首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Thyroid hormones (THs) play a pivotal role in cardiac homeostasis. TH imbalances alter cardiac performance and ultimately cause cardiac dysfunction. Although short-term hyperthyroidism typically leads to heightened left ventricular (LV) contractility and improved hemodynamic parameters, chronic hyperthyroidism is associated with deleterious cardiac consequences including increased risk of arrhythmia, impaired cardiac reserve and exercise capacity, myocardial remodeling, and occasionally heart failure. To evaluate the long-term consequences of chronic hyperthyroidism on LV remodeling and function, we examined LV isolated myocyte function, chamber function, and whole tissue remodeling in a hamster model. Three-month-old F1b hamsters were randomized to control or 10 months TH treatment (0.1% grade I desiccated TH). LV chamber remodeling and function was assessed by echocardiography at 1, 2, 4, 6, 8, and 10 months of treatment. After 10 months, terminal cardiac function was assessed by echocardiography and LV hemodynamics. Hyperthyroid hamsters exhibited significant cardiac hypertrophy and deleterious cardiac remodeling characterized by myocyte lengthening, chamber dilatation, decreased relative wall thickness, increased wall stress, and increased LV interstitial fibrotic deposition. Importantly, hyperthyroid hamsters demonstrated significant LV systolic and diastolic dysfunction. Despite the aforementioned remodeling and global cardiac decline, individual isolated cardiac myocytes from chronically hyperthyroid hamsters had enhanced function when compared with myocytes from untreated age-matched controls. Thus, it appears that long-term hyperthyroidism may impair global LV function, at least in part by increasing interstitial ventricular fibrosis, in spite of normal or enhanced intrinsic cardiomyocyte function.  相似文献   

2.
Habitual exercise results in a rightward shift in left ventricular end diastolic (LVED) pressure-volume or internal dimension (P-D) relationships [left ventricular (LV) remodeling]. However, exercise-mediated LV hypertrophy (LVH) produces an increased LV relative wall thickness [ratio (h/r) of wall thickness (h) to internal radius (r)] and hence a decrement in diastolic wall stress despite LV remodeling. In this study, the effect of chronic administration of an androgenic steroid on exercise-induced LV remodeling and h/r was examined in rats. Habitual exercise on voluntary running wheels resulted in LVH and a rightward shift in the LVED P-D relationships. However, LVH was sufficient to increase LVED h/r. Androgenic steroid administration to exercised rats, without influencing the development of exercise-induced LVH, produced a further rightward shift in the LVED P-D relationship associated with an increased diameter intercept. As a consequence, LVED h/r was reduced to control values. The steroid-mediated effects were not associated with alterations in either the quantity or quality of LV collagen. In conclusion, high-dose androgenic steroid administration alters exercise-induced LV remodeling and subsequently reduces the beneficial effect of physiological LVH on LV h/r.  相似文献   

3.
Spontaneously hypertensive heart failure (SHHF) rats develop hypertension and heart failure. We hypothesized that induction of hyperthyroidism should accelerate development of heart failure in male SHHF rats. Male and female SHHF rats received diets containing desiccated thyroid glands (DTG) or a control diet for 8 wk. Male and female Wistar-Kyoto rats were used as normotensive controls. DTG treatment reduced body weight in male, but not female, SHHF rats but increased body temperature and heart weight-to-body weight ratio in both genders. In DTG-treated male SHHF rats, serum triiodothyronine levels doubled relative to SHHF controls, whereas O2 consumption increased in DTG-treated SHHF rats. Frequency of breathing in air increased in DTG-treated female rats, and ventilation increased in DTG-treated male rats. Ventilatory equivalents exhibited gender differences in SHHF rats, were decreased in both genders by DTG treatment, and reached levels similar to those of Wistar-Kyoto rats. DTG increased heart rate, right ventricular pressure, and contractility in both genders and increased left ventricular pressure in SHHF male rats. These results refute our hypothesis and suggest that cardiopulmonary function of SHHF male rats may be improved by DTG treatment.  相似文献   

4.
The progression of hypertension to cardiac failure involves systemic changes that may ultimately affect contractility throughout the heart. Spontaneous hypertensive heart failure (SHHF) rats have depressed left ventricular (LV) function, but right ventricular (RV) dysfunction is less well characterized. Ultrathin (87 +/- 5 mircom) trabeculae were isolated from end-stage failing SHHF rats and from age-matched controls. Under near-physiological conditions (1 mM Ca(2+), 37 degrees C, 4 Hz), developed force (in mN/mm(2)) was not significantly different in SHHF LV and RV trabeculae and those of controls. SHHF LV preparations displayed a negative force-frequency behavior (40 +/- 7 vs. 23 +/- 4 mN/mm(2), 2 vs. 7 Hz); this relationship was positive in SHHF RV preparations (27 +/- 5 vs. 40 +/- 6 mN/mm(2)) and controls (32 +/- 6 vs. 44 +/- 9 mN/mm(2)). The response to isoproterenol (10(-6) M, 4 Hz) was depressed in SHHF LV preparations. The inotropic response to hypothermia was lost in SHHF LV trabeculae but preserved in SHHF RV trabeculae. Intracellular calcium measurements revealed impaired calcium handling at higher frequencies in LV preparations. We conclude that in end-stage failing SHHF rats, RV function is only marginally affected, whereas a severe contractile dysfunction of LV myocardium is present.  相似文献   

5.
Thyroid hormones (TH) enhance cardiac function and reverse gene changes typical of pathological hypertrophy. However, reports in humans, but not animals, indicate that excess TH can cause heart failure. Also, the effects of TH on normal and cardiomyopathic hearts are likely to be different. The goal of this study was to characterize the effects of prolonged hyperthyroidism on cardiac function, chamber and cellular remodeling, and protein expression in both normal and cardiomyopathic hearts. Hyperthyroidism was induced in 3-mo-old normal BIO F1B and dilated cardiomyopathic BIO TO2 hamsters. After TH treatment for 10 days and 2 mo, hemodynamics, echos, myocyte length, histology, and protein expression were assessed. After 10 days and 2 mo, there were no differences between TO2-treated (Tx) and TO2-untreated (Untx) hamsters in chamber diameters or left ventricular function. After 2 mo of treatment, however, F1B-Tx showed evidence of dilated heart failure vs. F1B-Untx. Chamber diameters were increased, and ejection fraction and positive and negative changes in pressure over time were reduced. In F1B-Tx and TO2-Tx hamsters, beta-myosin isoform expression was reduced, whereas alpha-myosin increased significantly in F1B-Tx only. In TO2-Tx hamsters, the percent of viable myocardium was increased, and percent fibronecrosis was reduced vs. TO2-Untx. Myocyte length increased with TH treatment in both hamster strains. We conclude that 1) excess TH can induce heart failure in normal animals as observed in humans, 2) reversal of myosin heavy chain expression does not necessarily improve heart function, and 3) excess TH altered cellular remodeling but did not adversely affect chamber function or dimensions in TO2 hamsters.  相似文献   

6.
Structural remodeling of the left ventricular (LV) myocardium develops in a time-dependent fashion following acute myocardial infarction and may be an integral component in the transition toward overt heart failure. Globally, the remodeling process is characterized by progressive LV enlargement and increased chamber sphericity. At the cellular level, the remodeling process is associated with myocyte slippage, hypertrophy, and accumulation of collagen in the interstitial compartment. In the present study, we examined the effects of early, long-term monotherapy with the angiotensin converting enzyme (ACE) inhibitor, enalapril, on the progression of LV remodeling in dogs with LV dysfunction (ejection fractions 30–40%) produced by multiple sequential intracoronary microembolizations. Dogs were randomized to 3 months oral therapy with enalapril (n=7) or to no treatment (n=7). In untreated dogs, LV end-systolic volume index (ESVI), end-diastolic volume index (EDVI) and chamber sphericity increased significantly during the 3 months follow-up period. In contrast, in dogs treated with enalapril ESVI, EDVI and chamber sphericity remained essentially unchanged. Treatment with enalapril attenuated myocyte hypertrophy and the accumulation of interstitial collagen in comparison to untreated dogs. These data indicate that early treatment with ACE inhibitors can prevent the progression of LV remodeling in dogs with LV dysfunction. Afterload reduction, inhibition of direct action of angiotensin-II and possibly the decrease in bradykinin degradation elicited by ACE inhibition may act in concert in preventing the progression LV chamber remodeling.  相似文献   

7.

Introduction

The G protein-coupled estrogen receptor (GPER) is expressed in various tissues including the heart. Since the mRen2.Lewis strain exhibits salt-dependent hypertension and early diastolic dysfunction, we assessed the effects of the GPER agonist (G-1, 40 nmol/kg/hr for 14 days) or vehicle (VEH, DMSO/EtOH) on cardiac function and structure.

Methods

Intact female mRen2.Lewis rats were fed a normal salt (0.5% sodium; NS) diet or a high salt (4% sodium; HS) diet for 10 weeks beginning at 5 weeks of age.

Results

Prolonged intake of HS in mRen2.Lewis females resulted in significantly increased blood pressure, mildly reduced systolic function, and left ventricular (LV) diastolic compliance (as signified by a reduced E deceleration time and E deceleration slope), increased relative wall thickness, myocyte size, and mid-myocardial interstitial and perivascular fibrosis. G-1 administration attenuated wall thickness and myocyte hypertrophy, with nominal effects on blood pressure, LV systolic function, LV compliance and cardiac fibrosis in the HS group. G-1 treatment significantly increased LV lusitropy [early mitral annular descent (e′)] independent of prevailing salt, and improved the e′/a′ ratio in HS versus NS rats (P<0.05) as determined by tissue Doppler.

Conclusion

Activation of GPER improved myocardial relaxation in the hypertensive female mRen2.Lewis rat and reduced cardiac myocyte hypertrophy and wall thickness in those rats fed a high salt diet. Moreover, these advantageous effects of the GPER agonist on ventricular lusitropy and remodeling do not appear to be associated with overt changes in blood pressure.  相似文献   

8.
Retinoic acid (RA) plays a role in regulating cardiac geometry and function throughout life. The aim of this study was to analyze the cardiac effects of RA in adult rats. Wistar rats were randomly allocated to a control group (n = 18) receiving standard rat chow and a group treated with RA (n = 14) receiving standard rat chow supplemented with RA for 90 days. All animals were evaluated by echocardiography, isolated papillary muscle function, and morphological studies. Whereas the RA-treated group developed an increase in both left ventricular (LV) mass and LV end-diastolic diameter, the ratio of LV wall thickness to LV end-diastolic diameter remained unchanged when compared with the control group. In the isolated papillary muscle preparation, RA treatment decreased the time to peak developed tension and increased the maximum velocity of isometric relengthening, indicating that systolic and diastolic function was improved. Although RA treatment produced an increase in myocyte cross-sectional area, the myocardial collagen volume fraction was similar to controls. Thus our study demonstrates that small physiological doses of RA induce ventricular remodeling resembling compensated volume-overload hypertrophy in rats.  相似文献   

9.
Osteopontin (OPN) plays an important role in left ventricular (LV) remodeling after myocardial infarction (MI) by promoting collagen synthesis and accumulation. This study tested the hypothesis that MMP inhibition modulates post-MI LV remodeling in mice lacking OPN. Wild-type (WT) and OPN knockout (KO) mice were treated daily with MMP inhibitor (PD166793, 30 mg/kg/day) starting 3 days post-MI. LV functional and structural remodeling was measured 14 days post-MI. Infarct size was similar in WT and KO groups with or without MMP inhibition. M-mode echocardiography showed greater increase in LV end-diastolic (LVEDD) and end-systolic diameters (LVESD) and decrease in percent fractional shortening (%FS) and ejection fraction in KO-MI versus WT-MI. MMP inhibition decreased LVEDD and LVESD, and increased %FS in both groups. Interestingly, the effect was more pronounced in KO-MI group versus WT-MI (P < 0.01). MMP inhibition significantly decreased post-MI LV dilation in KO-MI group as measured by Langendorff-perfusion analysis. MMP inhibition improved LV developed pressures in both MI groups. However, the improvement was significantly higher in KO-MI group versus WT-MI (P < 0.05). MMP inhibition increased heart weight-to-body weight ratio, myocyte cross-sectional area, fibrosis and septal wall thickness only in KO-MI. Percent apoptotic myocytes in the non-infarct area was not different between the treatment groups. Expression and activity of MMP-2 and MMP-9 in the non-infarct area was higher in KO-MI group 3 days post-MI. MMP inhibition reduced MMP-2 activity in KO-MI with no effect on the expression of TIMP-2 and TIMP-4 14 days post-MI. Thus, activation of MMPs contributes to reduced fibrosis and LV dysfunction in mice lacking OPN.  相似文献   

10.
The mandatory use of pharmacotherapy in human heart failure (HF) impedes further study of natural history and remodeling mechanisms. We created a sheep model of chronic, severe, ischemic HF [left ventricular (LV) ejection fraction (LVEF) <35% stable over 4 wk] by selective coronary microembolization under general anesthesia and followed hemodynamic, energetic, neurohumoral, structural, and cellular responses over 6 mo. Thirty-eight sheep were induced into HF (58% success), with 23 sheep followed for 6 mo (21 sheep with sufficient data for analysis) after the LVEF stabilized (median of 3 embolizations). Early doubling of LV end-diastolic pressure persisted, as did increases in LV end-diastolic volume, LV wall stress, and LV wall thinning. Contractile impairment (LV end-systolic elastance, LV preload recruitable stroke work, and dobutamine-responsive contractile reserve) and diastolic dysfunction also remained stable. Cardiac mechanical energy efficiency did not recover. Plasma atrial natriuretic peptide levels remained elevated, but rises in plasma aldosterone and renin activity were transient. Collagen content increased 170%, the type I-to-III phenotype ratio doubled in the LV, but right ventricular collagen remained unaltered. Fas ligand cytokine levels correlated with expression of both caspase-3 and -2, suggesting a link in the apoptotic "death cascade." Caspase-3 activity also bore a close relationship to LV meridional wall stress calculated from echocardiographic and intraventricular pressure measurements. We concluded that the stability of chronic untreated severe ischemic HF depends on the recruitment of myocardial remodeling mechanisms that involve an interaction among hemodynamic load, contractile efficiency/energetics, neurohumoral activation, response of the extracellular matrix, wall stress, and the myocyte apoptotic pathway.  相似文献   

11.
To determine the temporal changes in oxidative stress, mitogen-activated protein (MAP) kinases and mitochondrial apoptotic proteins, and their relationship to myocyte apoptosis in the remote noninfarcted myocardium after myocardial infarction (MI), rabbits were randomly assigned to either coronary artery ligation to produce MI or sham operation. The animals were sacrificed at 1, 4, 8, or 12 weeks after coronary artery occlusion. Sham rabbits were sacrificed at 12 weeks after surgery. MI rabbits exhibited progressive increases of left ventricular (LV) end-diastolic pressure and end-diastolic dimension, and progressive decreases of LV fractional shortening and dP/dt over 12 weeks. The LV remodeling with LV chamber dilation and LV systolic dysfunction was temporally associated with progressive increases of cardiac oxidative stress as evidenced by decreased myocardial reduced-to-oxidized-glutathione ratio and increased myocardial 8-hydroxydeoxyguanosine and myocyte apoptosis. The ERK and JNK activities were decreased while p38 MAP kinase activity was increased with age of MI. The extent of p38 MAP kinase activation correlated with Bcl-2 phosphorylation. Bcl-2 protein was decreased in both mitochondrial and cytosolic fractions with age of MI. Bax protein was increased in both mitochondrial and cytosolic fractions. Cytochrome c was reduced in mitochondrial fraction and increased in cytosolic fraction in a time-dependent manner after MI. Cleaved caspase 9 and caspase 3 proteins were time-dependently increased after MI. These data suggest that p38 MAP kinase activation is not only time-dependent after MI, but also correlates with oxidative stress, Bcl-2 phosphorylation, and myocyte apoptosis. These changes in the remote noninfarcted myocardium may contribute to LV remodeling and dysfunction after MI.  相似文献   

12.
We evaluated the influence of aerobic exercise on cardiac remodelling during the transition from compensated left ventricular (LV) hypertrophy to clinical heart failure in aortic stenosis (AS) rats. Eighteen weeks after AS induction, rats were assigned into sedentary (AS) and exercised (AS‐Ex) groups. Results were compared to Sham rats. Exercise was performed on treadmill for 8 weeks. Exercise improved functional capacity. Echocardiogram showed no differences between AS‐Ex and AS groups. After exercise, fractional shortening and ejection fraction were lower in AS‐Ex than Sham. Myocyte diameter and interstitial collagen fraction were higher in AS and AS‐Ex than Sham; however, myocyte diameter was higher in AS‐Ex than AS. Myocardial oxidative stress, evaluated by lipid hydroperoxide concentration, was higher in AS than Sham and was normalized by exercise. Gene expression of the NADPH oxidase subunits NOX2 and NOX4, which participate in ROS generation, did not differ between groups. Activity of the antioxidant enzyme superoxide dismutase was lower in AS and AS‐Ex than Sham and glutathione peroxidase was lower in AS‐Ex than Sham. Total and reduced myocardial glutathione, which is involved in cellular defence against oxidative stress, was lower in AS than Sham and total glutathione was higher in AS‐Ex than AS. The MAPK JNK was higher in AS‐Ex than Sham and AS groups. Phosphorylated P38 was lower in AS‐Ex than AS. Despite improving functional capacity, aerobic exercise does not change LV function in AS rats. Exercise restores myocardial glutathione, reduces oxidative stress, impairs JNK signalling and further induces myocyte hypertrophy.  相似文献   

13.
Although nitric oxide synthase (NOS)3 is implicated as an important modulator of left ventricular (LV) remodeling, its role in the cardiac response to chronic pressure overload is controversial. We examined whether selective restoration of NOS3 to the hearts of NOS3-deficient mice would modulate the LV remodeling response to transverse aortic constriction (TAC). LV structure and function were compared at baseline and after TAC in NOS3-deficient (NOS3(-/-)) mice and NOS3(-/-) mice carrying a transgene directing NOS3 expression specifically in cardiomyocytes (NOS3(-/-TG) mice). At baseline, echocardiographic assessment of LV dimensions and function, invasive hemodynamic measurements, LV mass, and myocyte width did not differ between the two genotypes. Four weeks after TAC, echocardiographic and hemodynamic indexes of LV systolic function indicated that contractile performance was better preserved in NOS3(-/-TG) mice than in NOS3(-/-) mice. Echocardiographic LV wall thickness and cardiomyocyte width were greater in NOS3(-/-) mice than in NOS3(-/-TG) mice. TAC-induced cardiac fibrosis did not differ between these genotypes. TAC increased cardiac superoxide generation in NOS3(-/-TG) but not NOS3(-/-) mice. The ratio of NOS3 dimers to monomers did not differ before and after TAC in NOS3(-/-TG) mice. Restoration of NOS3 to the heart of NOS3-deficient mice attenuates LV hypertrophy and dysfunction after TAC, suggesting that NOS3 protects against the adverse LV remodeling induced by prolonged pressure overload.  相似文献   

14.
We explored whether the hypertensive heart is susceptible to myocardial dysfunction in viable noninfarcted tissue post-myocardial infarction (MI), the potential mechanisms thereof, and the impact of these changes on pump function. Six to seven months after the ligation of the left anterior descending coronary artery, left ventricular (LV) myocardial systolic function, as assessed from the percent shortening of the noninfarcted lateral wall segmental length determined over a range of filling pressures (ultrasonic transducers placed in the lateral wall in anaesthetized, open-chest, ventilated rats) and the percent thickening of the posterior wall (echocardiography), was reduced in infarcted spontaneous hypertensive rats (SHR-MI) (P < 0.05) but not in normotensive Wistar-Kyoto (WKY-MI) animals compared with corresponding controls [SHR-sham operations (Sham) and WKY-Sham]. This change in the regional myocardial function in SHR-MI, but not in WKY-MI, occurred despite a similar degree of LV dilatation (increased LV end-diastolic dimensions and volume intercept of the LV end-diastolic pressure-volume relation) in SHR-MI and WKY-MI rats and a lack of difference in LV relative wall thinning, LV wall stress, apoptosis [terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling (TUNEL)], or necrosis (pathological score) between SHR-MI and WKY-MI rats. Although the change in regional myocardial function in the SHR-MI group was not associated with a greater reduction in baseline global LV chamber systolic function [end-systolic elastance (LV E(es)) and endocardial fractional shortening determined in the absence of an adrenergic stimulus], in the presence of an isoproterenol challenge, noninfarct-zone LV systolic myocardial dysfunction manifested in a significant reduction in LV E(es) in SHR-MI compared with WKY-MI and SHR and WKY-Sham rats (P < 0.04). In conclusion, these data suggest that with chronic MI, the hypertensive heart is susceptible to the development of myocardial dysfunction, a change that cannot be attributed to excessive chamber dilatation, apoptosis, or necrosis, but which in turn contributes toward a reduced cardiac adrenergic inotropic reserve.  相似文献   

15.
To investigate the effects of colchicine on left ventricular (LV) function and hypertrophy (LVH) of rats subjected to constriction of transverse aorta (TAoC), we evaluated SO (sham operated, vehicle; n = 25), SO-T (sham operated, colchicine 0.4 mg/kg body wt ip daily; n = 38), TAoC (vehicle; n = 37), and TAoC-T (TAoC, colchicine; n = 34) on the 2nd, 6th, and 15th day after surgery. Colchicine attenuated LVH of TAoC-T compared with TAoC rats, as evaluated by ratio between LV mass (LV(M)) and right ventricular mass, LV wall thickness, and average diameter of cardiac myocytes. Systolic gradient across TAoC ( approximately 45 mmHg), LV systolic pressure, LV end-diastolic pressure, and rate of LV pressure increase (+dP/dt) were comparable in TAoC-T and TAoC rats. However, the baseline and increases of LV systolic pressure-to-LV(M) and +dP/dt-to-LV(M) ratios induced by phenylephrine infusion were greater in TAoC-T and SO-T compared with SO rats. Baseline and increases of +dP/dt-to-LV(M) ratio were reduced in TAoC compared with SO rats. TAoC rats increased polymerized fraction of tubulin compared with SO, SO-T, and TAoC-T rats. Our results indicate that colchicine treatment reduced LVH to pressure overload but preserved LV function.  相似文献   

16.
Current surgical management of volume overload-induced heart failure (HF) leads to variable recovery of left ventricular (LV) function despite a return of LV geometry. The mechanisms that prevent restoration of function are unknown but may be related to the timing of intervention and the degree of LV contractile impairment. This study determined whether reduction of aortocaval fistula (ACF)-induced LV volume overload during the compensatory stage of HF results in beneficial LV structural remodeling and restoration of pump function. Rats were subjected to ACF for 4 wk; a subset then received a load-reversal procedure by closing the shunt using a custom-made stent graft approach. Echocardiography or in vivo pressure-volume analysis was used to assess LV morphology and function in sham rats; rats subjected to 4-, 8-, or 15-wk ACF; and rats subjected to 4-wk ACF followed by 4- or 11-wk reversal. Structural and functional changes were correlated to LV collagen content, extracellular matrix (ECM) proteins, and hypertrophic markers. ACF-induced volume overload led to progressive LV chamber dilation and contractile dysfunction. Rats subjected to short-term reversal (4-wk ACF + 4-wk reversal) exhibited improved chamber dimensions (LV diastolic dimension) and LV compliance that were associated with ECM remodeling and normalization of atrial and brain natriuretic peptides. Load-independent parameters indicated LV systolic (preload recruitable stroke work, Ees) and diastolic dysfunction (tau, arterial elastance). These changes were associated with an altered α/β-myosin heavy chain ratio. However, these changes were normalized to sham levels in long-term reversal rats (4-wk ACF + 11-wk reversal). Acute hemodynamic changes following ACF reversal improve LV geometry, but LV dysfunction persists. Gradual restoration of function was related to normalization of eccentric hypertrophy, LV wall stress, and ECM remodeling. These results suggest that mild to moderate LV systolic dysfunction may be an important indicator of the ability of the myocardium to remodel following the reversal of hemodynamic overload.  相似文献   

17.
Sphericalization of the left ventricular (LV) chamber shape in patients with mitral regurgitation (MR) contributes to increased LV wall stress and energy consumption. On the basis of previous observations, we hypothesized the existence of regional differences in the force-frequency relation (FFR) within the LV that may contribute to its shape. Accordingly, in the present study, we assessed regional variation in the FFR in patients undergoing surgery for chronic, nonischemic MR with class II-III heart failure symptoms and related our findings to the in vivo LV shape. FFRs (steady-state isometric twitches, 0.2-3.4 Hz, 37 degrees C) were evaluated in MR myocardium from the LV subepicardial free wall (MR-FW) and papillary muscle (MR-PM) and from the subepicardial free wall in coronary artery bypass graft patients with normal LV contraction patterns [nonfailing (NF)]. Ascending slope, optimal stimulation frequency, and maximal twitch tension of the FFR were depressed in MR-FW and MR-PM compared with NF (P < 0.05). FFR depression was greater in MR-PM than in MR-FW. Between 107 and 134 beats/min, twitch tension became weaker in MR-PM, whereas it increased in MR-FW. Elevation of intracellular cAMP with forskolin eliminated FFR depression in MR-FW but not in MR-PM. MR-PM also had a 35% lower myosin heavy chain content and slowed twitch kinetics. In MR patients, the echocardiographic end-diastolic LV shape (end-diastolic eccentricity index = long axis/short axis) correlated with the ratio of ascending FFR slopes such that the end-diastolic eccentricity index increased 10% per 15% increase in slope ratio (r = 0.88, P = 0.01). These regional differences in the frequency dependence of contractility between the free wall and papillary myocardium may contribute to changes in LV shape in MR as well as during exercise.  相似文献   

18.
Surgical ventricular restoration (SVR) was designed to treat patients with aneurysms or large akinetic walls and dilated ventricles. Yet, crucial aspects essential to the efficacy of this procedure like optimal shape and size of the left ventricle (LV) are still debatable. The objective of this study is to quantify the efficacy of SVR based on LV regional shape in terms of curvedness, wall stress, and ventricular systolic function. A total of 40 patients underwent magnetic resonance imaging (MRI) before and after SVR. Both short-axis and long-axis MRI were used to reconstruct end-diastolic and end-systolic three-dimensional LV geometry. The regional shape in terms of surface curvedness, wall thickness, and wall stress indexes were determined for the entire LV. The infarct, border, and remote zones were defined in terms of end-diastolic wall thickness. The LV global systolic function in terms of global ejection fraction, the ratio between stroke work (SW) and end-diastolic volume (SW/EDV), the maximal rate of change of pressure-normalized stress (dσ*/dt(max)), and the regional function in terms of surface area change were examined. The LV end-diastolic and end-systolic volumes were significantly reduced, and global systolic function was improved in ejection fraction, SW/EDV, and dσ*/dt(max). In addition, the end-diastolic and end-systolic stresses in all zones were reduced. Although there was a slight increase in regional curvedness and surface area change in each zone, the change was not significant. Also, while SVR reduced LV wall stress with increased global LV systolic function, regional LV shape and function did not significantly improve.  相似文献   

19.
Fetal programming has profound effects on cardiovascular function in later adult life. We tested the hypothesis that chronic hypoxic exposure during fetal development downregulates endogenous cardioprotective mechanisms in adult rats. Time-dated pregnant rats were divided between normoxic and hypoxic (10.5% O2 from days 15 to 21 of gestation) groups. The male progeny were studied at 2 mo of age. Rats were subjected to heat stress (42 degrees C for 15 min). After 24 h, hearts were excised and subjected to 30 min of global ischemia and 1 h of reperfusion. Prenatal hypoxia did not change adult rat body weight and heart weight, but significantly increased the cross-sectional area of a left ventricular (LV) myocyte. Heat stress significantly improved postischemic recovery of LV function in normoxic control rats, but not in prenatally hypoxic rats. The infarct size in the LV resulting from ischemia-reperfusion was reduced by the heat stress pretreatment in control rats, but not in prenatally hypoxic rats. In accordance, heat stress significantly increased LV myocardial content of heat shock protein 70 only in normoxic control rats. In addition, there was a significant decrease in the LV myocardial content of the PKC-epsilon isoform in prenatally hypoxic rats compared with control rats. We conclude that prenatal hypoxia causes in utero programming of hsp70 gene in the LV, leading to an inhibition of its response to heat stress and a loss of cardioprotection in later adult life.  相似文献   

20.
The effects of aging on cardiovascular function and cardiac structure were determined in a rat model recommended for gerontological studies. A cross-sectional analysis assessed cardiac changes in male Fischer 344 x Brown Norway F1 hybrid rats (FBN) from adulthood to the very aged (n = 6 per 12-, 18-, 21-, 24-, 27-, 30-, 33-, 36-, and 39-mo-old group). Rats underwent echocardiographic and hemodynamic analyses to determine standard values for left ventricular (LV) mass, LV wall thickness, LV chamber diameter, heart rate, LV fractional shortening, mitral inflow velocity, LV relaxation time, and aortic/LV pressures. Histological analyses were used to assess LV fibrotic infiltration and cardiomyocyte volume density over time. Aged rats had an increased LV mass-to-body weight ratio and deteriorated systolic function. LV systolic pressure declined with age. Histological analysis demonstrated a gradual increase in fibrosis and a decrease in cardiomyocyte volume density with age. We conclude that, although significant physiological and morphological changes occurred in heart function and structure between 12 and 39 mo of age, these changes did not likely contribute to mortality. We report reference values for cardiac function and structure in adult FBN male rats through very old age at 3-mo intervals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号