首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current models suggest that the replication initiation factor Mcm10 is required for association of Mcm2-7 with origins of replication to generate the prereplicative complex (pre-RC). Here we report that Xenopus Mcm10 (XMcm10) is not required for origin binding of XMcm2-7. Instead, the chromatin binding of XMcm10 at the onset of DNA replication requires chromatin-bound XMcm2-7, and it is independent of Cdk2 and Cdc7. In the absence of XMcm10, XCdc45 binding, XRPA binding, and initiation-dependent plasmid supercoiling are blocked. Therefore, XMcm10 performs its function after pre-RC assembly and before origin unwinding. As one of the earliest known pre-RC activation steps, chromatin binding of XMcm10 is an attractive target for regulation by cell cycle checkpoints.  相似文献   

2.
Mcm10 and Cdc45 cooperate in origin activation in Saccharomyces cerevisiae   总被引:5,自引:0,他引:5  
Mcm10 has recently been found to play a crucial role in multiple steps of the DNA replication initiation process in eukaryotes. Here, we have examined the role of Mcm10 in assembling initiation factors at a well-characterized yeast replication origin, ARS1. We find that the pre-replication complex (pre-RC) components Cdc6 and Mcm7 associate with ARS1 in the mcm10-1 mutant, suggesting that establishment of the pre-RC is not compromised in this mutant. Association of Cdc45 with ARS1 is reduced in the mcm10-1 mutant, suggesting that Mcm10 is involved in recruiting Cdc45 to the pre-RC. We find that overexpression of either Mcm10-1 or Cdc45 suppresses the growth defect of mcm10-1, and that a physical interaction between Cdc45 and Mcm10 is disrupted in the mcm10-1 mutant. Our results show that interaction between the Mcm10 and Cdc45 proteins facilitates the recruitment of Cdc45 onto the ARS1 origin.  相似文献   

3.
Regulation of replication licensing by acetyltransferase Hbo1   总被引:1,自引:0,他引:1       下载免费PDF全文
The initiation of DNA replication is tightly regulated in eukaryotic cells to ensure that the genome is precisely duplicated once and only once per cell cycle. This is accomplished by controlling the assembly of a prereplicative complex (pre-RC) which involves the sequential binding to replication origins of the origin recognition complex (ORC), Cdc6/Cdc18, Cdt1, and the minichromosome maintenance complex (Mcm2-Mcm7, or Mcm2-7). Several mechanisms of pre-RC regulation are known, including ATP utilization, cyclin-dependent kinase levels, protein turnover, and Cdt1 binding by geminin. Histone acetylation may also affect the initiation of DNA replication, but at present neither the enzymes nor the steps involved are known. Here, we show that Hbo1, a member of the MYST histone acetyltransferase family, is a previously unrecognized positive regulatory factor for pre-RC assembly. When Hbo1 expression was inhibited in human cells, Mcm2-7 failed to associate with chromatin even though ORC and Cdc6 loading was normal. When Xenopus egg extracts were immunodepleted of Xenopus Hbo1 (XHbo1), chromatin binding of Mcm2-7 was lost, and DNA replication was abolished. The binding of Mcm2-7 to chromatin in XHbo1-depleted extracts could be restored by the addition of recombinant Cdt1.  相似文献   

4.
In eukaryotic cells, an ordered sequence of events leads to the initiation of DNA replication. During the G(1) phase of the cell cycle, a prereplication complex (pre-RC) consisting of ORC, Cdc6, Cdt1, and MCM2-7 is established at replication origins on the chromatin. At the G(1)/S transition, MCM10 and the protein kinases Cdc7-Dbf4 and Cdk2-cyclin E cooperate to recruit Cdc45 to the pre-RC, followed by origin unwinding, RPA binding, and recruitment of DNA polymerases. Using the soluble DNA replication system derived from Xenopus eggs, we demonstrate that immunodepletion of protein phosphatase 2A (PP2A) from egg extracts and inhibition of PP2A activity by okadaic acid abolish loading of Cdc45 to the pre-RC. Consistent with a defect in Cdc45 loading, origin unwinding and the loading of RPA and DNA polymerase alpha are also inhibited. Inhibition of PP2A has no effect on MCM10 loading and on Cdc7-Dbf4 or Cdk2 activity. The substrate of PP2A is neither a component of the pre-RC nor Cdc45. Instead, our data suggest that PP2A functions by dephosphorylating and activating a soluble factor that is required to recruit Cdc45 to the pre-RC. Furthermore, PP2A appears to counteract an unknown inhibitory kinase that phosphorylates and inactivates the same factor. Thus, the initiation of eukaryotic DNA replication is regulated at the level of Cdc45 loading by a combination of stimulatory and inhibitory phosphorylation events.  相似文献   

5.
Assembly of replication complexes at the replication origins is strictly regulated. Cdc45p is known to be a part of the active replication complexes. In Xenopus egg extracts, Cdc45p was shown to be required for loading of DNA polymerase alpha onto chromatin. The fission yeast cdc45 homologue was identified as a suppressor for nda4 and named sna41. Nevertheless, it is not known how Cdc45p facilitates loading of DNA polymerase alpha onto chromatin, particularly to prereplicative complexes. To gain novel insight into the function of this protein in fission yeast, we characterized the fission yeast Cdc45 homologue, Sna41p. We have constructed C-terminally epitope-tagged Sna41p and Pol alpha p and replaced the endogenous genes with the corresponding tagged genes. Analyses of protein-protein interactions in vivo by the use of these tagged strains revealed the following: Sna41p interacts with Pol alpha p throughout the cell cycle, whereas it interacts with Mis5p/Mcm6p in the chromatin fractions at the G(1)-S boundary through S phase. In an initiation-defective sna41 mutant, sna41(goa1), interaction of Pol alpha p with Mis5p is not observed, although Pol alpha p loading onto the chromatin that occurs before G(1) START is not affected. These results show that fission yeast Sna41p facilitates the loading of Pol alpha p onto minichromosome maintenance proteins. Our results are consistent with a model in which loading of Pol alpha p onto replication origins occurs through two steps, namely, loading onto chromatin at preSTART and association with prereplicative complexes at G(1)-S through Sna41p, which interacts with minichromosome maintenance proteins in a cell cycle-dependent manner.  相似文献   

6.
Loading of the Mcm2-7 DNA replicative helicase onto origin-proximal DNA is a critical and tightly regulated event during the initiation of eukaryotic DNA replication. The resulting protein-DNA assembly is called the prereplicative complex (pre-RC), and its formation requires the origin recognition complex (ORC), Cdc6, Cdt1, and ATP. ATP hydrolysis by ORC is required for multiple rounds of Mcm2-7 loading. Here, we investigate the role of ATP hydrolysis by Cdc6 during pre-RC assembly. We find that Cdc6 is an ORC- and origin DNA-dependent ATPase that functions at a step preceding ATP hydrolysis by ORC. Inhibiting Cdc6 ATP hydrolysis stabilizes Cdt1 on origin DNA and prevents Mcm2-7 loading. In contrast, the initial association of Mcm2-7 with the other pre-RC components does not require ATP hydrolysis by Cdc6. Importantly, these coordinated yet distinct functions of ORC and Cdc6 ensure the correct temporal and spatial regulation of pre-RC formation.  相似文献   

7.
BACKGROUND: In the budding yeast Saccharomyces cerevisiae, the cyclin-dependent kinases of the Clb/Cdc28 family restrict the initiation of DNA replication to once per cell cycle by preventing the re-assembly of pre-replicative complexes (pre-RCs) at replication origins that have already initiated replication. This assembly involves the Cdc6-dependent loading of six minichromosome maintenance (Mcm) proteins, Mcm2-7, onto origins. How Clb/Cdc28 kinases prevent pre-RC assembly is not understood. RESULTS: In living cells, the Mcm proteins were found to colocalize in a cell-cycle-regulated manner. Mcm2-4, 6 and 7 were concentrated in the nucleus in G1 phase, gradually exported to the cytoplasm during S phase, and excluded from the nucleus by G2 and M phase. Tagging any single Mcm protein with the SV40 nuclear localization signal made all Mcm proteins constitutively nuclear. In the absence of functional Cdc6, Clb/Cdc28 kinases were necessary and sufficient for efficient net nuclear export of a fusion protein between Mcm7 and the green fluorescent protein (Mcm7-GFP), whereas inactivation of these kinases at the end of mitosis coincided with the net nuclear import of Mcm7-GFP. In contrast, in the presence of functional Cdc6, which loads Mcm proteins onto chromatin, S-phase progression as well as Clb/Cdc28 kinases was required for Mcm-GFP export. CONCLUSIONS: We propose that Clb/Cdc28 kinases prevent pre-RC reassembly in part by promoting the net nuclear export of Mcm proteins. We further propose that Mcm proteins become refractory to this regulation when they load onto chromatin and must be dislodged by DNA replication before they can be exported. Such an arrangement could ensure that Mcm proteins complete their replication function before they are removed from the nucleus.  相似文献   

8.
The initiation of DNA replication in eukaryotes requires the loading of the origin recognition complex (ORC), Cdc6, and minichromosome maintenance (MCM) proteins onto chromatin to form the preinitiation complex. In Xenopus egg extract, the proteins Orc1, Orc2, Cdc6, and Mcm4 are underphosphorylated in interphase and hyperphosphorylated in metaphase extract. We find that chromatin binding of ORC, Cdc6, and MCM proteins does not require cyclin-dependent kinase activities. High cyclin A-dependent kinase activity inhibits the binding and promotes the release of Xenopus ORC, Cdc6, and MCM from sperm chromatin, but has no effect on chromatin binding of control proteins. Cyclin A together with ORC, Cdc6 and MCM proteins is bound to sperm chromatin in DNA replicating pseudonuclei. In contrast, high cyclin E/cdk2 was not detected on chromatin, but was found soluble in the nucleoplasm. High cyclin E kinase activity allows the binding of Xenopus ORC and Cdc6, but not MCM, to sperm chromatin, even though the kinase does not phosphorylate MCM directly. We conclude that chromatin-bound cyclin A kinase controls DNA replication by protein phosphorylation and chromatin release of Cdc6 and MCM, whereas soluble cyclin E kinase prevents rereplication during the cell cycle by the inhibition of premature MCM chromatin association.  相似文献   

9.
Cdc45, which binds to the minichromosomal maintenance (Mcm) proteins, has a pivotal role in the initiation and elongation steps of chromosomal DNA replication in eukaryotes. Here we show that throughout the cell cycle in Saccharomyces cerevisiae, Cdc45 forms a complex with a novel factor, Sld3. Consistently, Sld3 and Cdc45 associate simultaneously with replication origins in the chromatin immunoprecipitation assay: both proteins associate with early-firing origins in G(1) phase and with late-firing origins in late S phase. Moreover, the origin associations of Sld3 and Cdc45 are mutually dependent. The temperature-sensitive sld3 mutation confers a defect in DNA replication at the restrictive temperature and reduces an interaction not only between Sld3 and Cdc45, but also between Cdc45 and Mcm2. These results suggest that the Sld3-Cdc45 complex associates with replication origins through Mcm proteins. At the restrictive temperature in sld3-5 cells, replication factor A, a single-strand DNA binding protein, does not associate with origins. Therefore, the origin association of Sld3-Cdc45 complex is prerequisite for origin unwinding in the initiation of DNA replication.  相似文献   

10.
Eukaryotic DNA replication is limited to once per cell cycle because cyclin-dependent kinases (cdks), which are required to fire origins, also prevent re-replication. Components of the replication apparatus, therefore, are 'reset' by cdk inactivation at the end of mitosis. In budding yeast, assembly of Cdc6p-dependent pre-replicative complexes (pre-RCs) at origins can only occur during G1 because it is blocked by cdk1 (Cdc28) together with B cyclins (Clbs). Here we describe a second, separate process which is also blocked by Cdc28/Clb kinase and, therefore, can only occur during G1; the recruitment of DNA polymerase alpha-primase (pol alpha) to chromatin. The recruitment of pol alpha to chromatin during G1 is independent of pre-RC formation since it can occur in the absence of Cdc6 protein. Paradoxically, overproduction of Cdc6p can drive both dephosphorylation and chromatin association of pol alpha. Overproduction of a mutant in which the N-terminus of Cdc6 has been deleted is unable to drive pol alpha chromatin binding. Since this mutant is still competent for pre-RC formation and DNA replication, we suggest that Cdc6p overproduction resets pol alpha chromatin binding by a mechanism which is independent of that used in pre-RC assembly.  相似文献   

11.
DNA damage induced by the carcinogen benzo[a]pyrene dihydrodiol epoxide (BPDE) induces a Chk1-dependent S-phase checkpoint. Here, we have investigated the molecular basis of BPDE-induced S-phase arrest. Chk1-dependent inhibition of DNA synthesis in BPDE-treated cells occurred without detectable changes in Cdc25A levels, Cdk2 activity, or Cdc7/Dbf4 interaction. Overexpression studies showed that Cdc25A, cyclin A/Cdk2, and Cdc7/Dbf4 were not rate-limiting for DNA synthesis when the BPDE-induced S-phase checkpoint was active. To investigate other potential targets of the S-phase checkpoint, we tested the effects of BPDE on the chromatin association of DNA replication factors. The levels of chromatin-associated Cdc45 (but not soluble Cdc45) were reduced concomitantly with BPDE-induced Chk1 activation and inhibition of DNA synthesis. The chromatin association of Mcm7, Mcm10, and proliferating cell nuclear antigen was unaffected by BPDE treatment. However, the association between Mcm7 and Cdc45 in the chromatin fraction was inhibited in BPDE-treated cells. Chromatin immunoprecipitation analyses demonstrated reduced association of Cdc45 with the beta-globin origin of replication in BPDE-treated cells. The inhibitory effects of BPDE on DNA synthesis, Cdc45/Mcm7 associations, and interactions between Cdc45 and the beta-globin locus were abrogated by the Chk1 inhibitor UCN-01. Taken together, our results show that the association between Cdc45 and Mcm7 at origins of replication is negatively regulated by Chk1 in a Cdk2-independent manner. Therefore, Cdc45 is likely to be an important target of the Chk1-mediated S-phase checkpoint.  相似文献   

12.
Mcm2-7 proteins are generally considered to function as a heterohexameric complex, providing helicase activity for the elongation step of DNA replication. These proteins are loaded onto replication origins in M-G1 phase in a process termed licensing or pre-replicative complex formation. It is likely that Mcm2-7 proteins are loaded onto chromatin simultaneously as a pre-formed hexamer although some studies suggest that subcomplexes are recruited sequentially. To analyze this process in fission yeast, we have compared the levels and chromatin binding of Mcm2-7 proteins during the fission yeast cell cycle. Mcm subunits are present at approximately 1 x 10(4) molecules/cell and are bound with approximately equal stoichiometry on chromatin in G1/S phase cells. Using a single cell assay, we have correlated the timing of chromatin association of individual Mcm subunits with progression through mitosis. This showed that Mcm2, 4 and 7 associate with chromatin at about the same stage of anaphase, suggesting that licensing involves the simultaneous binding of these subunits. We also examined Mcm2-7 chromatin association when cells enter a G0-like quiescent state. Chromatin binding is lost in this transition in a process that does not require DNA replication or the selective degradation of specific subunits.  相似文献   

13.
We have analyzed how single-strand DNA gaps affect DNA replication in Xenopus egg extracts. DNA lesions generated by etoposide, a DNA topoisomerase II inhibitor, or by exonuclease treatment activate a DNA damage checkpoint that blocks initiation of plasmid and chromosomal DNA replication. The checkpoint is abrogated by caffeine and requires ATR, but not ATM, protein kinase. The block to DNA synthesis is due to inhibition of Cdc7/Dbf4 protein kinase activity and the subsequent failure of Cdc45 to bind to chromatin. The checkpoint does not require pre-RC assembly but requires loading of the single-strand binding protein, RPA, on chromatin. This is the biochemical demonstration of a DNA damage checkpoint that targets Cdc7/Dbf4 protein kinase.  相似文献   

14.
How the replication machinery is loaded at origins of DNA replication is poorly understood. Here, we implicate in this process the Xenopus laevis homolog (xRTS) of the RECQL4 helicase mutated in Rothmund-Thomson syndrome. xRTS, which bears homology to the yeast replication factors Sld2/DRC1, is essential for DNA replication in egg extracts. xRTS can be replaced in extracts by its human homolog, while RECQL4 depletion from mammalian cells induces proliferation failure, suggesting an evolutionarily conserved function. xRTS accumulates on chromatin during replication initiation, after prereplication-complex (pre-RC) proteins, Cut5, Sld5, or Cdc45 but before replicative polymerases. xRTS depletion suppresses the loading of RPA, the ssDNA binding protein that marks unwound origins before polymerase recruitment. However, xRTS is unaffected by xRPA depletion. Thus, xRTS functions after pre-RC formation to promote loading of replication factors at origins, a previously unrecognized activity necessary for initiation. This role connects defective replication initiation to a chromosome-fragility disorder.  相似文献   

15.
Mcm10 is a conserved eukaryotic DNA replication factor whose function has remained elusive. We report here that Mcm10 binding to replication origins in budding yeast is cell cycle regulated and dependent on the putative helicase, Mcm2-7. Mcm10 is also an essential component of the replication fork. A fraction of Mcm10 binds to DNA, as shown by histone association assays that allow for the study of chromatin binding in vivo. However, Mcm10 is also required to maintain steady-state levels of DNA polymerase-alpha (polalpha). In temperature-sensitive mcm10-td mutants, depletion of Mcm10 during S phase results in degradation of the catalytic subunit of polalpha, without affecting other fork components such as Cdc45. We propose that Mcm10 stabilizes polalpha and recruits the complex to replication origins. During elongation, Mcm10 is required for the presence of polalpha at replication forks and may coordinate DNA synthesis with DNA unwinding by the Mcm2-7 complex.  相似文献   

16.
Sheu YJ  Stillman B 《Molecular cell》2006,24(1):101-113
Origins of DNA replication are licensed in G1 by recruiting the minichromosome maintenance (MCM) proteins to form a prereplicative complex (pre-RC). Prior to initiation of DNA synthesis from each origin, a preinitiation complex (pre-IC) containing Cdc45 and other proteins is formed. We report that Cdc7-Dbf4 protein kinase (DDK) promotes assembly of a stable Cdc45-MCM complex exclusively on chromatin in S phase. In this complex, Mcm4 is hyperphosphorylated. Studies in vitro using purified DDK and Mcm4 demonstrate that hyperphosphorylation occurs at the Mcm4 N terminus. However, the DDK substrate specificity is conferred by an adjacent DDK-docking domain (DDD), sufficient for facilitating efficient phosphorylation of artificial phosphoacceptors in cis. Genetic evidence suggests that phosphorylation of Mcm4 by DDK is important for timely S phase progression and for cell viability upon overproduction of Cdc45. We suggest that DDK docks on and phosphorylates MCM proteins at licensed origins to promote proper assembly of pre-IC.  相似文献   

17.
Fission yeast Cut5/Rad4 and its budding yeast homolog Dpb11 are required for both DNA replication and the S-phase checkpoint. Here, we have investigated the role of the Xenopus homolog of Cut5 in the initiation of DNA replication using Xenopus egg extracts. Xenopus Cut5, which shows sequence similarity to DmMus101 and HsTopBP1, is essential for DNA replication in the egg extracts. It is required for the chromatin binding of Cdc45 and DNA polymerases, but not for the formation of pre-replicative complexes or the elongation stage of DNA replication. The chromatin binding of Cut5 consists of two distinct modes. S-phase cyclin-dependent kinase (S-CDK)-independent binding is sufficient for DNA replication while S-CDK-dependent binding is dispensable. Further, S-CDK acts after the chromatin binding of Cut5 and before the binding of Cdc45. These results demonstrate that the chromatin binding of Cut5 is required for the action of S-CDK, which in turn triggers the formation of pre-initiation complexes of DNA replication.  相似文献   

18.

Background  

Cdc23/Mcm10 is required for the initiation and elongation steps of DNA replication but its biochemical function is unclear. Here, we probe its function using a novel approach in fission yeast, involving Cdc23 cleavage by the TEV protease.  相似文献   

19.
Dolan WP  Sherman DA  Forsburg SL 《Chromosoma》2004,113(3):145-156
Cdc45 is a conserved protein required for firing of replication origins and processive DNA replication. We used an in situ chromatin-binding assay to determine factors required for fission yeast Cdc45p chromatin binding. Assembly of the pre-replicative complex is essential for Cdc45p chromatin binding, but pre-replicative complex assembly occurs independently of Cdc45p. Fission yeast Cdc45p associates with MCM proteins in asynchronously growing cells and cells arrested in S phase by hydroxyurea, but not in cells arrested at the G2/M transition. Both hsk1+ (the fission yeast CDC7 homologue) and rad4+/cut5+ (the fission yeast DPB11 homologue) are required for Cdc45p chromatin binding. Cdc45p also remains chromatin-bound in mutants that fail to recover from replication arrest. In summary, Cdc45p chromatin binding requires an intact pre-replicative complex as well as signaling from both the Dbf4-dependent kinase and cyclin-dependent kinases.  相似文献   

20.
Chromosomal DNA replication requires the recruitment of the six-subunit minichromosome maintenance (Mcm) complex to chromatin through the action of Cdc6 and Cdt1. Although considerable work has described the functions of Cdc6 and Cdt1 in yeast and biochemical systems, evidence that their mammalian counterparts are subject to distinct regulation suggests the need to further explore the molecular relationships involving Cdc6 and Cdt1. Here we demonstrate that Cdc6 and Cdt1 are mutually dependent on one another for loading Mcm complexes onto chromatin in mammalian cells. The association of Cdt1 with Mcm2 is regulated by cell growth. Mcm2 prepared from quiescent cells associates very weakly with Cdt1, whereas Mcm2 from serum-stimulated cells associates with Cdt1 much more efficiently. Cdc6, which normally accumulates as cells progress from quiescence into G(1), is capable of inducing the binding of Mcm2 to Cdt1 when ectopically expressed in quiescent cells. We further show that Cdc6 physically associates with Cdt1 via its N-terminal noncatalytic domain, a region we had previously shown to be essential for Cdc6 function. Cdt1 activity is inhibited by the geminin protein, and we provide evidence that the mechanism of this inhibition involves blocking the binding of Cdt1 to both Mcm2 and Cdc6. These results identify novel molecular functions for both Cdc6 and geminin in controlling the association of Cdt1 with other components of the replication apparatus and indicate that the association of Cdt1 with the Mcm complex is controlled as cells exit and reenter the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号