首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recently, a noninvasive method for determining regional myocardial contractility, using an animal-specific finite element (FE) model-based optimization, was developed to study a sheep with anteroapical infarction (Sun et al., 2009, "A Computationally Efficient Formal Optimization of Regional Myocardial Contractility in a Sheep With Left Ventricular Aneurysm," ASME J. Biomech. Eng., 131(11), p. 111001). Using the methodology developed in the previous study (Sun et al., 2009, "A Computationally Efficient Formal Optimization of Regional Myocardial Contractility in a Sheep With Left Ventricular Aneurysm," ASME J. Biomech. Eng., 131(11), p. 111001), which incorporates tagged magnetic resonance images, three-dimensional myocardial strains, left ventricular (LV) volumes, and LV cardiac catheterization pressures, the regional myocardial contractility and stress distribution of a sheep with posterobasal infarction were investigated. Active material parameters in the noninfarcted border zone (BZ) myocardium adjacent to the infarct (T(max_B)), in the myocardium remote from the infarct (T(max_R)), and in the infarct (T(max_I)) were estimated by minimizing the errors between FE model-predicted and experimentally measured systolic strains and LV volumes using the previously developed optimization scheme. The optimized T(max_B) was found to be significantly depressed relative to T(max_R), while T(max_I) was found to be zero. The myofiber stress in the BZ was found to be elevated, relative to the remote region. This could cause further damage to the contracting myocytes, leading to heart failure.  相似文献   

2.
Tagged MRI and finite-element (FE) analysis are valuable tools in analyzing cardiac mechanics. To determine systolic material parameters in three-dimensional stress-strain relationships, we used tagged MRI to validate FE models of left ventricular (LV) aneurysm. Five sheep underwent anteroapical myocardial infarction (25% of LV mass) and 22 wk later underwent tagged MRI. Asymmetric FE models of the LV were formed to in vivo geometry from MRI and included aneurysm material properties measured with biaxial stretching, LV pressure measurements, and myofiber helix angles measured with diffusion tensor MRI. Systolic material parameters were determined that enabled FE models to reproduce midwall, systolic myocardial strains from tagged MRI (630 +/- 187 strain comparisons/animal). When contractile stress equal to 40% of the myofiber stress was added transverse to the muscle fiber, myocardial strain agreement improved by 27% between FE model predictions and experimental measurements (RMS error decreased from 0.074 +/- 0.016 to 0.054 +/- 0.011, P < 0.05). In infarct border zone (BZ), end-systolic midwall stress was elevated in both fiber (24.2 +/- 2.7 to 29.9 +/- 2.4 kPa, P < 0.01) and cross-fiber (5.5 +/- 0.7 to 11.7 +/- 1.3 kPa, P = 0.02) directions relative to noninfarct regions. Contrary to previous hypotheses but consistent with biaxial stretching experiments, active cross-fiber stress development is an integral part of LV systole; FE analysis with only uniaxial contracting stress is insufficient. Stress calculations from these validated models show 24% increase in fiber stress and 115% increase in cross-fiber stress at the BZ relative to remote regions, which may contribute to LV remodeling.  相似文献   

3.

Within this work, we investigate how physiologically observed microstructural changes induced by myocardial infarction impact the elastic parameters of the heart. We use the LMRP model for poroelastic composites (Miller and Penta in Contin Mech Thermodyn 32:1533–1557, 2020) to describe the microstructure of the myocardium and investigate microstructural changes such as loss of myocyte volume and increased matrix fibrosis as well as increased myocyte volume fraction in the areas surrounding the infarct. We also consider a 3D framework to model the myocardium microstructure with the addition of the intercalated disks, which provide the connections between adjacent myocytes. The results of our simulations agree with the physiological observations that can be made post-infarction. That is, the infarcted heart is much stiffer than the healthy heart but with reperfusion of the tissue it begins to soften. We also observe that with the increase in myocyte volume of the non-damaged myocytes the myocardium also begins to soften. With a measurable stiffness parameter the results of our model simulations could predict the range of porosity (reperfusion) that could help return the heart to the healthy stiffness. It would also be possible to predict the volume of the myocytes in the area surrounding the infarct from the overall stiffness measurements.

  相似文献   

4.
Cellular therapy for myocardial injury has improved ventricular function in both animal and clinical studies, though the mechanism of benefit is unclear. This study was undertaken to examine the effects of cellular injection after infarction on myocardial elasticity. Coronary artery ligation of Lewis rats was followed by direct injection of human mesenchymal stem cells (MSCs) into the acutely ischemic myocardium. Two weeks postinfarct, myocardial elasticity was mapped by atomic force microscopy. MSC-injected hearts near the infarct region were twofold stiffer than myocardium from noninfarcted animals but softer than myocardium from vehicle-treated infarcted animals. After 8 wk, the following variables were evaluated: MSC engraftment and left ventricular geometry by histological methods, cardiac function with a pressure-volume conductance catheter, myocardial fibrosis by Masson Trichrome staining, vascularity by immunohistochemistry, and apoptosis by TdT-mediated dUTP nick-end labeling assay. The human cells engrafted and expressed a cardiomyocyte protein but stopped short of full differentiation and did not stimulate significant angiogenesis. MSC-injected hearts showed significantly less fibrosis than controls, as well as less left ventricular dilation, reduced apoptosis, increased myocardial thickness, and preservation of systolic and diastolic cardiac function. In summary, MSC injection after myocardial infarction did not regenerate contracting cardiomyocytes but reduced the stiffness of the subsequent scar and attenuated postinfarction remodeling, preserving some cardiac function. Improving scarred heart muscle compliance could be a functional benefit of cellular cardiomyoplasty.  相似文献   

5.
Cardiac remodeling (hypertrophy and fibrosis) and an increased left ventricular diastolic stiffness characterize models of hypertension such as the SHR and DOCA-salt hypertensive rats. By contrast, hyperthyroidism induces hypertrophy and hypertension, yet collagen expression and deposition is unchanged or decreased, whereas diastolic stiffness is increased. We determined the possible role of increased calcium influx in the development of increased diastolic stiffness in hyperthyroidism by administering verapamil (15 mg/[kg x d] orally) to rats given triiodothyronine (T3) (0.5 mg/[kg x d] subcutaneously for 14 d). Administration of T3 significantly increased body temperature (control: 36.7 +/- 0.2 degrees C; T3: 39.6 +/- 0.2 degrees C), left ventricular wet weight (control: 2.09 +/- 0.02 mg/kg; T3 3.07 +/- 0.07 mg/kg), systolic blood pressure (control: 128 +/- 5 mmHg; T3: 156 +/- 4 mmHg), and left ventricular diastolic stiffness (control: 20.6 +/- 2.0; T3: 28.8 +/- 1.4). Collagen content of the left ventricle was unchanged. Contractile response to noradrenaline in thoracic aortic rings was reduced. Relaxation in response to acetylcholine (ACh) was also reduced in T3-treated rats, whereas sodium nitroprusside response was unchanged. Verapamil treatment of hyperthyroid rats completely prevented the increased diastolic stiffness and systolic blood pressure while attenuating the increased body temperature and left ventricular weight; collagen content remained unchanged. ACh response in thoracic aortic rings was restored by verapamil. Thus, in hyperthyroid rats, an increased calcium influx is a potential mediator of the increased diastolic stiffness independent of changes in collagen.  相似文献   

6.
Cardiac myosin-binding protein C (cMyBP-C) is involved in the regulation of cardiac myofilament contraction. Recent evidence showed that protein kinase D (PKD) is one of the kinases that phosphorylate cMyBP-C. However, the mechanism by which PKD-induced cMyBP-C phosphorylation affects cardiac contractile responses is not known. Using immunoprecipitation, we showed that, in contracting cardiomyocytes, PKD binds to cMyBP-C and phosphorylates it at Ser(315). The effect of PKD-mediated phosphorylation of cMyBP-C on cardiac myofilament function was investigated in permeabilized ventricular myocytes, isolated from wild-type (WT) and from cMyBP-C knockout (KO) mice, incubated in the presence of full-length active PKD. In WT myocytes, PKD increased both myofilament Ca(2+) sensitivity (pCa(50)) and maximal Ca(2+)-activated tension of contraction (T(max)). In cMyBP-C KO skinned myocytes, PKD increased pCa(50) but did not alter T(max). This suggests that cMyBP-C is not involved in PKD-mediated sensitization of myofilaments to Ca(2+) but is essential for PKD-induced increase in T(max). Furthermore, the phosphorylation of both PKD-Ser(916) and cMyBP-C-Ser(315) was contraction frequency-dependent, suggesting that PKD-mediated cMyBP-C phosphorylation is operational primarily during periods of increased contractile activity. Thus, during high contraction frequency, PKD facilitates contraction of cardiomyocytes by increasing Ca(2+) sensitivity and by an increased T(max) through phosphorylation of cMyBP-C.  相似文献   

7.
Collagen degradation is suggested to be responsible for long-term contractile dysfunction in different cardiomyopathies, but the effects of acute and specific collagen type I removal (main type in the heart muscle) on tension have not been studied. We determined the diastolic and developed tension length relations in isometric contracting perfused rat papillary muscles (perfusion pressure 60 cmH(2)O) before and after acute and specific removal of small collagen struts with the use of purified collagenase type I. At 95% of the maximal length (95%L(max)), diastolic tension increased 20.4 +/- 8.1% (P < 0.05, n = 6) and developed tension increased 15.0 +/- 6.7% after collagenase treatment compared with time controls. Treatment increased the diastolic muscle diameter by 7.1 +/- 3.4% at 95%L(max), whereas the change in diameter due to contraction was not changed. Diastolic coronary flow and normalized coronary arterial flow impediment did not change after collagenase treatment. Electron microscopy revealed that the number of small collagen struts, interconnecting myocytes, and capillaries was reduced to approximately 32% after treatment. We conclude that removal of the small collagen struts by acute and specific collagen type I degradation increases diastolic and developed tension in perfused papillary muscle. We suggest that diastolic tension is increased due to edema, whereas developed tension is increased because the removal of the struts poses a lower lateral load on the cardiac myocytes, allowing more myocyte thickening.  相似文献   

8.
Myocardial function is enhanced by endurance exercise training, but the cellular mechanisms underlying this improved function remain unclear. The ability of the myocardium to perform external work is a critical aspect of ventricular function, but previous studies of myocardial adaptation to exercise training have been limited to measurements of isometric tension or unloaded shortening velocity, conditions in which work output is zero. We measured force-velocity properties in single permeabilized myocyte preparations to determine the effect of exercise training on loaded shortening and power output. Female Sprague-Dawley rats were divided into sedentary control (C) and exercise trained (T) groups. T rats underwent 11 wk of progressive treadmill exercise. Myocytes were isolated from T and C hearts, chemically skinned, and attached to a force transducer. Shortening velocity was determined during loaded contractions at 15 degrees C by using a force-clamp technique. Power output was calculated by multiplying force times velocity values. We found that unloaded shortening velocity was not significantly different in T vs. C myocytes (T = 1.43 muscle lengths/s, n = 46 myocytes; C = 1.12 muscle lengths/s, n = 43 myocytes). Training increased the velocity of loaded shortening and increased peak power output (peak power = 0.16 P/P(o) x muscle length/s for T myocytes; peak power = 0.10 P/P(o) x muscle length/s for C myocytes, where P/P(o) is relative tension). We found no effect of training on myosin heavy chain isoform content. These results suggest that training alters power output properties of single cardiac myocytes and that this adaptation may improve the work capacity of the myocardium.  相似文献   

9.
It has been previously shown that regulators of physiological growth such as thyroid hormone (TH) can favorably remodel the post ischaemic myocardium. Here, we further explored whether this effect can be preserved in the presence of co-morbidities such as diabetes which accelerates cardiac remodeling and increases mortality after myocardial infarction. Acute myocardial infarction (AMI) was induced by left coronary ligation in rats with type I diabetes (DM) induced by streptozotocin administration (STZ; 35 mg/kg; i.p.) while sham-operated animals served as controls (SHAM). AMI resulted in distinct changes in cardiac function and geometry; EF% was significantly decreased in DM-AMI [37.9 ± 2.0 vs. 74.5 ± 2.1 in DM-SHAM]. Systolic and diastolic chamber dimensions were increased without concomitant increase in wall thickness and thus, wall tension index [WTI, the ratio of (Left Ventricular Internal Diameter at diastole)/2*(Posterior Wall thickness)], an index of wall stress, was found to be significantly increased in DM-AMI; 2.27 ± 0.08 versus 1.70 ± 0.05. 2D-Strain echocardiographic analysis showed reduced systolic radial strain in all segments, indicating increased loss of cardiac myocytes in the infarct related area and less compensatory hypertrophy in the viable segments. This response was accompanied by a marked decrease in the expression of TRα1 and TRβ1 receptors in the diabetic myocardium without changes in circulating T3 and T4. Accordingly, the expression of TH target genes related to cardiac contractility was altered; β-MHC and PKCα were significantly increased. TH (L-T4 and L-T3) administration prevented these changes and resulted in increased EF%, normal wall stress and increased systolic radial strain in all myocardial segments. Acute myocardial infarction in diabetic rats results in TH receptor down-regulation with important physiological consequences. TH treatment prevents this response and improves cardiac hemodynamics.  相似文献   

10.
The elastic modulus of bioengineered materials has a strong influence on the phenotype of many cells including cardiomyocytes. On polyacrylamide (PAA) gels that are laminated with ligands for integrins, cardiac myocytes develop well organized sarcomeres only when cultured on substrates with elastic moduli in the range 10 kPa-30 kPa, near those of the healthy tissue. On stiffer substrates (>60 kPa) approximating the damaged heart, myocytes form stress fiber-like filament bundles but lack organized sarcomeres or an elongated shape. On soft (<1 kPa) PAA gels myocytes exhibit disorganized actin networks and sarcomeres. However, when the polyacrylamide matrix is replaced by hyaluronic acid (HA) as the gel network to which integrin ligands are attached, robust development of functional neonatal rat ventricular myocytes occurs on gels with elastic moduli of 200 Pa, a stiffness far below that of the neonatal heart and on which myocytes would be amorphous and dysfunctional when cultured on polyacrylamide-based gels. The HA matrix by itself is not adhesive for myocytes, and the myocyte phenotype depends on the type of integrin ligand that is incorporated within the HA gel, with fibronectin, gelatin, or fibrinogen being more effective than collagen I. These results show that HA alters the integrin-dependent stiffness response of cells in vitro and suggests that expression of HA within the extracellular matrix (ECM) in vivo might similarly alter the response of cells that bind the ECM through integrins. The integration of HA with integrin-specific ECM signaling proteins provides a rationale for engineering a new class of soft hybrid hydrogels that can be used in therapeutic strategies to reverse the remodeling of the injured myocardium.  相似文献   

11.
High-resolution (11.7 T) cardiac magnetic resonance imaging (MRI) and histological approaches have been employed in tandem to characterize the secondary damage suffered by the murine myocardium following the initial insult caused by ischemia-reperfusion (I/R). I/R-induced changes in the myocardium were examined in five separate groups at the following time points after I/R: 1 h, day 1, day 3, day 7, and day 14. The infarct volume increased from 1 h to day 1 post-I/R. Over time, the loss of myocardial function was observed to be associated with increased infarct volume and worsened regional wall motion. In the infarct region, I/R caused a decrease in end-systolic thickness coupled with small changes in end-diastolic thickness, leading to massive wall thickening abnormalities. In addition, compromised wall thickening was also observed in left ventricular regions adjacent to the infarct region. A tight correlation (r2 = 0.85) between measured MRI and triphenyltetrazolium chloride (TTC) infarct volumes was noted. Our observation that until day 3 post-I/R the infarct size as measured by TTC staining and MRI was much larger than that of the myocyte-silent regions in trichrome- or hematoxylin-eosin-stained sections is consistent with the literature and leads to the conclusion that at such an early phase, the infarct site contains structurally intact myocytes that are functionally compromised. Over time, such affected myocytes were noted to structurally disappear, resulting in consistent infarct sizes obtained from MRI and TTC as well as trichrome and hematoxylin-eosin analyses on day 7 following I/R. Myocardial remodeling following I/R includes secondary myocyte death followed by the loss of cardiac function over time.  相似文献   

12.
The ventricular myocardium consists of a syncytium of myocytes organized into branching, transmurally oriented laminar sheets approximately four cells thick. When systolic deformation is expressed in an axis system determined by the anatomy of the laminar architecture, laminar sheets of myocytes shear and laterally extend in an approximately radial direction. These deformations account for ~90% of normal systolic wall thickening in the left ventricular free wall. In the present study, we investigated whether the changes in systolic and diastolic function of the sheets were sensitive to alterations in systolic and diastolic load. Our results indicate that there is substantial reorientation of the laminar architecture during systole and diastole. Moreover, this reorientation is both site and load dependent. Thus as end-diastolic pressure is increased and the left ventricular wall thins, sheets shorten and rotate away from the radial direction due to transverse shearing, opposite of what occurs in systole. Both mechanisms of thickening contribute substantially to normal left ventricular wall function. Whereas the relative contributions of shear and extension are comparable at the base, sheet shear is the predominant factor at the apex. The magnitude of shortening/extension and shear increases with preload and decreases with afterload. These findings underscore the essential contribution of the laminar myocardial architecture for normal ventricular function throughout the cardiac cycle.  相似文献   

13.
在12只犬,结扎四支冠脉,造成犬心右室、左室大面积梗塞和心源性休克时,左室收缩压(LVSP)及最大正负压力阶差(±dp/dtmax.)分别下降54%、51%和47%,而右室收缩压(RVSP)及±dp/dtmax.仅降低9%、25%和27%。组Ⅰ(6只犬)快速扩容(低分子右旋糖酐30ml/kg,20min内静脉输入),结果右室反向搏动增强,双心室±dp/dtmax.进一步降低,右房压(RAP)及左室舒张末压(LVEDP)极度升高达2.9±0.2kPa和5.0±0.3kPa(P均<0.01),甚至诱发室颤。组Ⅱ缓慢静点多巴胺(10μg/kg·min)和硝酸甘油(1μg/kg·min)30min,有效提高了动脉压(AP),心输出量(CO),LVSP及左室±dp/dtmax.使休克逆转。结果表明,大面积左、右室梗塞伴休克时,右室残余心肌的代偿性收缩仍能造成RVSP与右室泵功能呈分离状态;此时快速扩容将进一步损害左、右室功能,而联合使用硝酸甘油和多巴胺能有效纠正休克同时不造成RAP和LVEDP的升高。  相似文献   

14.
It is well established that the aging heart exhibits left ventricular (LV) diastolic dysfunction and changes in mechanical properties, which are thought to be due to alterations in the extracellular matrix. We tested the hypothesis that the mechanical properties of cardiac myocytes significantly change with aging, which could contribute to the global changes in LV diastolic dysfunction. We used atomic force microscopy (AFM), which determines cellular mechanical property changes at nanoscale resolution in myocytes, from young (4 mo) and old (30 mo) male Fischer 344 x Brown Norway F1 hybrid rats. A measure of stiffness, i.e., apparent elastic modulus, was determined by analyzing the relationship between AFM indentation force and depth with the classical infinitesimal strain theory and by modeling the AFM probe as a blunted conical indenter. This is the first study to demonstrate a significant increase (P < 0.01) in the apparent elastic modulus of single, aging cardiac myocytes (from 35.1 +/- 0.7, n = 53, to 42.5 +/- 1.0 kPa, n = 58), supporting the novel concept that the mechanism mediating LV diastolic dysfunction in aging hearts resides, in part, at the level of the myocyte.  相似文献   

15.
Cardiac cells mature in the first postnatal week, concurrent with altered extracellular mechanical properties. To investigate the effects of extracellular stiffness on cardiomyocyte maturation, we plated neonatal rat ventricular myocytes for 7 days on collagen-coated polyacrylamide gels with varying elastic moduli. Cells on 10 kPa substrates developed aligned sarcomeres, whereas cells on stiffer substrates had unaligned sarcomeres and stress fibers, which are not observed in vivo. We found that cells generated greater mechanical force on gels with stiffness similar to the native myocardium, 10 kPa, than on stiffer or softer substrates. Cardiomyocytes on 10 kPa gels also had the largest calcium transients, sarcoplasmic calcium stores, and sarcoplasmic/endoplasmic reticular calcium ATPase2a expression, but no difference in contractile protein. We hypothesized that inhibition of stress fiber formation might allow myocyte maturation on stiffer substrates. Treatment of maturing cardiomyocytes with hydroxyfasudil, an inhibitor of RhoA kinase and stress fiber-formation, resulted in enhanced force generation on the stiffest gels. We conclude that extracellular stiffness near that of native myocardium significantly enhances neonatal rat ventricular myocytes maturation. Deviations from ideal stiffness result in lower expression of sarcoplasmic/endoplasmic reticular calcium ATPase, less stored calcium, smaller calcium transients, and lower force. On very stiff substrates, this adaptation seems to involve RhoA kinase.  相似文献   

16.
The appearance of atrial natriuretic peptide (ANP) in the ventricular myocardium was investigated in rat hearts subjected to severe left ventricular infarction. The left coronary artery was ligated for 1, 2, 3, 4 and 6 days and for 3 weeks, and the tissue was prepared for microscopic examination of immunoreactive ANP and for electron microscopy. In the normal and sham-operated hearts, and in hearts subjected to 1 day of coronary ligation, ANP immunoreactivity was restricted to a few ventricular myocytes of the conduction system. Following 2–3 days of coronary ligation, ANP immunoreactivity was detected in the viable myocardium of the lateral border of the infarct and in a few layers of viable cardiac myocytes located in the subendocardial areas of the ischemic left free ventricular wall. Further, during the following days and after 3 weeks of coronary ligation, a gradient of specific labeling was commonly seen across the lateral border area of the infarct. Thus, the strongest immunoreactivities were present in the cardiac myocytes located adjacent to the non-contracting myocardium. Electron microscopic examination of the immunoreactive cardiac myocytes confirmed the presence of electron-dense specific granules within these cells. The present findings suggest that the increased regional production of ANP within the ventricular myocardium is induced by increased mechanical stretch of the cardiac myocytes, and that this might contribute to the increased release of ANP in myocardial infarction.  相似文献   

17.
Several authors have speculated that muscles contracting adjacent to bony surfaces may cause compressive loads against the bone and thus influence skull development. This study was undertaken to evaluate the premise of this argument. A flat, semiconductor pressure transducer was surgically placed on bony surfaces beneath muscle attachments. Pressures were recorded during normal mastication (n = 7) and while overlying muscles were stimulated in anesthetized pigs (n = 15). The transducer was highly specific; no pressure was recorded in quiescent or passively stretched muscles or when other muscles were stimulated. Contraction of the overlying muscles exerted high normal loads on the bone, always exceeding systolic blood pressure (16 kPa). Temporal fossa pressure during mastication followed temporalis electromyographic (EMG) signals with a lag period approximating the twitch contraction time. When three different sites were compared in anesthetized animals, compressive load was highest on the temporal fossa (111.4 ± 56.5 kPa, n = 15), intermediate on the mandibular angle (58.4 ± 28.3 kPa, n = 4), and lowest on the medial side of the zygomatic arch (37.2 ± 19.7 kPa, n = 15). Pressure amplitudes were not related to body size or relative muscle size. Muscle complexity and compartmental constraints did appear to influence pressure. Disruption of the external aponeurosis of the masseter decreased pressure on the mandibular angle by 45%, confirming the importance of tendinous constraint in determining pressure production. Thus, contracting muscles exert substantial but site-specific compressive loads on adjacent bone surfaces. J. Morphol. 238:71–80, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Although there are conflicting results on whether adenosine infusion during reperfusion alters infarct size, there are several reports that indicate adenosine A(2a) agonists reduce infarct size. There are also reports that the A(2a) agonist CGS-21680 increases cAMP and contractility in ventricular myocytes. The purpose of this study was to determine whether low-dose intracoronary infusions of CGS-21680 during reperfusion exert any beneficial effects in irreversibly and reversibly injured myocardium. Open-chest pigs were submitted to 60 min of coronary artery occlusion and 3 h of reperfusion. Treated pigs were administered intracoronary CGS-21680 (0.2 microg x kg(-1) x min(-1)) for the first 60 min of reperfusion. Pigs submitted to regional stunning (15 min ischemia) were treated with intracoronary CGS-21680 (0.15 microg x kg(-1) x min(-1)) after 2 h of reperfusion. In the infarct protocol, CGS-21680 reduced infarct size from 62 +/- 2% of the region at risk to 36 +/- 2%. In stunned myocardium, CGS increased load-independent regional preload recruitable stroke work and area by > or =70%, but the same infusion in normal myocardium was associated with no inotropic effect. Both beneficial effects were associated with little systemic hemodynamic effects. These findings suggest that reperfusion infusions of low doses of the A(2a) agonist CGS-21680 exert beneficial effects in reversibly and irreversibly injured myocardium.  相似文献   

19.
G Greve  T Saetersdal 《Acta anatomica》1991,142(4):366-373
The feasibility of measuring the extent of hypoperfused myocardium and the infarct size was examined in rat hearts after occlusion of the left coronary artery. The extent of hypoperfused myocardium was examined by autoradiography and after perfusion with fluorescent microspheres. Both methods appeared unreliable in this model. Triphenyltetrazolium chloride (TTC) staining, however, provided a distinct demarcation line between viable myocardium, which was stained red, and the necrotic myocardium, consistent with the ultrastructural border between normal and severely damaged myocytes 5 h after coronary occlusion. TTC staining gives the best demarcation of ischemic tissues. In verapamil-treated rats, there was an apparent reduction in infarct size as compared with untreated rats; 20% reduction in infarct size 5 h after coronary occlusion and 12% reduction after 24 h. There was, however, a large postoperative mortality among the verapamil-treated rats. These problems, and the nonuniform infarct size in rats, may in part explain why infarct size limitation by verapamil has been reported from rat experiments, but not from clinical trials.  相似文献   

20.
A rhythmic (R) and an isometric (I) exercise were performed separately and in combination to assess their additive effects on arterial systolic (P(as)) and diastolic (P(ad)) blood pressures, heart rate (fc), and minute ventilation (VI). The isometric effort consisted of a 40% maximal voluntary handgrip contraction (MVC) performed for a duration of 80% of a previously determined 40% MVC fatiguing effort. The R effort consisted of a 13-min cycle effort at 75% maximum oxygen consumption (VO2max). For the combined efforts, I was performed starting simultaneously with or ending simultaneously with R. Data on nine subjects yield statistically significant evidence (P less than 0.05) that the effects of I and R are not additive for the following three cases: (1) P(as) when I and R are ended simultaneously (I alone = 4.9, SEM 0.5 kPa increase; R alone = no significant change from steady state; I + R = 1.2, SEM 0.4 kPa increase), (2) P(ad) when I and R are started simultaneously (I alone = 4.1, SEM 0.4 kPa increase; R alone = 0.7, SEM 0.3 kPa decrease; I + R = 1.9, SEM 0.4 kPa increase), and (3) P(ad) when I and R are ended simultaneously (I alone = 4.1, SEM 0.4 kPa increase; R alone = 0.3, SEM 0.5 kPa decrease; I + R = 0.8, SEM 0.3 kPa increase). For all other variables and cases, there is not sufficient evidence to conclude that the effects of I and R are not additive. We conclude that R and I exercises do not invariably produce strictly additive cardiopulmonary responses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号