首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Animal experimentation continues to generate public and political concern worldwide. Relatively few countries collate and publish animal use statistics, yet this is a first and essential step toward public accountability and an informed debate, as well as being important for effective policy-making and regulation. The implementation of the Three Rs (replacement, reduction and refinement of animal experiments) should be expected to result in a decline in animal use, but without regular, accurate statistics, this cannot be monitored. Recent estimates of worldwide annual laboratory animal use are imprecise and unsubstantiated, ranging from 28-100 million. We collated data for 37 countries that publish national statistics, and standardised these against the definitions of 'animals', 'purposes' and 'experiments' used in European Union Directive 86/609/EEC. We developed and applied a statistical model, based on publication rates, for a further 142 countries. This yielded our most conservative estimate of global animal use: 58.3 million animals in 179 countries. However, this figure excludes several uses and forms of animals that are included in the statistics of some countries. With the data available, albeit for only a few countries, we also produced, by extrapolation, a more comprehensive global estimate that includes animals killed for the provision of tissues, animals used to maintain genetically-modified strains, and animals bred for laboratory use but killed as surplus to requirements. For a number of reasons that are explained, this more-comprehensive figure of 115.3 million animals is still likely to be an underestimate.  相似文献   

2.
3.
The field of laboratory animal medicine is experiencing a serious shortage of appropriately trained veterinarians for both clinically related and research-oriented positions within academia, industry, and government. Recent outreach efforts sponsored by professional organizations have stimulated increased interest in the field. It is an opportune time to critically review and evaluate postgraduate training opportunities in the United States and Canada, including formal training programs, informal training, publicly accessible training resources and educational opportunities, and newly emerging training resources such as Internet-based learning aids. Challenges related to each of these training opportunities exist and include increasing enrollment in formal programs, securing adequate funding support, ensuring appropriate content between formal programs that may have diverse objectives, and accommodating the training needs of veterinarians who enter the field by the experience route. Current training opportunities and resources that exist for veterinarians who enter and are established within the field of laboratory animal science are examined. Strategies for improving formal laboratory animal medicine training programs and for developing alternative programs more suited to practicing clinical veterinarians are discussed. In addition, the resources for high-quality continuing education of experienced laboratory animal veterinarians are reviewed.  相似文献   

4.
Factorial experimental designs (FEDs) can be used to study the effects of controllable variables, such as an experimental treatment, sex, strain, age, diet and prior treatment of animals, on some defined response. Such designs have been widely used in optimising manufacturing processes, but have rarely been used in optimising animal experiments in drug discovery. FEDs generally provide more information than the alternative "one-variable-at-a-time" approach, because each animal contributes information on the effect of every factor, and because such designs can highlight any interactions among the variables. Although FEDs can have any number of factors and levels of each factor, where many factors are to be explored, it is common to do an initial experiment using two levels of each factor, and in some cases fractional factorial designs can be used to reduce the total number of treatment combinations to manageable levels. These designs have been used successfully at AstraZeneca in the optimisation of in vivo drug screening experiments, where their use has effectively reduced the numbers of animals used in some routine screens.  相似文献   

5.
6.
Education and training in microsurgical techniques have historically relied on the use of live animal models. Due to an increase in the numbers of microsurgical operations in recent times, the number of trainees in this highly-specialised surgical field has continued to grow. However, strict legislation, greater public awareness, and an increasing sensitivity toward the ethical aspects of scientific research and medical education, emphatically demand a significant reduction in the numbers of animals used in surgical and academic education. Hence, a growing number of articles are reporting on the use of alternatives to live animals in microsurgical education and training. In this review, we report on the current trends in the development and use of microsurgical training models, and on their potential to reduce the number of live animals used for this purpose. We also share our experiences in this field, resulting from our performance of numerous microsurgical courses each year, over more than ten years. The porcine heart, in microvascular surgery training, and the fresh chicken leg, in microneurosurgical and microvascular surgery training, are excellent models for the teaching of basic techniques to the microsurgical novice. Depending on the selected level of expertise of the trainee, these alternative models are capable of reducing the numbers of live animals used by 80-100%. For an even more enhanced, "closer-to-real-life" scenario, these non-animated vessels can be perfused by a pulsatile pump. Thus, it is currently possible to provide excellent and in-depth training in microsurgical techniques, even when the number of live animals used is reduced to a minimum. With these new and innovative techniques, trainees are able to learn and prepare themselves for the clinical situation, with the sacrifice of considerably fewer laboratory animals than would have occurred previously.  相似文献   

7.
The essence of learning is change; learning is the process by which learners customize new information to make it personally meaningful and relevant. Training is the process of helping students make those changes. Research indicates that adults learn differently than children or adolescents and that adults consistently use the following six learning strategies: prior experiences; conversations; metacognition; reflection; authentic experiences; and images, pictures, or other types of visuals. Each of these learning strategies can be combined with the other strategies and often build upon each other. A recent study on how health care professionals learn indicated that the learning strategy they used most often was reflection, which supports learning before, during, and after training. Numerous examples are provided in this article describing how to integrate each of the six adult learning strategies into laboratory animal science training. While lectures and other types of direct instruction are appropriate, they are inadequate and ineffective unless they are integrated with and support adult learning strategies. Both the US Department of Agriculture regulations and the Public Health Service Policy mandate that research institutions must ensure that all personnel involved in animal care, treatment, or use are qualified to perform their duties. Applying adult learning strategies to training for the laboratory animal science community will enhance learning and improve both the science and the humane care of the animals, which is a goal our community must continuously strive to achieve.  相似文献   

8.
The challenges of physiologically-based pharmacokinetic (PBPK) modelling and approaches to replacing the use of animals, in order to determine drug pharmacokinetics, are discussed. Reference is made to the limitations of in vivo animal studies in drug discovery. In particular, the ways in which animal studies contribute to drug attrition during the post-preclinical phase of testing are considered.  相似文献   

9.
Poe E 《Lab animal》2000,29(2):41-46
The unique and challenging nature of work with animals requires special animal care and use training at all levels. Degree programs, certification boards, and continuing education programs ensure that those who work with animals have the knowledge and skills necessary to provide the best care possible.  相似文献   

10.
A standard test for laboratory animal bone   总被引:1,自引:0,他引:1  
  相似文献   

11.
12.
The concept of animal models is well honored, and amphibians have played a prominent part in the success of using key species to discover new information about all animals. As animal models, amphibians offer several advantages that include a well-understood basic physiology, a taxonomic diversity well suited to comparative studies, tolerance to temperature and oxygen variation, and a greater similarity to humans than many other currently popular animal models. Amphibians now account for approximately 1/4 to 1/3 of lower vertebrate and invertebrate research, and this proportion is especially true in physiological research, as evident from the high profile of amphibians as animal models in Nobel Prize research. Currently, amphibians play prominent roles in research in the physiology of musculoskeletal, cardiovascular, renal, respiratory, reproductive, and sensory systems. Amphibians are also used extensively in physiological studies aimed at generating new insights in evolutionary biology, especially in the investigation of the evolution of air breathing and terrestriality. Environmental physiology also utilizes amphibians, ranging from studies of cryoprotectants for tissue preservation to physiological reactions to hypergravity and space exploration. Amphibians are also playing a key role in studies of environmental endocrine disruptors that are having disproportionately large effects on amphibian populations and where specific species can serve as sentinel species for environmental pollution. Finally, amphibian genera such as Xenopus, a genus relatively well understood metabolically and physiologically, will continue to contribute increasingly in this new era of systems biology and "X-omics."  相似文献   

13.
Challenges and published guidelines associated with appropriate care and use of farm animals in agricultural research conducted outside the laboratory are briefly reviewed. The Animal Welfare Act (Title 9 of the 2000 Code of Federal Regulations), which regulates the care and use of agricultural animals in biomedical research, does not include livestock and poultry used in agricultural research. Farm animal research funded (and thereby regulated) by the US Public Health Service is further discussed in the National Research Council's 1996 Guide for the Care and Use of Laboratory Animals. However, neither of these guidelines adequately addresses the unique attributes of research and teaching designed to improve production agriculture. That information is contained in the Guide for the Care and Use of Agricultural Animals in Agricultural Research and Teaching (the Ag Guide), published by the Federation of Animal Science Societies in 1999. The Ag Guide provides excellent general recommendations for agricultural animal research. It serves as an invaluable resource for institutional animal care and use committees, which attempt to balance the welfare of farm animals and the needs of those working to improve animal agriculture.  相似文献   

14.
15.
Recent advances in nucleic acid diagnostic technologies have revolutionized microbiology by facilitating rapid, sensitive pathogen surveillance and differential diagnosis of infectious diseases. With the expansion and dissemination of genomic sequencing technology scientists are discovering new microbes at an accelerating pace. In this article we review recent progress in the field of pathogen surveillance and discovery with a specific focus on applications in the field of laboratory animal research. We discuss the challenges in proving a causal relationship between the presence of a candidate organism and disease. We also discuss the strengths and limitations of various assay platforms and describe a staged strategy for viral diagnostics. To illustrate the complexity of pursuing pathogen discovery research, we include examples from our own work that are intended to provide insights into the process that led to the selection of particular strategies.  相似文献   

16.
Fielder TJ 《Lab animal》2002,31(10):40-44
Email lists can be invaluable for acquiring information that may not be easily accessible in the published literature. The author discusses the general format and functioning of email lists and describes six lists that can be valuable tools for education, training, and information exchange in the field of laboratory animal science.  相似文献   

17.
Early scientific studies conducted at the turn of the twentieth century failed to support the inclusion of seaweeds into animal rations at high inclusion rates. At that time, based on proximate analysis and energy availability studies, dried seaweeds or kelp meal largely fell out of favor as a recommended animal feed source. Nevertheless, kelp meal was still regarded by some as having properties which improved animal health and productivity which were not conveniently explained by conventional feed analysis. In the 1970s, research leads to the discovery that chelated micromineral sources were more efficient for the delivery of microelements than conventional inorganic sources. This prompted renewed interest in seaweeds as rich sources of over 60+ microelements. However, it was only in the early 2000s, when detailed analysis of the complex structure of the polysaccharides associated with seaweeds was tied to their prebiotic actions, that a clear explanation for the basis of productivity and health enhancement was attained. Further analysis indicated that other constituents in various brown seaweeds such as phlorotannins and antioxidants also contributed to the observed bioactivities. Of all of the brown seaweeds cited in studies, the one most scientifically documented is Ascophyllum nodosum, and of all of these sources, Tasco®, a sundried, high-quality macroalgal product, produced by Acadian Seaplants has been the most studied. The latest studies of Tasco® suggest prebiotic potencies at least five times that of the reference prebiotic inulin with additional performance-enhancing benefits in animal rations that rival antibiotic inclusions.  相似文献   

18.
Criteria for the evaluation of laboratory animal bedding   总被引:2,自引:0,他引:2  
  相似文献   

19.
20.
Stakutis RE 《Lab animal》2003,32(8):47-52
Individually ventilated cage systems have become the method of choice for housing rodents. The author describes the various options for cage ventilation, from using supply and exhaust fans to directly connecting the racks to the building ventilation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号