首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Programmed cell death induced by recombinant cytokines (IL-5, IL-3 and eotaxin) of eosinophils isolated from patients with expressed blood eosinophilia (malignant diseases of the blood system, opisthorchosis) has been examined. It was demonstrated that an initially low level of spontaneous apoptosis is registered in all surveyed patients. r-IL-5, r-IL-3 and r-eotaxin treatment of eosinophils isolated from the peripheral blood of opisthorchosis patients and cultivated in vitro suppressed apoptosis. However, eosinophils isolated from patients with malignant diseases associated with expressed blood eosinophilia were insensitive to the cytokines.  相似文献   

2.
Eosinophils express functional IL-13 in eosinophilic inflammatory diseases   总被引:30,自引:0,他引:30  
IL-13 is an immunoregulatory and effector cytokine in allergic diseases such as bronchial asthma. A variety of immune and non-immune cells are known as IL-13 producers. In this study we investigated whether and under what conditions human eosinophils generate IL-13. Freshly isolated highly purified peripheral blood eosinophils from patients with several eosinophilic inflammatory diseases and from normal control individuals were investigated. We observed that blood eosinophils from patients suffering from bronchial asthma, atopic dermatitis, parasitic infections, hypereosinophilic syndrome, and idiopathic eosinophilic esophagitis expressed IL-13, as assessed by ELISA, ELISPOT assay, flow cytometry, and immunocytochemistry. By using nasal polyp tissues and immunohistochemistry, we demonstrated IL-13 expression in eosinophils under in vivo conditions. In contrast, blood eosinophils from control individuals as well as blood neutrophils from both eosinophilic and control patients did not produce detectable IL-13 levels. However, when blood eosinophils from control individuals were stimulated with GM-CSF or IL-5 in vitro, they generated IL-13 mRNA and protein, suggesting that IL-13 expression by eosinophils under inflammatory conditions is a cytokine-driven process. Stimulation of blood eosinophils containing IL-13 by eotaxin resulted in a rapid release of this cytokine. Eosinophil-derived IL-13 was functional, as it increased the surface expression of the low affinity IgE receptor (CD23) on purified B cells. In conclusion, human eosinophils are able to produce and release functional IL-13 in eosinophilic inflammatory responses.  相似文献   

3.
Interleukin-5 (IL-5) transgenic mice were used to assess the immunological features of CSF eosinophils from mice infected with Angiostrongylus cantonensis. CSF eosinophils were hypodense by day 14 post infection (p.i.). CSF eosinophils survived longer in vitro than peritoneal eosinophils collected from cadmium sulphate (CdSO4) -treated normal IL-5 transgenic mice. Apoptosis was measured by Annexin V binding and the presence of a distinct laddering pattern of DNA fragmentation on agarose electrophoresis. Regardless of the presence or absence of Actinomycin D, CSF eosinophils collected from IL-5 transgenic mice from days 15–36 p.i. exhibited less apoptosis than peritoneal eosinophils collected from uninfected IL-5 transgenic mice. CSF eosinophils collected from A. cantonensis infected C57BL/6 mice at days 15–34 p.i. showed elongation of survival time and less apoptosis during in vitro cultivation. Reduced apoptosis was noted only in CSF eosinophils, but not in peritoneal eosinophils recovered from the same infected IL-5 transgenic mice. CPP32/Caspase 3 activity of cultured peritoneal eosinophils from both infected and uninfected IL-5 transgenic mice was higher than that of cultured CSF eosinophils. Stimulation with A23187 readily induced apoptosis of peritoneal eosinophils, but not CSF eosinophils or peritoneal eosinophils cultured with mouse recombinant IL-5. The latter cells were morphologically identical to hypodense eosinophils. RT-PCR analysis indicated that bcl-2 and bcl-xL mRNA expression was higher in CSF eosinophils compared with peritoneal eosinophils and this expression in the latter cells was upregulated after culture with mouse recombinant IL-5. These results suggest that CSF eosinophils, shifting to hypodense status through an accumulation from peripheral blood, are resistant to apoptosis. These changes may explain the long-lasting, helminthotoxic and neurotoxic actions of CSF eosinophils in A. cantonensis infection.  相似文献   

4.
Interleukin-5 (IL-5) transgenic mice were used to assess the immunological features of CSF eosinophils from mice infected with Angiostrongylus cantonensis. CSF eosinophils were hypodense by day 14 post infection (p.i.). CSF eosinophils survived longer in vitro than peritoneal eosinophils collected from cadmium sulphate (CdSO4) -treated normal IL-5 transgenic mice. Apoptosis was measured by Annexin V binding and the presence of a distinct laddering pattern of DNA fragmentation on agarose electrophoresis. Regardless of the presence or absence of Actinomycin D, CSF eosinophils collected from IL-5 transgenic mice from days 15–36 p.i. exhibited less apoptosis than peritoneal eosinophils collected from uninfected IL-5 transgenic mice. CSF eosinophils collected from A. cantonensis infected C57BL/6 mice at days 15–34 p.i. showed elongation of survival time and less apoptosis during in vitro cultivation. Reduced apoptosis was noted only in CSF eosinophils, but not in peritoneal eosinophils recovered from the same infected IL-5 transgenic mice. CPP32/Caspase 3 activity of cultured peritoneal eosinophils from both infected and uninfected IL-5 transgenic mice was higher than that of cultured CSF eosinophils. Stimulation with A23187 readily induced apoptosis of peritoneal eosinophils, but not CSF eosinophils or peritoneal eosinophils cultured with mouse recombinant IL-5. The latter cells were morphologically identical to hypodense eosinophils. RT-PCR analysis indicated that bcl-2 and bcl-xL mRNA expression was higher in CSF eosinophils compared with peritoneal eosinophils and this expression in the latter cells was upregulated after culture with mouse recombinant IL-5. These results suggest that CSF eosinophils, shifting to hypodense status through an accumulation from peripheral blood, are resistant to apoptosis. These changes may explain the long-lasting, helminthotoxic and neurotoxic actions of CSF eosinophils in A. cantonensis infection.  相似文献   

5.
In bronchial asthma, eosinophils are upregulated and their survival is suggested to be prolonged by the action of some cytokines such as Interleukin (IL)-3, IL-5 and granulocyte-macrophage colony-stimulating factor (GM-CSF). We find here that the survival of eosinophils in the peripheral blood of patients with asthma is correlated with the serum levels of IL-3 but not of IL-5 and GM-CSF. Interestingly, theophylline is revealed to induce apoptosis of the prolonged survival eosinophils by IL-3, as judged by morphological changes and nucleosomal DNA fragmentation. During the apoptosis, caspase-3 in eosinophils stimulated by IL-3 is activated by theophylline. The substrate of caspase-3, poly (ADP-ribose) polymerase (PARP), is cleaved in the eosinophils after theophylline treatment. These results suggest that theophylline is able to induce apoptosis of the IL-3 activated eosinophils in patients with bronchial asthma, and that its clinical effectiveness may be due to the reduction of inflammatory cells in the airway.  相似文献   

6.
Cysteinyl-leukotrienes are potent bronchoconstrictor mediators synthesized by the 5-lipoxygenase (5-LO) pathway. Eosinophilopoietic cytokines such as IL-5 enhance cysteinyl-leukotriene synthesis in eosinophils in vitro, mimicking changes in eosinophils from asthmatic patients, but the mechanism is unknown. We hypothesized that IL-5 induces the expression of 5-LO and/or its activating protein FLAP in eosinophils, and that this might be modulated by anti-inflammatory corticosteroids. Compared with control cultures, IL-5 increased the proportion of normal blood eosinophils immunostaining for FLAP (65 +/- 4 vs 34 +/- 4%; p < 0.0001), enhanced immunoblot levels of FLAP by 51 +/- 14% (p = 0.03), and quadrupled ionophore-stimulated leukotriene C4 synthesis from 5.7 to 20.8 ng/106 cells (p < 0.02). IL-5 effects persisted for 24 h and were abolished by cycloheximide and actinomycin D. The proportion of FLAP+ eosinophils was also increased by dexamethasone (p < 0.0001). Neither IL-5 nor dexamethasone altered 5-LO expression, but IL-5 significantly increased 5-LO immunofluorescence localizing to eosinophil nuclei. Compared with normal subjects, allergic asthmatic patients had a greater proportion of circulating FLAP+ eosinophils (46 +/- 6 vs 27 +/- 3%; p < 0.03) and a smaller IL-5-induced increase in FLAP immunoreactivity (p < 0.05). Thus, IL-5 increases FLAP expression and translocates 5-LO to the nucleus in normal blood eosinophils in vitro. This is associated with an enhanced capacity for cysteinyl-leukotriene synthesis and mimics in vivo increases in FLAP expression in eosinophils from allergic asthmatics.  相似文献   

7.
Wang W  Hansbro PM  Foster PS  Yang M 《PloS one》2011,6(3):e17766

Background

Enhanced eosinophil responses have critical roles in the development of allergic diseases. IL-5 regulates the maturation, migration and survival of eosinophils, and IL-5 and eotaxins mediate the trafficking and activation of eosinophils in inflamed tissues. CD4+ Th2 cells are the main producers of IL-5 and other cells such as NK also release this cytokine. Although multiple signalling pathways may be involved, STAT6 critically regulates the differentiation and cytokine production of Th2 cells and the expression of eotaxins. Nevertheless, the mechanisms that mediate different parts of the eosinophilic inflammatory process in different tissues in allergic airway diseases remain unclear. Furthermore, the mechanisms at play may vary depending on the context of inflammation and microenvironment of the involved tissues.

Methodology/Principal Findings

We employed a model of allergic airway disease in wild type and STAT6-deficient mice to explore the roles of STAT6 and IL-5 in the development of eosinophilic inflammation in this context. Quantitative PCR and ELISA were used to examine IL-5, eotaxins levels in serum and lungs. Eosinophils in lung, peripheral blood and bone marrow were characterized by morphological properties. CD4+ T cell and NK cells were identified by flow cytometry. Antibodies were used to deplete CD4+ and NK cells. We showed that STAT6 is indispensible for eosinophilic lung inflammation and the induction of eotaxin-1 and -2 during allergic airway inflammation. In the absence of these chemokines eosinophils are not attracted into lung and accumulate in peripheral blood. We also demonstrate the existence of an alternate STAT6-independent pathway of IL-5 production by CD4+ and NK cells that mediates the development of eosinophils in bone marrow and their subsequent movement into the circulation.

Conclusions

These results suggest that different points of eosinophilic inflammatory processes in allergic airway disease may be differentially regulated by the activation of STAT6-dependent and -independent pathways.  相似文献   

8.
Chronic airway eosinophilia is associated with allergic asthma and is mediated in part by secretion of IL-5 from allergen-specific Th2 lymphocytes. IL-5 is a known maturation and antiapoptotic factor for eosinophils and stimulates release of nascent eosinophils from bone marrow into the peripheral circulation. An antisense oligonucleotide found to specifically inhibit IL-5 expression in vitro was observed to significantly reduce experimentally induced eosinophilia in vivo, in both the murine OVA lung challenge and allergic peritonitis models. Intravenous administration resulted in sequence-dependent inhibition of eosinophilia coincident with reduction of IL-5 protein levels, supporting an antisense mechanism of action. Potent suppression of lung eosinophilia was observed up to 17 days after cessation of oligonucleotide dosing, indicating achievement of prolonged protection with this strategy. Furthermore, sequence-specific, antisense oligonucleotide-mediated inhibition of Ag-mediated late phase airway hyperresponsiveness was also observed. These data underscore the potential utility of an antisense approach targeting IL-5 for the treatment of asthma and eosinophilic diseases.  相似文献   

9.
Constitutive expression of the pro-molecule of IL-16 has been found in T cells, mast cells, eosinophils, epithelial cells, fibroblasts, and dendritic cells. Here we show that IL-16 is also constitutively present in >98% of freshly isolated human CD14-positive peripheral blood monocytes when analyzed by flow cytometry. Because pro-IL-16 is cleaved to its bioactive mature form by caspase-3, and caspase-3 is also the pivotal effector of apoptosis in monocytes, we asked whether IL-16 release occurs in monocytes that undergo spontaneous apoptosis. As expected, freshly isolated, unstimulated monocytes underwent spontaneous caspase-3 activation. This apoptosis was paralleled by the loss of intracellular IL-16, as detected by flow cytometry, and the concurrent release of IL-16, as detected by ELISA. In contrast, stimulation with bacterial LPS inhibited caspase-3 activation and significantly inhibited the release of IL-16. As a specificity control, IL-1beta and IL-8 were not released during spontaneous monocyte apoptosis. In summary, our data demonstrate that monocytes contain IL-16 that is released during spontaneous apoptosis.  相似文献   

10.
Granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), and IL-5 play a key role in allergic inflammation. They mediate their effect via receptors that consist of two distinct subunits, a cytokine-specific alpha subunit and a common beta subunit (betac) that transduces cell signaling. We sought to down-regulate the biologic activities of GM-CSF, IL-3, and IL-5 simultaneously by inhibiting betac mRNA expression with antisense technology. Experiments were performed with TF-1 cells (a human erythroleukemia cell line expressing GM-CSF, IL-3, and IL-5 receptors, which proliferates in response to these cytokines), monocytic U937 cells, which require these cytokines for differentiation, and purified human eosinophils. Cells were treated with antisense phosphorothioate oligodeoxynucleotides (ODN) targeting betac mRNA. In contrast to nontreated cells and cells treated by sense or mismatched ODN, antisense ODN inhibited betac mRNA expression and significantly decreased the level of cell surface betac protein expression on TF-1 and U937 cells. Receptor function was also affected. Antisense ODN were able to inhibit TF-1 cell proliferation in vitro in the presence of GM-CSF, IL-3, or IL-5 in the culture medium and eosinophil survival. We suggest that antisense ODN against betac may provide a new therapeutic alternative for the treatment of neoplastic or allergic diseases associated with eosinophilic inflammation.  相似文献   

11.
Interleukin-5 (IL-5) drives the terminal differentiation of myeloid progenitors to the eosinophil lineage; blocks eosinophil apoptosis; and primes eosinophils for enhanced functional activities in allergic, parasitic, and other eosinophil-associated diseases. Here we describe a novel signaling pathway activated by the IL-5 receptor in eosinophils involving the CrkL adapter protein. We determined whether IL-5 induces activation of CrkL and STAT5 in eosinophils using both the human eosinophil-differentiated AML14.3D10 cell line and purified peripheral blood eosinophils from normal donors. Stimulation of AML14.3D10 cells or blood eosinophils with IL-5 induced rapid tyrosine phosphorylation of the CrkL adapter and STAT5 and the association of CrkL and STAT5 in vivo as evidenced by the detection of STAT5 in anti-CrkL immunoprecipitates. The resulting CrkL.STAT5 complexes translocated to the nucleus and bound STAT5 consensus DNA-binding sites present in the promoters of IL-5-regulated genes, as shown in gel mobility and antibody supershift assays. IL-5 also induced marked activity of an 8X-GAS (interferon gamma-activated site)-luciferase reporter construct in transient transfections of AML14.3D10 eosinophils, demonstrating that these complexes play a functional role in IL-5 signaling. CrkL was also found to interact, via its N-terminal SH3 domain, with C3G, a guanine exchange factor for the small G-protein Rap1, which was also rapidly activated in an IL-5-dependent manner in these cells, establishing that CrkL mediates downstream activation of at least two signaling cascades in IL-5-stimulated eosinophils. Thus, the CrkL adapter plays an important role in IL-5 signaling in the eosinophil, acting as a nuclear adapter for STAT5 and as an upstream regulator of the C3G-Rap1 signaling pathway.  相似文献   

12.
IL-5 plays a pivotal role in growth and differentiation of eosinophils. The signal transduction mechanism of IL-5Ralpha is largely unknown. We have demonstrated that IL-5 induces tyrosine phosphorylation of IL-5Ralpha in eosinophils. To identify IL-5Ralpha-associated tyrosine kinases, we have examined the expression of Src family tyrosine kinases in eosinophils. Among the Src family members, Lyn, Hck, Fgr, and Lck are present in eosinophils, and, among these four kinases, only Lyn is associated with the IL-5Ralpha under basal conditions. We also confirm the association of Janus kinase (Jak)2 with IL-5Ralpha. Lyn kinase phosphorylates both IL-5Ralpha and betacR in vitro. The importance of Lyn kinase for eosinophil differentiation was studied using antisense oligodeoxynucleotides. Lyn antisense oligodeoxynucleotide blocks eosinophil differentiation from stem cells in a dose-dependent manner. The Jak2 inhibitor tyrphostin AG490 also inhibits eosinophil differentiation. The importance of Lyn for eosinophil differentiation was further studied using Lyn knockout mice. The IL-5-stimulated eosinophil differentiation from bone marrow cells is significantly inhibited in Lyn(-/-) mice as compared with that in control mice. We conclude that both Lyn and Jak2 play an essential role in IL-5Ralpha signaling, leading to eosinophil differentiation. The effect of Lyn appears to be relatively specific for the eosinophilic lineage.  相似文献   

13.
The in vitro production of eosinophils from committed progenitor cells is influenced by interleukin (IL)-5 (eosinophil differentiation factor) and to a lesser extent by IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF). In primary suspension cultures of marrow cells taken from eosinophilic mice, IL-3 induced a modest stimulation of eosinophil production compared to IL-5. In contrast, IL-3 was sevenfold more effective than IL-5 in generating eosinophil progenitors (eosinophil colony-forming units (CFU-eo] from more primitive precursors present in the marrow of normal mice. Pre-incubation of marrow cells in suspension culture with IL-3, but not IL-5, increased the recovery of myeloid precursors responsive to G-CSF, GM-CSF, CSF-1, or IL-3 two- to fourfold while eosinophil progenitor cells responsive to IL-5 were increased by more than 70-fold. Similarly, pre-incubation of bone marrow cells under clonal conditions with IL-3, but not IL-5, resulted in a more than 50 fold increase in CFU-eo responsive to IL-5 over input values. Bone marrow from mice pre-treated with 5-fluorouracil is greatly depleted of progenitor cells directly responsive to IL-3 or IL-5. IL-1 which synergistically interacts with various CSF species to confer a clonogenic response by primitive stem cells present in 5-fluorouracil-treated marrow also failed to stimulate eosinophil production. A marked synergism was observed when IL-1 and IL-3 were combined in the suspension pre-culture phase with a more than sixfold recovery of CFU-eo than induced by either factor alone. Furthermore, pre-culture of 5-fluorouracil-treated marrow cells with a combination of IL-1 and IL-3 resulted in a more than 260-fold increase of CFU-eo over input numbers. These data suggest that the concatenate action of IL-1, IL-3, and IL-5 is an absolute requirement for the in vitro generation of eosinophils from primitive hemopoietic stem cells.  相似文献   

14.
15.
Na HJ  Hudson SA  Bochner BS 《Cytokine》2012,57(1):169-174
IL-33 activates eosinophils directly via the ST2 receptor. Like IL-5, IL-33 induces eosinophilia and eosinophilic airway inflammation in mouse models and primes human eosinophil responses. Previously, we reported that IL-5 priming enhances Siglec-8 mediated mitochondrial and reactive oxygen species (ROS)-dependent eosinophilic apoptosis and eliminates caspase dependence of this cell death process. Whether IL-33, like IL-5, augments pro-apoptotic pathways involving receptors such as Siglec-8 and in a similar manner has not been explored. Annexin-V labeling was performed to detect apoptosis in human eosinophils pre-incubated with or without a range of concentrations of IL-33 and/or IL-5 in the presence or absence of Siglec-8 monoclonal antibody (mAb) 2C4 and inhibitors of caspases. Tetramethyl-rhodamine staining was used as a marker of mitochondrial membrane potential loss and injury. ROS production was determined by measuring the superoxide dismutase-inhibitable reduction of cytochrome c. Cleavage of poly(ADP-ribose) polymerase (PARP) was assessed using Western blotting. Eosinophils cultured alone or with mAb 2C4 underwent low levels of apoptosis at 24 h. 2C4-induced eosinophil apoptosis was markedly and equally enhanced after culture for 24 h with either IL-33 or IL-5, although IL-5 was more potent. Effects on apoptosis with IL-33 and IL-5 were synergistic. In contrast, percentages of cells exhibiting reduced mitochondrial membrane potential were greater with IL-33 than IL-5 and effects of these cytokines were also synergistic. Antimycin, an inhibitor of mitochondrial electron transport, almost completely inhibited 2C4-induced apoptosis with either IL-33 or IL-5. Surprisingly, 2C4-induced eosinophil ROS production was significantly enhanced with IL-5 but not IL-33. Siglec-8-mediated apoptosis in the presence of IL-33 was more sensitive in magnitude than IL-5 to inhibition by the pan-caspase inhibitor Z-VAD-FMK, yet both cytokine conditions were associated with PARP cleavage. These data demonstrate that IL-33 is as effective but less potent than IL-5 in enhancing Siglec-8-mediated eosinophil apoptosis, and can synergize with IL-5. Eosinophils primed by IL-33 and/or IL-5 in vivo would be expected to display enhanced susceptibility to undergoing Siglec-8-induced apoptosis.  相似文献   

16.
B-cell chronic lymphocytic leukemia (B-CLL) is characterized by the slow and progressive accumulation of monoclonal apparently mature, CD5(+) B lymphocytes. The majority of circulating cells appear to be nondividing, and it has been suggested that a prolonged life span is mainly responsible for the accumulation of the leukemic cells. However, spontaneous programmed cell death by apoptosis occurs when B chronic lymphocytic leukemia cells are cultured in vitro. This may be because of the lack of an unidentified essential cytokine present in vivo. Thus, we investigate interleukin-2 (IL-2), IL-4, IL-6 and IL-10 in vitro effects on apoptosis of B cells from 32 previously untreated patients with B-CLL in initial clinical stages. B cells were isolated from peripheral blood, and apoptosis was measured in these cells immediately after isolation and following incubation in vitro, without and with the different cytokines, for 24 and 48 h. Distribution of cellular DNA content and quantitative analysis of apoptosis were determined by standard propidium iodide staining and flow cytometry. Spontaneous apoptosis occurred in B-CLL cells incubated in vitro in the absence of cytokines. Our results indicate that both IL-2 and IL-4, but not IL-6, inhibit in vitro apoptosis in a large percentage of B-CLL patients. IL-10 increases in vitro apoptotic cell number in stage 0 patients, but not in stage I and II. These data support the hypothesis that IL-2 or IL-4, may be cell survival factors in vivo and that IL-10 might be a candidate for immune therapy of early B-CLL.  相似文献   

17.
Apoptosis of eosinophils is of increasingly important value in modulating allergic inflammatory airway diseases, such as asthma, and is suppressed by interleukin-5 (IL-5) in in vitro culture. In this study, we examined the effects of theophylline on survival/apoptosis, intracellular cAMP concentration, and Bcl-2 protein expression. Treatment with theophylline protected eosinophils against IL-5-mediated inhibition of apoptosis with a simultaneous suppression of survival in a dose-dependent manner. Theophylline caused an increase in the intracellular cAMP levels of IL-5-stimulated eosinophils. Enhancement of eosinophil apoptosis was consistent with an increase in DNA fragmentation in eosinophils treated with theophylline. On the other hand, the Bcl-2 protein appeared to be expressed constitutively in freshly isolated eosinophils. Bcl-2 expression was augmented by IL-5 stimulation, yet it was considerably inhibited by theophylline treatment. These data suggest that intracellular cAMP levels and Bcl-2 expression are involved in the suppression of eosinophil survival by theophylline.  相似文献   

18.
Lymphokines derived from activated T cells regulate the proliferation and postmitotic differentiation of eosinophils in vitro. We investigated whether peripheral blood eosinophilia, which is a characteristic feature of both allergic and nonallergic asthma, correlates with T cell activation and lymphokine production in asthmatic patients. Flow cytometric analysis of T cell activation markers revealed that asthmatic individuals are characterized by increased numbers of IL-2R (CD25)-bearing T cell subsets. The absolute number of IL-2R+ T cells correlated with the eosinophilia observed in the asthmatic patients. Purified CD4+ and CD8+ T cells from allergic and nonallergic asthmatic individuals spontaneously secreted factors that extend the lifespan of eosinophils in vitro. T cells from normal donors displayed this effect only after polyclonal stimulation with anti-CD3 antibody. The eosinophil lifespan-extending factors were also found in sera of asthmatic patients. Identification of these factors was performed by using neutralizing antibodies against IL-3, IL-5, and granulocyte-macrophage CSF. In sera, mainly IL-5 and granulocyte-macrophage CSF were responsible for prolonged eosinophil survival, whereas granulocyte-macrophage CSF was dominant in T cell supernatants. These results indicate that T cells and secretion of lymphokines play an important regulatory function toward eosinophils, which are thought to represent major proinflammatory effector cells in certain types of asthma.  相似文献   

19.
The involvement of chemokines in eosinophil recruitment during inflammation and allergic reactions is well established. However, a functional role for chemokines in eosinophil differentiation has not been investigated. Using in situ RT-PCR, immunostaining, and flow cytometric analysis, we report that human CD34+ cord blood progenitor cells contain CCR3 mRNA and protein. Activation of CD34+ progenitor cells under conditions that promote Th2 type differentiation up-regulated surface expression of the CCR3. In contrast, activation with IL-12 and IFN-gamma resulted in a significant decrease in the expression of CCR3. Eotaxin induced Ca2+ mobilization in CD34+ progenitor cells, which could explain the in vitro and in vivo chemotactic responsiveness to eotaxin. We also found that eotaxin induced the differentiation of eosinophils from cord blood CD34+ progenitor cells. The largest number of mature eosinophils was found in cultures containing eotaxin and IL-5. The addition of neutralizing anti-IL-3, anti-IL-5, and anti-GM-CSF Abs to culture medium demonstrated that the differentiation of eosinophils in the presence of eotaxin was IL-3-, IL-5-, and GM-CSF-independent. These results could explain how CD34+ progenitor cells accumulate and persist in the airways and peripheral blood of patients with asthma and highlight an alternative mechanism by which blood and tissue eosinophilia might occur in the absence of IL-5.  相似文献   

20.
Allergic inflammation is characterized by elevated eosinophil numbers and by the increased production of the cytokines IL-5 and GM-CSF, which control several eosinophil functions, including the suppression of apoptosis. The JAK/STAT pathway is important for several functions in hemopoietic cells, including the suppression of apoptosis. We report in this study that STAT3, STAT5a, and STAT5b are expressed in human eosinophils and that their signaling pathways are active following IL-5 or GM-CSF treatment. However, in airway eosinophils, the phosphorylation of STAT5 by IL-5 is reduced, an event that may be related to the reduced expression of the IL-5Ralpha on airway eosinophils. Furthermore, IL-5 and GM-CSF induced the protein expression of cyclin D3 and the kinase Pim-1, both of which are regulated by STAT-dependent processes in some cell systems. Pim-1 is more abundantly expressed in airway eosinophils than in blood eosinophils. Because Pim-1 reportedly has a role in the modulation of apoptosis, these results suggest that Pim-1 action is linked to the suppression of eosinophil apoptosis by these cytokines. Although cyclin D3 is known to be critical for cell cycle progression, eosinophils are terminally differentiated cells that do not proceed through the cell cycle. Thus, this apparent cytokine regulation of cyclin D3 suggests that there is an alternative role(s) for cyclin D3 in eosinophil biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号