首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is difficult to make valid comparisons of chimpanzee densities among sites because observers calculate them using different methods. We argue that nest count estimates of density are preferable to densities from home range estimates because of the problems of defining home range. There are many problems associated with nest count methods, some of which have not been addressed in previous studies. In 1992, we censused chimpanzees in the Budongo Forest using three methods;the standing crop nest count (SCNC), the marked nest count (MNC), and visual sightings of the animals (VS). Each method is based on standard line transect techniques. Of 96 nests monitored for decay rate,those constructed in the dry seasons decayed faster than those in the wet seasons. All- day follows of individual chimpanzees and observations of nesting chimpanzees at dusk showed that about 15.8% of night nests were reused,17.5% of the population did not build nests, and 18.8% of nests were first constructed as day nests. Given the variability in nest decay rates, we argue that MNC is a better method than SCNC because it avoids having to calculate decay rates.  相似文献   

2.
Unlike nearly all other nonhuman primates, great apes build sleeping nests. In Bwindi Impenetrable National Park, Uganda, chimpanzees build nests nightly and also build day nests. We investigated patterns of nest tree use by Bwindi chimpanzees to understand ecological influences on nest tree selection. We analyzed data on 3,414 chimpanzee nests located from 2000 to 2004. Chimpanzees at Bwindi were selective in their use of nest trees. Of at least 163 tree species known to occur in Bwindi [Butynski, Ecological survey of the Impenetrable (Bwindi) Forest, Uganda, and recommendations for its conservation and management. Report to the Government of Uganda, 1984], chimpanzees utilized only 38 species for nesting. Of these, four tree species (Cassipourea sp., Chrysophyllum gorungosanum, Drypetes gerrardii, and Teclea nobilis) accounted for 72.1% of all nest trees. There was considerable variation in nesting frequencies among the top four species between and within years. However, these species were used significantly more often for nesting than other species in 70.9% (39 of 55) of the months of this study. A Spearman rank correlation found no significant relationship between tree abundance and tree species preference. Ninety-three percent of all nests were constructed in food tree species, although not necessarily at the same time the trees bore food items used by chimpanzees. The results indicate that nesting tree species preferences exist. Bwindi chimpanzees' choice of nesting tree species does not appear to be dependent on tree species density or use of the tree for food. We discuss possible reasons for the selectivity in nest trees by the Bwindi population.  相似文献   

3.
In recent decades, numerous studies have examined factors affecting risk of host nest parasitism in well‐known avian host–parasite systems; however, little attention has been paid to the role of host nest availability. In accordance with other studies, we found that nest visibility, reed density and timing of breeding predicted brood parasitism of Great Reed Warblers Acrocephalus arundinaceus by the Common Cuckoo Cuculus canorus. More interestingly, hosts had a greater chance of escaping brood parasitism if nesting was synchronized. Cuckoo nest searching was governed primarily by nest visibility at high host‐nest density. However, even well‐concealed nests were likely to be parasitized during periods when just a few hosts were laying eggs, suggesting that Cuckoos adjust their nest‐searching strategy in relation to the availability of host nests. Our results demonstrate that host vulnerability to brood parasitism varies temporally and that Cuckoo females are able to optimize their nest‐searching strategy. Moreover, our study indicated that Cuckoos always manage to find at least some nests to parasitize. Thus, in this case, the co‐evolutionary arms race should take place mainly in the form of parasitic egg rejection rather than via frontline pre‐parasitism defence.  相似文献   

4.
ABSTRACT Nest predation is a natural component of greater sage-grouse (Centrocercus urophasianus) reproduction, but changes in nesting habitat and predator communities may adversely affect grouse populations. We used a 2-part approach to investigate sage-grouse nest predation. First, we used information criteria to compare nest survival models that included indices of common raven (Corvus corax) abundance with other survival models that consisted of day of incubation, grouse age, and nest microhabitat covariates using measurements from 77 of 87 sage-grouse nests. Second, we used video monitoring at a subsample of 55 of 87 nests to identify predators of depredated nests (n = 16) and evaluated the influence of microhabitat factors on the probability of predation by each predator species. The most parsimonious model for nest survival consisted of an interaction between day of incubation and abundance of common ravens (wravenXincubation day = 0.67). An estimated increase in one raven per 10-km transect survey was associated with a 7.4% increase in the odds of nest failure. Nest survival was relatively lower in early stages of incubation, and this effect was strengthened with increased raven numbers. Using video monitoring, we found the probability of raven predation increased with reduced shrub canopy cover. Also, we found differences in shrub canopy cover and understory visual obstruction between nests depredated by ravens and nests depredated by American badgers (Taxidea taxus). Increased raven numbers have negative effects on sage-grouse nest survival, especially in areas with relatively low shrub canopy cover. We encourage wildlife managers to reduce interactions between ravens and nesting sage-grouse by managing raven populations and restoring and maintaining shrub canopy cover in sage-grouse nesting areas.  相似文献   

5.
Mistletoes are preferred nesting sites for many bird species in a range of habitats. However, no studies have examined the use of mistletoes by nesting birds in the semi‐arid savannah. We studied nesting in mistletoe and its role in determining nesting success in the Grey Go‐away‐bird in south‐west Zimbabwe. We modelled the effects of mistletoe, mistletoe abundance, nest microclimate, concealment and nest height on daily survival rates (DSR) using program MARK. A constant survival model was best fitted for the Grey Go‐away‐bird suggesting a constant nest survival rate across the nesting period. Mistletoe nests had lower DSR than nests placed elsewhere in the canopy. Mistletoe abundance and nest height had a positive association with DSR whereas visibility distance, microclimate and concealment were negatively associated with DSR. Overall, survival for nests in mistletoe was 22.1% compared with 90.5% for nests in other substrates over the 50‐day nesting period. In conclusion, the low nest survival in mistletoe suggests either that the factors used to select mistletoe as nest sites by these birds are poor predictors of nest success or that nesting in mistletoe may be maladaptive.  相似文献   

6.
We conducted ecological studies of chimpanzees (Pan troglodytes) in the Ugalla area, western Tanzania. Ugalla is one of the driest habitats of chimpanzees and the Ugalla River is the eastern boundary of chimpanzee distribution. Most of Ugalla is occupied by savanna woodlands dominated by deciduous trees of Brachystegia and Julbernardia. Chimpanzees tended not to make nests in riverine forests in plains, but in small patchy forests dominated by Monopetalanthus richardsiae and valley forests dominated by Julbernardia unijugata on slopes in mountainous areas. We estimated population density of chimpanzees to be 7–9 × 10−2 individuals/km2 based on nest censuses, suggesting that 2–3 × 102 individuals inhabited the 3352 km2 area of Ugalla. The size of the largest nest cluster (n=23) suggests that 1 unit group (community) comprised 30–35 individuals. In the daytime, chimpanzees formed small feeding parties (mean 2.0 individuals), but larger ones in the evening (mean 4.8 individuals and 5.2 individuals based on fresh nest clusters). The pattern might reduce the predation risk from large nocturnal carnivores such as lions and leopards. The sleeping sites may function as both a safe sleeping site and a meeting point for chimpanzees with a huge home range that may have difficulty in finding other members of their unit group.  相似文献   

7.
We assessed whether nest size affects the probability of nest loss using dyads of large and small (large being twice the size of small) inactive Great Reed Warbler Acrocephalus arundinaceus nests placed at similar sites in Great Reed Warbler territories. Large nests were not predated significantly more frequently than small nests. Experimentally enlarged active Great Reed Warbler nests suffered non‐significantly higher predation compared with non‐manipulated control nests. Our experiments did not support the nest‐size hypothesis and suggested that nest size does not appear to be a factor affecting the risk of nest predation in this species. The probability of brood parasitism by the Common Cuckoo Cuculus canorus was also unaffected by experimental nest enlargement, supporting the commonly accepted hypothesis that the Common Cuckoo searches for suitable host nests by host activity during nest building rather than nest size.  相似文献   

8.
Research into the driving forces behind spatial arrangement of wasp nests has considered abiotic environmental factors, but seldom investigated attraction or repulsion towards conspecifics or heterospecifics. Solitary female digger wasps (Hymenoptera) often nest in dense aggregations, making these insects good models to study this topic. Here, we analysed the nesting patterns in an area shared by three species of the genus Bembix, in a novel study to discover whether female wasps are attracted to or repulsed by conspecific nests, heterospecific nests or their own previously established nests when choosing nest‐digging locations. Early in the season, each species showed a clumping pattern of nests, but later in the season, a random distribution of nests was more common, suggesting an early conspecific attraction. Such behaviour was confirmed by the fact that females started building their nests more frequently where other females of their species were simultaneously digging. The distances between subsequent nests dug by individual females were shorter than those obtained by random simulations. However, this pattern seemed to depend on the tendency to dig close to conspecifics rather than remain in the vicinity of previous nests, suggesting that females' experience matters to future decisions only on a large scale. Nesting patches within nest aggregations largely overlapped between species, but the nests of each species were generally not closer to heterospecific nests than expected by chance, suggesting that females are neither repulsed by, nor attracted to, congenerics within nest aggregations. A role of the spatial distribution of natural enemies on the observed nesting patterns seemed unlikely. Bembix digger wasp nest aggregations seem thus to be primarily the result of female–female attraction during nest‐settlement decisions, in accordance with the ‘copying’ mechanisms suggested for nesting vertebrates.  相似文献   

9.
Squamate reptiles rely heavily on visual and chemical cues to detect their prey, so we expected yellow‐spotted goannas (Varanus panoptes) which are predators of sea turtle nests on mainland beaches in northern Australia would use these cues to find sea turtle nests. Ghost crabs (Ocypode ceratophthalmus and Ocypode cordimanus) are also common on Australian sea turtle nesting beaches and frequently burrow into sea turtle nests. However, the potential for ghost crab burrowing activity at sea turtle nests to signal the location of a nest to goannas has not been investigated. Here, we used camera traps and presence of tracks at nests to record goanna activity around selected nests during the incubation period and 10 days after hatchling turtles emerged from their nests. We also recorded the number of ghost crab burrows around nests to evaluate ghost crab activity. Our results indicated that nest discovery by goannas was independent of nest age, but that the nest visitation rate of goannas and crabs increased significantly after a nest had been opened by a goanna or after hatchlings had emerged from the nest. There was no apparent connection between ghost crab burrows into a nest and the likelihood of that nest being predated by goannas.  相似文献   

10.
Abstract

We recorded the numbers of cells, and where possible distinguished between cells containing pupating larvae and vacated cells, from 585 paper wasp nests from the northern North Island, New Zealand, plus nest site characteristics of 540 of these nests. Nests of Polistes chinensis antennalis and P. humilis developed at similar rates in early summer. P. c. antennalis nests were larger at the Post‐emergence stage than those of P. humilis, and contained more vacated cells but less capped cells. All of the P. c. antennalis nests had reached the Post‐emergence stage by February in Northland, but not in the other regions. P. c. antennalis nests in the Post‐emergence stage were larger in Northland than further south, and contained the most capped or vacated cells. Nests of both species were usually found in northern‐facing sites. Substrate did not affect nest size. Differences between the species in nest sites included greater use of manmade structures by P. c. antennalis; the use of leaves by P. humilis only; and a higher average nest site height in P. humilis. These differences in nest site selection may reduce competition between the species.  相似文献   

11.
12.
Although nests are central to colonial life in social insects, nests are sometimes damaged by predators or natural disasters. After nest destruction, individuals usually construct new nests. In this case, a sophisticated mechanism like the scent trail pheromone used in large insect colonies that recruit individuals to new nest sites would be important for the maintenance of eusociality. In independent-founding Polistes wasps, it is well known that queens enforce workers physiologically on the natal nests even if evidence of trail pheromone use has not been exhibited. We investigated the effect of the queen on an alternative strategy for the maintenance of eusociality by first females after nest destruction in the primitively eusocial wasp Polistes chinensis. We predicted that the first females in queen-absent colonies have various behavioral options after nest destruction. Even if the females construct new nests cooperatively with other individuals, the new nest construction should be conducted more smoothly in queen-present colonies because the queens regulate the behavior of wasps. We made wasps construct new nests by removing the entire brood from existing nests. The presence of the queen did not cause variation in the alternative strategy of the first females, as the first females (workers) usually constructed new nests cooperatively irrespective of the queen-presence. Thus, the workers in the queenpresent colonies affiliated to the new nest construction more smoothly and constructed new nests more efficiently than workers in the queen-absent colonies. Our results suggest that the presence of the queen is important for maintaining eusociality in primitively eusocial wasps after nest destruction. Received 8 February 2005; revised 5 October 2005; accepted 17 October 2005.  相似文献   

13.
Increasing nest survival by excluding predators is a goal of many bird conservation programs. However, new exclosure projects should be carefully evaluated to assess the potential risks of disturbance. We tested the effectiveness of predator exclosure fences (hereafter, fences) for nests of critically endangered Florida Grasshopper Sparrows (Ammodramus savannarum floridanus) at a dry prairie site (Three Lakes; 2015–2018) and a pasture site (the Ranch; 2015–2016) in Osceola County, Florida, USA. We installed fences at nests an average of 8 days after the start of incubation, and nest abandonment after fence installation was rare (2 of 149 installations). Predation was the leading cause of failure for unfenced nests at both sites (48–73%). At Three Lakes, nest cameras revealed that mammals and snakes were responsible for 61.5% and 38.5% of predation events, respectively, at unfenced nests. Fences reduced the daily probability of predation (0.016 for fenced nests vs. 0.074 for unfenced nests). The probability that a fenced nest would survive from discovery to fledging was more than double that of unfenced nests (60.4% vs. 27.7%). However, we found no difference in daily nest survival at the Ranch between the year before nests were fenced (2015; 0.874) and the year when all but one nest were fenced (2016; 0.867) because red imported fire ants (Solenopsis invicta) were responsible for 86% of predation events at fenced nests at the Ranch. The use of cameras at fenced nests revealed that site‐specific differences in nest predators explained variation in fence efficiency between sites. Our fence design may be useful for other species of grassland birds, but site‐specific predator communities and species‐specific response of target bird species to fences should be assessed before installing fences at other sites.  相似文献   

14.
Ground-nesting species are vulnerable to a wide range of predators and often experience very high levels of nest predation. Strategies to reduce nest vulnerability can include concealing nests in vegetation and/or nesting in locations in which nests and eggs are camouflaged and less easy for predators to locate. These strategies could have important implications for the distribution of ground-nesting species and the success rates of nests in areas with differing vegetation structure. However, the factors influencing the success of nest concealment and camouflage strategies in ground-nesting species are complex. Here we explore the effects of local vegetation structure and extent of nest concealment on nest predation rates in a range of ground-nesting, sympatric wader species with differing nest concealment strategies (open-nest species: Oystercatcher Haematopus ostralegus, Golden Plover Pluvialis apricaria and Whimbrel Numenius phaeopus; concealed-nest species: Black-tailed Godwit Limosa limosa, Redshank Tringa totanus and Snipe Gallinago gallinago) in south Iceland, in landscapes that comprise substantial variability in vegetation structure at a range of scales. We monitored 469 nests of these six wader species in 2015 and 2016 and ~40% of these nests were predated. Nest predation rates were similar for open-nest and concealed-nest species and did not vary with vegetation structure in the surrounding landscape, but nest-concealing species were ~10% more likely to have nests predated when they were poorly concealed, and the frequency of poorly concealed nests was higher in colder conditions at the start of the breeding season. For concealed-nest species, the reduced capacity to hide nests in colder conditions is likely to reflect low rates of vegetation growth in such conditions. The ongoing trend for warmer springs at subarctic latitudes could result in more rapid vegetation growth, with consequent increases in the success rates of early nests of concealed-nest species. Temperature-related effects on nest concealment from predators could thus be an important mechanism through which climate change affecting vegetation could have population-level impacts on breeding birds at higher latitudes.  相似文献   

15.
Many species use extended phenotypes, such as purpose‐built nests, to increase their reproductive success. These traits have to be adjusted to local environmental conditions to maximize fitness. An important question is whether species are able to adjust their extended phenotypes to human‐induced rapid environmental changes. We investigated whether populations of threespine stickleback, Gasterosteus aculeatus, exposed to different degrees of human‐induced eutrophication during the last decades, have differentiated phenotypically in their nest‐building behaviour. Stickleback males build nests that they use both in mate attraction and for offspring protection and whose characteristics vary with environmental conditions. We allowed males from parallel pairs of mildly and severely eutrophied habitats to build nests under standardized conditions in the laboratory. We recorded the time it took the males to build a nest, the size and neatness of the completed nest and the use of nest ornaments. We found eutrophication at the site of capture to influence nest‐building time – males from eutrophied habitats built faster. However, eutrophication did not alter nest structure or the use of nest ornaments. This is probably because the nests are concealed in vegetation or under stones and females cannot evaluate them before they have followed the male to the nest, and predators cannot detect them before close to the nest. Thus, reduced long‐range visibility does not influence the use of nests as mate choice cues or for offspring protection. This contrasts with a recorded effect of eutrophication on courtship behaviour, whose efficiency depends on long‐range visibility. This suggests that traits are adjusted to eutrophication depending on the influence of eutrophication on the function of the traits.  相似文献   

16.
ABSTRACT Nest predation is the primary cause of nest failure for Greater Sage‐Grouse (Centrocercus urophasianus), but the identity of their nest predators is often uncertain. Confirming the identity of these predators may be useful in enhancing management strategies designed to increase nest success. From 2002 to 2005, we monitored 87 Greater Sage‐Grouse nests (camera, N= 55; no camera, N= 32) in northeastern Nevada and south‐central Idaho and identified predators at 17 nests, with Common Ravens (Corvus corax) preying on eggs at 10 nests and American badgers (Taxidea taxis) at seven. Rodents were frequently observed at grouse nests, but did not prey on grouse eggs. Because sign left by ravens and badgers was often indistinguishable following nest predation, identifying nest predators based on egg removal, the presence of egg shells, or other sign was not possible. Most predation occurred when females were on nests. Active nest defense by grouse was rare and always unsuccessful. Continuous video monitoring of Sage‐Grouse nests permitted unambiguous identification of nest predators. Additional monitoring studies could help improve our understanding of the causes of Sage‐Grouse nest failure in the face of land‐use changes in the Intermountain West.  相似文献   

17.
ABSTRACT Grey Fantails (Rhipidura albiscapa), a common Australian flycatcher, commonly desert their nests before egg‐laying. We tested the hypothesis that Grey Fantails desert incomplete nests in response to the attention of predators by placing a mounted Pied Currawong (Strepera graculina), a common nest predator, near fantail nests that were under construction. As a control, we placed a mounted King Parrot (Alisteris scapularis), a nonpredatory bird similar in size to Pied Currawongs, near other fantail nests. Four of six female fantails (67%) deserted incomplete nests in response to the presentation of the Pied Currawong. In contrast, none of the seven females presented with a mounted King Parrot deserted. Female Grey Fantails may use the attention of a predator at the nest during the building stage as a cue to desert. Such desertion may be adaptive for Grey Fantails because currawongs are large predators, making successful nest defense unlikely, and they also present considerable risk to adults. In addition, fantails may raise multiple broods during a breeding season and, therefore, have a high renesting potential.  相似文献   

18.
Avian nest success often varies seasonally and because predation is the primary cause of nest failure, seasonal variation in predator activity has been hypothesized to explain seasonal variation in nest success. Despite the fact that nest predator communities are often diverse, recent evidence from studies of snakes that are nest predators has lent some support to the link between snake activity and nest predation. However, the strength of the relationship has varied among studies. Explaining this variation is difficult, because none of these studies directly identified nest predators, the link between predator activity and nest survival was inferred. To address this knowledge gap, we examined seasonal variation in daily survival rates of 463 bird nests (of 17 bird species) and used cameras to document predator identity at 137 nests. We simultaneously quantified seasonal activity patterns of two local snake species (N = 30 individuals) using manual (2136 snake locations) and automated (89,165 movements detected) radiotelemetry. Rat snakes (Pantherophis obsoletus), the dominant snake predator at the site (~28% of observed nest predations), were most active in late May and early June, a pattern reported elsewhere for this species. When analyzing all monitored nests, we found no link between nest predation and seasonal activity of rat snakes. When analyzing only nests with known predator identities (filmed nests), however, we found that rat snakes were more likely to prey on nests during periods when they were moving the greatest distances. Similarly, analyses of all monitored nests indicated that nest survival was not linked to racer activity patterns, but racer‐specific predation (N = 17 nests) of filmed nests was higher when racers were moving the greatest distances. Our results suggest that the activity of predators may be associated with higher predation rates by those predators, but that those effects can be difficult to detect when nest predator communities are diverse and predator identities are not known. Additionally, our results suggest that hand‐tracking of snakes provides a reliable indicator of predator activity that may be more indicative of foraging behavior than movement frequency provided by automated telemetry systems.  相似文献   

19.
Ape Abundance and Habitat Use in the Goualougo Triangle, Republic of Congo   总被引:1,自引:0,他引:1  
Chimpanzee (Pan troglodytes troglodytes) and western gorilla (Gorilla gorilla gorilla) populations in central Africa are rapidly declining as a result of disease epidemics, commercial bushmeat hunting, and habitat destruction. Our main objective was to estimate the absolute abundance and habitat utilization of chimpanzees and gorillas in the intact forests of the Goualougo Triangle in the Republic of Congo, and in an adjacent area in which selective logging will take place in the near future. The estimates provide a unique baseline for apes inhabiting an undisturbed environment. A second objective was to compare estimates of abundance and patterns of habitat utilization generated by different techniques: 1) distance sampling of individual ape nests and nest sites along line transects, 2) direct observations of apes during reconnaissance surveys, and 3) observations of ape traces during reconnaissance surveys. We completed a total of 222 km of line transect surveys in 4 sampling areas, resulting in overall density estimates of 1.53 chimpanzees/km2 and 2.34 gorillas/km2 from nest sites. We generated a density estimate of 2.23 chimpanzees/km2 from direct observations during reconnaissance surveys of a semihabituated community in 1 of the 4 sampling areas. Habitat use profiles that nest surveys depicted on transects differed from those of direct observations and traces we encountered on reconnaissance surveys. We found the highest overall abundance of chimpanzee nests in monodominant Gilbertiodendron forest, whereas our direct observations showed that chimpanzees preferred mixed species forest. Transects that traversed the core area of the community range had the highest encounter rates of chimpanzee nests and nest sites. Gorilla nests on transects showed a preference only for mixed species forest with an open canopy, but direct observations and traces on reconnaissance surveys clearly indicated that gorillas use several habitat types. We conclude by evaluating the precision of these nest surveys and our ability to detect future trends in ape densities in the Goualougo Triangle.
Samantha StrindbergEmail:
  相似文献   

20.
Snowy plovers (Charadrius nivosus) are a species of conservation concern throughout North America and listed as a threatened species in Kansas. Management to minimize the effects of flooding and predation were implemented at Kansas breeding sites in the 1980s to encourage reproductive success. However, the effectiveness of those strategies and the effect of other variables that may influence nest survival have not been formally assessed. We used Program MARK to model the daily survival rate (DSR) of 317 snowy plover nests with 14 habitat- and management-related covariates to identify factors that influence nest survival and examine the efficacy of current management practices. In 2005 and 2006, we monitored nests and collected habitat data at the 2 known breeding sites in Kansas, Quivira National Wildlife Refuge (NWR) and Cheyenne Bottoms Wildlife Area (WA). Overall DSR was greater at Quivira NWR in 2006 (0.954) than at Cheyenne Bottoms WA (0.917) and Quivira NWR (0.942) in 2005. We developed 88 candidate models of which 4 competing models (ΔAICc < 2) were identified. We selected the most parsimonious model (K = 14, wi = 0.23) as the remaining 3 included covariates deemed biologically uninformative. This model included the effect of study site and year on a quadratic time trend, and included covariates quantifying nest age; precipitation; the proportion of gravel, rock, and vegetation at nests; occurrence within an electric fence and within 20 m of a road; occurrence on a human-constructed nest mound; and adult capture during incubation. We found a strong positive relationship between the use of nest mounds and DSR, and a strong negative relationship between precipitation and DSR. We also found a strong positive relationship between DSR and the proportion of vegetation at nest sites, the occurrence of a nest within an electric fence, and adult capture at a nest. We noted a strong negative relationship between DSR and occurrence within 20 m of a road. However, we found that DSR was not sensitive to the proportion of vegetation at a nest, occurrence within an electric fence or within 20 m of a road, and to adult capture at a nest in light of covariates quantifying precipitation and the use of nest mounds. We found weak support for a positive relationship between DSR, nest age, and the proportion of gravel and rock at nests. Our results indicate that large rainfall events are a major source of snowy plover nest loss in Kansas that can be mitigated by the construction of nest mounds. Limited influence of environmental variables found to influence nest survival at other breeding sites suggests that threats to snowy plover nest survival are site specific and managers should assess local sources of nest loss prior to implementing management strategies to improve reproductive success. © 2012 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号