepwise folding of short peptide segments, a landscape of PMF with a locally uphill search for the transition state and cooperative stabilization of folding intermediates/native state is able to explain the available experimental results for small proteins. We speculate that the existence of cooperative hidden folding intermediates in small proteins could be the consequence of the highly specific structures of the native state, which are selected by evolution to perform specific functions and fold in a biologically meaningful time scale.  相似文献   

6.
Fusion tags add desirable properties to recombinant proteins, but they are not necessarily acceptable in the final products. Ideally, fusion tags should be removed releasing the intact native protein with no trace of the tag. Unique endoproteinases with the ability to cleave outside their own recognition sequence can potentially cleave at the boundary of any native protein. Chymosin was recently shown to cleave a pro‐chymosin derived fusion tag releasing native target proteins. In our hands, however, not all proteins are chymosin‐resistant under the acidic cleavage conditions (pH 4.5) used in this system. Here, we have modified the pro‐chymosin fusion tag and demonstrated that chymosin can remove this tag at more neutral pH (pH 6.2); conditions, that are less prone to compromise the integrity of target proteins. Chymosin was successfully used to produce intact native target protein both at the level of small and large‐scale preparations. Using short peptide substrates, we further examined the influence of P1′ amino acid (the N‐terminus of the native target protein) and found that chymosin accepts many different, although not all, amino acids. We conclude that chymosin has several appealing characteristics for the exact removal of fusion tags. It is readily available in highly purified recombinant versions approved by the FDA for preparation of food for human consumption. We suggest that one should consider extending the use of chymosin to the preparation of pharmaceutical proteins.  相似文献   

7.
The labile iron pool (LIP) plays a role in generation of free radicals and is thus the target of chelators used for the treatment of iron overload. We have previously shown that the LIP is bound mostly to high molecular weight carriers (MW>5000). However, the iron does not remain associated with these proteins during native gel electrophoresis. In this study we describe a new method to reconstruct the interaction of iron with iron-binding proteins. Proteins were separated by native gradient polyacrylamide gel electrophoresis and transfered to polyvinilidene difluoride membrane under native conditions. The immobilized iron-binding proteins are then labeled by 59Fe using a 'titrational blotting' technique and visualized by storage phosphorimaging. At least six proteins, in addition to ferritin and transferrin, are specifically labeled in cellular lysates of human erythroleukemic cells. This technique enables separation and detection of iron-binding proteins or other metal-protein complexes under near-physiological conditions and facilitates identification of weak iron-protein complexes. Using a new native metal blotting method, we have confirmed that specific high molecular weight proteins bind the labile iron pool.  相似文献   

8.
Folding of proteins entering the secretory pathway in mammalian cells frequently requires the insertion of disulfide bonds. Disulfide insertion can result in covalent linkages found in the native structure as well as those that are not, so‐called non‐native disulfides. The pathways for disulfide formation are well characterized, but our understanding of how non‐native disulfides are reduced so that the correct or native disulfides can form is poor. Here, we use a novel assay to demonstrate that the reduction in non‐native disulfides requires NADPH as the ultimate electron donor, and a robust cytosolic thioredoxin system, driven by thioredoxin reductase 1 (TrxR1 or TXNRD1). Inhibition of this reductive pathway prevents the correct folding and secretion of proteins that are known to form non‐native disulfides during their folding. Hence, we have shown for the first time that mammalian cells have a pathway for transferring reducing equivalents from the cytosol to the ER, which is required to ensure correct disulfide formation in proteins entering the secretory pathway.  相似文献   

9.
Richa T  Sivaraman T 《PloS one》2012,7(3):e32465
Understanding the relationships between conformations of proteins and their stabilities is one key to address the protein folding paradigm. The free energy change (ΔG) of unfolding reactions of proteins is measured by traditional denaturation methods and native hydrogen-deuterium (H/D) exchange methods. However, the free energy of unfolding (ΔG(U)) and the free energy of exchange (ΔG(HX)) of proteins are not in good agreement, though the experimental conditions of both methods are well matching to each other. The anomaly is due to any one or combinations of the following reasons: (i) effects of cis-trans proline isomerisation under equilibrium unfolding reactions of proteins (ii) inappropriateness in accounting the baselines of melting curves (iii) presence of cryptic intermediates, which may elude the melting curve analysis and (iv) existence of higher energy metastable states in the H/D exchange reactions of proteins. Herein, we have developed a novel computational tool, OneG, which accounts the discrepancy between ΔG(U) and ΔG(HX) of proteins by systematically accounting all the four factors mentioned above. The program is fully automated and requires four inputs: three-dimensional structures of proteins, ΔG(U), ΔG(U)(*) and residue-specific ΔG(HX) determined under EX2-exchange conditions in the absence of denaturants. The robustness of the program has been validated using experimental data available for proteins such as cytochrome c and apocytochrome b(562) and the data analyses revealed that cryptic intermediates of the proteins detected by the experimental methods and the cryptic intermediates predicted by the OneG for those proteins were in good agreement. Furthermore, using OneG, we have shown possible existence of cryptic intermediates and metastable states in the unfolding pathways of cardiotoxin III and cobrotoxin, respectively, which are homologous proteins. The unique application of the program to map the unfolding pathways of proteins under native conditions have been brought into fore and the program is publicly available at http://sblab.sastra.edu/oneg.html.  相似文献   

10.
Site-specific presentation of oligosaccharides in the context of carrier proteins can influence markedly their recognition by carbohydrate-binding proteins. On RNaseB, the Man5-9 N-glycans at Asn-34 are bound by the serum lectin conglutinin when the glycoprotein is reduced and denatured, but there is no binding to the N-glycans on the native form of RNaseB. The RNaseB Man8, which is a glycoform preferentially bound by conglutinin, is the subject of the present study. The conformational behavior of the protein-linked oligosaccharide Man8 is investigated on the native and on the reduced and denatured RNaseB, using a combination of NMR and theoretical calculations. Quantitative data on the NOESY crosspeaks have been obtained, thereby allowing the comparison of mobilities of homologous linkages within the glycan chain. Oligosaccharide conformations compatible with the NMR data have been explored by molecular modeling of the free oligosaccharide, using two different force fields (AMBER and SYBYL). There are some differences between the results produced by the two force fields, the AMBER simulations providing a better agreement with the experimental data. The results indicate that both on the native and on the reduced heat-denatured glycoprotein, the RNase Man8 oligosaccharide exhibits a conformational behavior very similar to that of the free oligosaccharide. However, this conformational freedom of the N-glcyan does not amount to full availability for carbohydrate-recognition proteins and enzymes.  相似文献   

11.
According to the thermodynamic hypothesis, the native state of proteins is that in which the free energy of the system is at its lowest, so that at normal temperature and pressure, proteins evolve to that state. We selected four proteins representative of each of the four classes, and for each protein make four simulations, one starting from the native structure and the other three starting from the structure obtained by threading the sequence of one protein onto the native backbone fold of the other three proteins. Because of their large conformational distances with respect to the native structure, the three alternative initial structures cannot be considered as local minima within the native ensemble of the corresponding protein. As expected, the initial native states are preserved in the .5?μs simulations performed here and validate the simulations. On the other hand, when the initial state is not native, an analysis of the trajectories does not reveal any evolution towards the native state, during that time. These results indicate that the distribution of protein conformations is multipeak shaped, so that apart from the peak corresponding to the native state, there are other peaks associated with average structures that are very different from the native and that can last as long as the native state.  相似文献   

12.
Nanolipoprotein particles (NLPs), composed of membrane scaffold proteins and lipids, have been used to support membrane proteins in a native‐like bilayer environment for biochemical and structural studies. Traditionally, these NLPs have been prepared by the controlled removal of detergent from a detergent‐solubilized protein‐lipid mixture. Recently, an alternative method has been developed using direct cell‐free expression of the membrane scaffold protein in the presence of preformed lipid vesicles, which spontaneously produces NLPs without the need for detergent at any stage. Using SANS/SAXS, we show here that NLPs produced by this cell‐free expression method are structurally indistinguishable from those produced using detergent removal methodologies. This further supports the utility of single step cell‐free methods for the production of lipid binding proteins. In addition, detailed structural information describing these NLPs can be obtained by fitting a capped core‐shell cylinder type model to all SANS/SAXS data simultaneously.  相似文献   

13.
We explore the possibility for the native structure of a protein being inherently multiconformational in an ab initio coarse-grained model. Based on the Wang-Landau algorithm, the complete free energy landscape for the designed sequence 2DX4: INYWLAHAKAGYIVHWTA is constructed. It is shown that 2DX4 possesses two nearly degenerate native structures: one is a helix structure with the other a hairpinlike structure, and their free energy difference is <2% of that of local minima. Two degenerate native structures are stabilized by an energy barrier of ~10 kcal/mol. Furthermore, the hydrogen-bond and dipole-dipole interactions are found to be two major competing interactions in transforming one conformation into the other. Our results indicate that two degenerate native structures are stabilized by subtle balance between different interactions in proteins. In particular, for small proteins, balance between the hydrogen-bond and dipole-dipole interactions happens for proteins of sizes being ~18 amino acids and is shown to the main driving mechanism for the occurrence of degeneracy. These results provide important clues to the study of native structures of proteins.  相似文献   

14.
Mechanisms of protein folding   总被引:11,自引:0,他引:11  
The strong correlation between protein folding rates and the contact order suggests that folding rates are largely determined by the topology of the native structure. However, for a given topology, there may be several possible low free energy paths to the native state and the path that is chosen (the lowest free energy path) may depend on differences in interaction energies and local free energies of ordering in different parts of the structure. For larger proteins whose folding is assisted by chaperones, such as the Escherichia coli chaperonin GroEL, advances have been made in understanding both the aspects of an unfolded protein that GroEL recognizes and the mode of binding to the chaperonin. The possibility that GroEL can remove non-native proteins from kinetic traps by unfolding them either during polypeptide binding to the chaperonin or during the subsequent ATP-dependent formation of folding-active complexes with the co-chaperonin GroES has also been explored.  相似文献   

15.
The relationship between the elastic and dynamic properties of native globular proteins is considered on the basis of a wide set of reported experimental data. The formation of a small cavity, capable of accommodating water, in the protein interior is associated with the elastic deformation, whose contribution to the free energy considerably exceeds the heat motion energy. Mechanically, the protein molecule is a highly nonlinear system. This means that its compressibility sharply decreases upon compression. The mechanical nonlinearity results in the following consequences related to the intramolecular dynamics of proteins: 1) The sign of the electrostriction effect in the protein matrix is opposite that observed in liquids-this is an additional indication that protein behaves like a solid particle. 2) The diffusion of an ion from the solvent to the interior of a protein should depend on pressure nonmonotonically: at low pressure diffusion is suppressed, while at high pressure it is enhanced. Such behavior is expected to display itself in any dynamic process depending on ion diffusion. Qualitative and quantitative expectations ensuing from the mechanical properties are concordant with the available experimental data on hydrogen exchange in native proteins at ambient and high pressure.  相似文献   

16.
BACKGROUND: While X-ray crystallography structures of proteins are considerably more reliable than those from NMR spectroscopy, it has been difficult to assess the inherent accuracy of NMR structures, particularly the side chains. RESULTS: For 15 small single-domain proteins, we used a molecular mechanics-/dynamics-based free-energy approach to investigate native, decoy, and fully extended alpha conformations. Decoys were all less energetically favorable than native conformations in nine of the ten X-ray structures and in none of the five NMR structures, but short 150 ps molecular dynamics simulations on the experimental structures caused them to have the lowest predicted free energy in all 15 proteins. In addition, a strong correlation exists (r(2) = 0.86) between the predicted free energy of unfolding, from native to fully extended conformations, and the number of residues. CONCLUSIONS: This work suggests that the approximate treatment of solvent used in solving NMR structures can lead NMR model conformations to be less reliable than crystal structures. This conclusion was reached because of the considerably higher calculated free energies and the extent of structural deviation during aqueous dynamics simulations of NMR models compared to those determined by X-ray crystallography. Also, the strong correlation found between protein length and predicted free energy of unfolding in this work suggests, for the first time, that a free-energy function can allow for identification of the native state based on calculations on an extended state and in the absence of an experimental structure.  相似文献   

17.
The most common evidence for the existence of secondary structure in a globular protein is the presence of a strongly pronounced far-UV circular dichroism (CD) spectrum. Although CD spectra of native proteins are well described and their quantitative analysis is widely used, similar studies for denatured proteins have still to be done. Far-UV CD spectra of nine proteins in the native and the pH-induced molten globule states were acquired and analyzed. Singular value decomposition showed that the spectra of molten globules could be described as a superposition of at least three independent components (most likely alpha-, beta- and irregular structure). A self-consistent procedure of CD spectra analysis revealed the existence of a clear correlation between the shape of the molten globule spectra and the content of secondary structure elements in the corresponding native proteins, as determined from X-ray data. A mathematical expression of this correlation in terms of the Pierson coefficient amounts to the value of 0.9 for both the alpha-helix and the beta-structure. Thus, the secondary structure of proteins in the molten globule state is close to that in the native state.  相似文献   

18.
Nowadays various protein medicines are increasingly playing a key role on treatment of many diseases, while the bioactivity of such kinds of protein medicines is unstable because of their heat sensitivity. In order to explore a protective method and to explain the protective mechanism of protein medicines, the bioactive protection of the late embryogenesis abundant (LEA) protein to insulin was researched by molecular dynamics simulation. The results suggest that LEA proteins preserve the native structure of the insulin well. Compared with the desiccated insulin without any protection, the structure of insulin protected by LEA protein have smaller values, more centralised configurational space, lower free energies and structural cluster more closer to the native structure. All the above results prove that the LEA protein does protect the bioactivity of insulin during desiccation. The LEA protein is a perfect bioactive protectant for heat-sensitive protein medicines. Such LEA proteins can match the shape of insulin and form multisite binding interaction with insulin.  相似文献   

19.
Dynamic Monte Carlo simulations of the folding pathways of alpha-helical protein motifs have been undertaken in the context of a diamond lattice model of globular proteins. The first question addressed in the nature of the assembly process of an alpha-helical hairpin. While the hairpin could, in principle, be formed via the diffusion-collision-adhesion of isolated performed helices, this is not the dominant mechanism of assembly found in the simulations. Rather, the helices that form native hairpins are constructed on-site, with folding initiating at or near the turn in almost all cases. Next, the folding/unfolding pathways of four-helix bundles having tight bends and one and two long loops in the native state are explored. Once again, an on-site construction mechanism of folding obtains, with a hairpin forming first, followed by the formation of a three-helix bundle, and finally the fourth helix of the native bundle assembles. Unfolding is essentially the reverse of folding. A simplified analytic theory is developed that reproduces the equilibrium folding transitions obtained from the simulations remarkably well and, for the dominant folding pathway, correctly identifies the intermediates seen in the simulations. The analytic theory provides the free energy along the reaction co-ordinate and identifies the transition state for all three motifs as being quite close to the native state, with three of the four helices assembled, and approximately one turn of the fourth helix in place. The transition state is separated from the native conformation by a free-energy barrier of mainly energetic origin and from the denatured state by a barrier of mainly entropic origin. The general features of the folding pathway seen in all variants of the model four-helix bundles are similar to those observed in the folding of beta-barrel, Greek key proteins; this suggests that many of the qualitative aspects of folding are invariant to the particular native state topology and secondary structure.  相似文献   

20.
Acid phosphatase (AP) is readily inactivated when exposed to the free radicals generated in the pyrolysis of 2, 2'-azobis(2-amidinopropane) hydrochloride (AAPH) under aerobic conditions. On average, a large number of tryptophan groups are modified by each protein molecule that loses its catalytic activity. In spite of this, the enzyme inactivation takes place without induction times, a result that indicates either that damage is progressive or that damage of a critical target is needed to inactivate the enzyme (all-or-nothing mechanism). A Lineweaver-Burk plot of the enzyme activity measured at pH 4.8 is not compatible with an all-or-nothing mechanism, showing that after exposure of the native protein ensemble to the free radical source there are partially damaged molecules whose affinity for the substrate is widely different from that of the native molecules. On the other hand, the partially damaged ensemble shows a normal Michaelis-Menten behavior when the activity is measured at pH 7.0, with only a reduced value of V(M), relative to that of the unmodified ensemble. These results show that the native protein and modified proteins that remain active constitute different populations, with different responses to pH changes. Comparative heat denaturation studies of the native and pretreated proteins support this proposal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号