首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retinol esterification in Sertoli cells by lecithin-retinol acyltransferase   总被引:1,自引:0,他引:1  
Esterification of retinol occurs during the metabolism of vitamin A in the testis. An acyl-CoA:retinol acyltransferase (ARAT) activity has been described for microsomes isolated from testis homogenates. That activity was also observed here in microsomal preparations obtained from cultured Sertoli cells from 20-day-old (midpubertal) rats. ARAT catalyzed the synthesis of retinyl laurate when free retinol and lauroyl-CoA were provided as substrates. However, in the absence of exogenous acyl-CoA, retinol was esterified by a different activity in a manner similar to the lecithin:retinol acyltransferase (LRAT) activity described recently for liver and intestine. Microsomal preparations obtained from enriched Sertoli cell fractions from the adult rat testis had 75-fold higher levels of LRAT than the preparations from midpubertal animals, but ARAT activity was the same in both these preparations. LRAT utilized an endogenous acyl donor and either unbound retinol or retinol complexed with cellular retinol-binding protein (CRBP) to catalyze the synthesis of retinyl linoleate, retinyl oleate, retinyl palmitate, and retinyl stearate. The addition of exogenous dilaurylphosphatidylcholine (DLPC) resulted in the synthesis of retinyl laurate. The esterification from both exogenous DLPC and endogenous acyl donor was inhibited by 2 mM phenylmethanesulfonyl fluoride (PMSF). ARAT activity was not affected by similar concentrations of PMSF. Furthermore, retinol bound to CRBP, a protein known to be present in Sertoli cells, was not an effective substrate for testicular ARAT. When retinol uptake and metabolism were examined in cultured Sertoli cells from 20-day-old rats, the cells synthesized the same retinyl esters that were produced by microsomal LRAT in vitro.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The distribution of beta-carotene was determined in various subcellular fractions of bovine corpus luteum. It was found in significant amounts in all subcellular fractions examined including nuclear, mitochondrial, microsomal, cytosolic, and floating lipid. Much of the beta-carotene found in the crude nuclear and mitochondrial fractions was loosely bound and could be removed with repeated washings. In contrast, the microsomal beta-carotene could only be removed by detergent extraction suggesting that it is an integral component of this membrane preparation. In the cytosol fraction beta-carotene was bound to high-molecular-weight protein(s), quite possibly a plasma-derived lipoprotein. The subcellular distribution of beta-carotene in corpus luteum is quite similar to the distribution of its metabolite, retinol, in liver. This finding coupled with other recently published data suggests that beta-carotene could play a distinct role in corpora lutea function.  相似文献   

3.
We have examined retinol esterification in the established GRX cell line, representative of hepatic stellate cells, and in primary cultures of ex vivo purified murine hepatic stellate cells. The metabolism of [3H]retinol was compared in cells expressing the myofibroblast or the lipocyte phenotype, under the physiological retinol concentrations. Retinyl esters were the major metabolites, whose production was dependent upon both acyl-CoA:retinol acyltransferase (ARAT) and lecithin:retinol acyltransferase (LRAT). Lipocytes had a significantly higher esterification capacity than myofibroblasts. In order to distinguish the intrinsic enzyme activity from modulation of retinol uptake and CRBP-retinol content of the cytosol in the studied cells, we monitored enzyme kinetics in the purified microsomal fraction. We found that both LRAT and ARAT activities were induced during the conversion of myofibroblasts to lipocytes. LRAT induction was dependent upon retinoic acid, while that of ARAT was dependent upon the overall induction of the fat storing phenotype. The fatty acid composition of retinyl-esters suggested a preferential inclusion of exogenous fatty acids into retinyl esters. We conclude that both LRAT and ARAT participate in retinol esterification in hepatic stellate cells: LRAT's activity correlates with the vitamin A status, while ARAT depends upon the availability of fatty acyl-CoA and the overall lipid metabolism in hepatic stellate cells.  相似文献   

4.
The subcellular localization in rat liver cells of retinol-binding protein (RBP), prealbumin, ceruloplasmin, albumin, and class I transplantation antigen chains was investigated by radioimmunoassay determinations. The concentration of RBP was high in the rough and smooth endoplasmic reticulum (SER). The relative concentrations of prealbumin, ceruloplasmin and albumin were similar in the endoplasmic reticulum fractions and in the Golgi fraction. Neither of the proteins were found in significant amounts in the post-microsomal supernatant nor in the plasma membrane. The concentrations of the class I transplantation antigen chains were higher in the Golgi fraction than in the endoplasmic reticulum fractions. In the rough endoplasmic reticulum (RER) fraction ceruloplasmin and the class I antigens partially interact with high-molecular weight (MW) components, presumably membrane-bound glycosyltransferases. RBP, prealbumin and albumin seemed to be present in free form within the microsomal lumen. In vitamin A deficiency the RBP and to a lesser extent the prealbumin concentrations in the endoplasmic reticulum fractions were significantly increased, as compared to fractions from normal livers. This suggests that the presence of vitamin A is a prerequisite for the transport of RBP from the endoplasmic reticulum to the Golgi complex. The intracellular concentrations of albumin and ceruloplasmin were not significantly altered by vitamin A deficiency. In contrast, the amounts of the class I antigen heavy chains were found to be increased.  相似文献   

5.
The effects on cellular structures of products of peroxidation of rat liver microsomal lipids were investigated. A system containing actively peroxidizing liver microsomal fraction was separated from a revealing or target system by a dialysis membrane. The target system, contained in the dialysis tube, consisted of either intact cells (erythrocytes) or subcellular fractions (liver microsomal fraction). When liver microsomal fractions were incubated with NADPH (or an NADPH-generating system), lipid peroxidation, as measured by the amount of malonaldehyde formed, occurred very rapidly. The malon-aldehyde concentration tended to equilibrate across the dialysis membrane. When the target system consisted of erythrocytes, haemolysis occurred abruptly after a lag phase. The lysis was greatly accelerated when erythrocytes from vitamin E-deficient rats were used, but no haemolysis was observed when erythrocytes from vitamin E-treated rats were used. When, in the same system, freshly prepared liver microsomal fractions were exposed to diffusible factors produced by lipid peroxidation, the glucose 6-phosphatase activity markedly decreased. A similar decrease in glucose 6-phosphatase activity, as well as a smaller but significant decrease in cytochrome P-450, was observed when the target microsomal fractions were exposed to diffusible factors derived from the peroxidation of liver microsomal lipids in a separate preincubation step. These and additional experiments indicated that the toxicological activity is relatively stable. Experiments in which the hepatic microsomal fractions destined for lipid peroxidation contained radioactively labelled arachidonic acid, previously incorporated into the membranes, showed that part of the radioactivity released from the microsomal fraction into the incubation medium entered the dialysis tube and was recovered bound to the constituents of the microsomal fractions of the target system. These results indicate that during the course of the peroxidation of liver microsomal lipids toxic products are formed that are able to induce pathological effects at distant loci.  相似文献   

6.
Retinol esterification was examined in microsomes from rat liver and lactating mammary gland as a function of the form of retinol substrate, dependence on fatty acyl CoA, and sensitivity to phenylmethylsulfonyl fluoride (PMSF). Retinol bound to cellular retinol-binding protein (CRBP) or dispersed in solvent was esterified in a fatty acyl CoA-independent, PMSF-sensitive reaction, consistent with lecithin:retinol acyltransferase (LRAT) activity. LRAT activity exhibited the same Km (2 microM retinol) between tissues but a higher Vmax in liver as compared to that in mammary gland (47 vs 8 pmol/min/mg microsome protein, respectively). Solvent-dispersed retinol was also esterified in a fatty acyl CoA-dependent, PMSF-resistant reaction, consistent with acyl CoA:retinol acyltransferase (ARAT) activity. Retinol bound to CRBP was not a good substrate for this reaction. ARAT activity displayed a similar Vmax (300 pmol/min/mg microsome protein) between tissues but Km values of 15 and 5 microM for retinol and fatty acyl CoA in mammary gland as compared to 30 and 25 microM, respectively, in the liver. Thus, when substrate was near or below Km, retinol esterification occurred predominantly by LRAT in the liver and ARAT in the mammary gland, respectively. The concentration of CRBP in the cytosol, determined by Western blotting, was approximately 2 microM in the liver but was almost nondetectable in the mammary gland. These data suggest that retinol esterification is regulated via different mechanisms in liver and mammary gland and support a specific role for CRBP in the liver.  相似文献   

7.
Subcellular fractions isolated and purified from rat brain cerebral cortices were assayed for phosphatidylinositol (PI-), phosphatidylinositol-4-phosphate (PIP-), and diacylglycerol (DG-) kinase activities in the presence of endogenous or exogenously added lipid substrates and [γ-32P]ATP. Measurable amounts of all three kinase activities were observed in each subcellular fraction, including the cytosol. However, their subcellular profiles were uniquely distinct. In the absence of exogenous lipid substrates, PI-kinase specific activity was greatest in the microsomal and non-synaptic plasma membrane fractions (150–200 pmol/min per mg protein), whereas PIP-kinase was predominantly active in the synaptosomal fraction (136 pmol/min per mg protein). Based on percentage of total protein, total recovered PI-kinase activity was most abundant in the cytosolic, synaptosomal, microsomal and mitochondrial fractions (4–11 nmol/min). With the exception of the microsomal fraction, a similar profile was observed for PIP-kinase activity when assayed in the presence of exogenous PIP (4 nmol/20 mg protein in a final assay volume of 0.1 ml). Exogenous PIP (4 nmol/20 mg protein) inhibited PI-kinase activity in most fractions by 40–70%, while enhancing PIP-kinase activity. PI- and PIP-kinase activities were observed in the cytosolic fraction when assayed in the presence of exogenously added PI or PIP, respectively, but not in heat-inactivated membranes containing these substrates. When subcellular fractions were assayed for DG-kinase activity using heat-inactivated DG-enriched membranes as substrate, DG-kinase specific activity was predominantly present in the cytosol. However, incubation of subcellular fractions in the presence of deoxycholate resulted in a striking enhancement of DG-kinase activities in all membrane fractions. These findings demonstrate a bimodal distribution between particulate and soluble fractions of all three lipid kinases, with each exhibiting its own unique subcellular topography. The preferential expression of PIP-kinase specific activity in the synaptic membranes is suggestive of the involvement of PIP2 in synaptic function, while the expression of PI-kinase specific activity in the microsomal fraction suggests additional, yet unknown, functions for PIP in these membranes.  相似文献   

8.
The subcellular distribution of the enzymes involved in the metabolism of norethynodrel (17 alpha-ethynyl-17 beta-hydroxy-estr-5(10)-en-3-one) to the 3alpha and 3beta diols (17 alpha-ethynyl-3alpha (or 3beta-17 beta-dihydroxy-estr-5(10)-ene) and 17 alpha-ethinyl estradiol was studied. The purity of the male rat liver subcellular fractions was evaluated by the use of marker enzymes. Sample sections were viewed by electron microscopy. The data showed that the cytosol fraction contained the highest relative specific activity for the hydroxysteroid dehydrogenases required for the formation of the diols. The cytosol fraction also contained the highest total activity. The enzymes required for the formation of ethinyl estradiol were distributed equally among mitochondrial and microsomal fractions, however, the highest relative specific activity was associated with the heavy microsomal fraction (18,000 g).  相似文献   

9.
Vitamin A metabolism in the human intestinal Caco-2 cell line   总被引:2,自引:0,他引:2  
T C Quick  D E Ong 《Biochemistry》1990,29(50):11116-11123
The human intestinal Caco-2 cell line, described as enterocyte-like in a number of studies, was examined for its ability to carry out the metabolism of vitamin A normally required in the absorptive process. Caco-2 cells contained cellular retinol-binding protein II, a protein which is abundant in human villus-associated enterocytes and may play an important role in the absorption of vitamin A. Microsomal preparations from Caco-2 cells contained retinal reductase, acyl-CoA-retinol acyltransferase (ARAT), and lecithin-retinol acyltransferase (LRAT) activities, which have previously been proposed to be involved in the metabolism of dietary vitamin A in the enterocyte. When intact Caco-2 cells were provided with beta-carotene, retinyl acetate, or retinol, synthesis of retinyl palmitoleate, oleate, palmitate, and small amounts of stearate resulted. However, exogenous retinyl palmitate or stearate was not used by Caco-2 cells as a source of retinol for ester synthesis. While there was a disproportionate synthesis of monoenoic fatty acid esters of retinol in Caco-2 cells compared to the retinyl esters typically found in human chylomicrons or the esters normally synthesized in rat intestine, the pattern was consistent with the substantial amount of unsaturated fatty acids, particularly 18:1 and 16:1, found in the sn-1 position of Caco-2 microsomal phosphatidylcholine, the fatty acyl donor for LRAT. Both ARAT and LRAT have been proposed to be responsible for retinyl ester synthesis in the enterocyte.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Liver homogenates have been submitted to quantitative fractionation by differential centrifugation. Three particulate fractions: N (nuclear), ML (large granules), and P (microsomes), and a final supernate (S) have been obtained. The biochemical composition of the microsomal fraction has been established from the assay and distribution pattern of 25 enzymatic and chemical constituents. These included marker enzymes for mitochondria (cytochrome oxidase), lysosomes (acid phosphatase and N-acetyl-β-glucosaminidase), and peroxisomes (catalase). The microsomal preparations were characterized by a moderate contamination with large cytoplasmic granules (only 6.2% of microsomal protein) and by a high yield in microsomal components. Enzymes such as glucose 6-phosphatase, nucleoside diphosphatase, esterase, glucuronyltransferase, NADPH cytochrome c reductase, aminopyrine demethylase, and galactosyltransferase were recovered in the microsomes to the extent of 70% or more. Another typical behavior was shown by 5'-nucleotidase, alkaline phosphatase, alkaline phosphodiesterase I, and cholesterol, which exhibited a "nucleomicrosomal" distribution. Other complex distributions were obtained for several constituents recovered in significant amount in the microsomes and in the ML or in the S fraction.  相似文献   

11.
The uptake and processing of glucagon into liver endosomes were studied in vivo by subcellular fractionation. After injection of [[125I]iodo-Tyr10]glucagon and [[125I]iodo-Tyr13]glucagon to rats, the uptake of radioactivity into the liver was maximum at 2 min (6% of the dose/g of tissue). On differential centrifugation, the radioactivity in the homogenate was recovered mainly in the nuclear (N), microsomal (P) and supernatant (S) fractions, with maxima at 5, 10 and 40 min, respectively; recovery of radioactivity in the mitochondrial-lysosomal (ML) fraction did not exceed 6% and was maximal at 20 min. On density-gradient centrifugation, the radioactivity associated first (2-10 min) with plasma membranes and then (10-40 min) with Golgi-endosomal (GE) fractions, with 2-5-fold and 20-150-fold enrichments respectively. Subfractionation of the GE fractions showed that, unlike the Golgi marker galactosyltransferase, the radioactivity was density-shifted by diaminobenzidine cytochemistry. Subfractionation of the ML fraction isolated at 40 min showed that more than half of the radioactivity was recovered at lower densities than the lysosomal marker acid phosphatase. Throughout the time of study, the [125I]iodoglucagon associated with the P, PM and GE fractions remained at least 80-90% trichloroacetic acid (TCA)-precipitable, whereas that associated with other fractions, especially the S fraction, became progressively TCA-soluble. On gel filtration and h.p.l.c., the small amount of degraded [125I]iodoglucagon associated with GE fractions was found to consist of monoiodotyrosine. Chloroquine treatment of [125I]iodoglucagon-injected rats caused a moderate but significant increase in the late recovery of radioactivity in the ML, P and GE fractions, but had little effect on the association of the ML radioactivity with acid-phosphatase-containing structures. Chloroquine treatment also led to a paradoxical decrease in the TCA-precipitability of the radioactivity associated with the P and GE fractions. Upon h.p.l.c. analysis of GE extracts of chloroquine-treated rats, at least four degradation products less hydrophobic than intact [125I]iodoglucagon were identified. Radio-sequence analysis of four of these products revealed three cleavages, affecting bonds Ser2-Gln3, Thr5-Phe6 and Phe6-Thr7. When GE fractions containing internalized [125I]iodoglucagon were incubated in iso-osmotic KCl at 30 degrees C, a rapid generation of TCA-soluble products was observed, with a maximum at pH 4. We conclude that endosomes are a major site at which internalized glucagon is degraded, endosomal acidification being required for optimum degradation.  相似文献   

12.
We have investigated the steps by which retinol, released from plasma retinol-binding protein (RBP), enters the cells and is accumulated for the most part as a retinyl-ester, only a small fraction of it being present as a complex with cytoplasmic retinol-binding protein (CRBP). For this purpose, we have developed a cell-free system composed of plasma membrane-enriched fractions from bovine retinal pigment epithelium which selectively incorporates exogenous vitamin A when presented as a retinol-RBP complex. Upon incubation in the presence of [3H]retinol-RBP, isolated plasma membrane fractions take up and esterify retinol. A 4-fold reduction of total vitamin A incorporation is observed in conditions which specifically inhibit retinyl-ester formation, thus indicating that the two processes of retinol uptake and esterification are functionally coupled. Evidence is presented that retinol bound to a plasma membrane receptor sharing functional and structural similarities with CRBP is the actual substrate for esterification. Vitamin A accumulation seems to require retinol esterification to allow the recycling of a limited number of free, plasma membrane-associated, retinol receptors. Mobilization of retinol stored as a membrane-bound retinyl-ester is mediated by a membrane-associated hydrolase activity selectively controlled by the level of apo-CRBP which acts as a carrier for the released retinol. Up to 90% of membrane-bound vitamin A is released upon incubation in the presence of apo-CRBP (11 microM) with concomitant formation of retinol-CRBP. The overall process, in which retinol never needs to leave its binding proteins, allows the accumulation of vitamin A in the form of a membrane-bound retinyl-ester and its regulated mobilization as a retinol-CRBP complex.  相似文献   

13.
Rats were given a 0.05% polychlorinated biphenyls (PCB) diet supplemented with adequate nutrients for 10 days and not only PCB-induced lipid peroxidation as measured by thiobarbituric acid (TBA)-reactive substances but also variations of lipid peroxides scavengers in liver and its subcellular fractions (nuclei and cell debris, mitochondrial, microsomal and cytosolic fractions) were investigated. The lipid peroxidation in liver and subcellular fractions in the PCB-treated group increased significantly except in the nuclei and cell debris fraction. The increase in lipid peroxidation in the microsomal fraction appeared to be associated in part with the decrease in vitamin E (alpha-tocopherol) content and induction of drug-metabolizing enzymes. In the cytosolic fraction, the total lipid content increased, glutathione peroxidase (GSHPx) activity decreased and the quantity of free radical-reactive substances suppressing lipid peroxidation was low as measured by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) value. From these results, the increase in lipid peroxidation in the cytosolic fraction in the PCB-treated group was ascribed to the abundance and availability of oxidizable substrate attended with fatty liver, to the decline in GSHPx activity, and to the insufficiency in antioxygenic activity as observed by the decrease in the DPPH value.  相似文献   

14.
Subcellular fractionation techniques have been used to assess the localization of injected 125I-labeled cholera toxin (125I-CT) taken up by rat liver in vivo, and to determine whether internalization of the toxin is required for the generation of the active A1 peptide. The uptake of injected 125I-CT into the liver is maximal at 5 min (about 10% injected dose/g). At this time the radioactivity is for the most part recovered in the microsomal (P) fraction, but later on it progressively associates with the mitochondrial-lysosomal (ML) and supernatant fractions. The radioactivity is enriched 7-fold in plasma membranes at 5-15 min, and 15-60-fold in Golgi-endosome (GE) fractions at 15-60 min. On analytical sucrose gradients the radioactivity associated with the P fraction is progressively displaced from the region of 5'-nucleotidase (a plasma membrane marker) to that of galactosyltransferase (a Golgi marker). On Percoll gradients, however, it is displaced towards acid phosphatase (a lysosomal marker). Density-shift experiments, using Triton WR 1339, suggest that some radioactivity associated with the P fraction (at 30 min) and all the radioactivity present in the ML fraction (at 2 h) is intrinsic to acid-phosphatase-containing structures, presumably lysosomes. Comparable experiments using 3,3'-diaminobenzidine cytochemistry indicate that the radioactivity present in GE fractions is separable from galactosyltransferase, and thus is presumably associated with endosomes. The fate of injected 125I-labeled cholera toxin B subunit differs from that of the whole toxin by a more rapid uptake (and/or clearance) of the ligand into subcellular fractions, and a greater accumulation of ligand in the ML fraction. Analysis of GE fractions by SDS/polyacrylamide gel electrophoresis shows that, up to 10 min after injection of 125I-CT, about 80% of the radioactivity is recovered as A subunit and 20% as B subunit, similarly to control toxin. Later on there is a time-dependent decrease in the amount of A subunit and, at least with the intermediate GE fraction, a concomitant appearance of A1 peptide (about 15% of the total at 60 min). In contrast the radioactivity associated with plasma membranes remains indistinguishable from unused toxin. It is concluded that, upon interaction with hepatocytes, 125I-CT (both subunits A and B) sequentially associates with plasma membranes, endosomes and lysosomes, and that endosomes may represent the major subcellular site at which the A1 peptide is generated.  相似文献   

15.
Upon fractionation of a postmitochondrial supernatant from rat liver, the synthase phosphatase (EC 3.1.3.42) activity (assayed at high tissue concentrations) was largely recovered in the glycogen fraction and to a minor extent in the cytosol. In contrast, the phosphorylase phosphatase (EC 3.1.3.17) activity was approximately equally distributed between these two fractions, a lesser amount being recovered in the microsomal fraction. The phosphatase activities in the microsomal and glycogen fractions were almost completely inhibited by a preincubation with the modulator protein, a specific inhibitor of type-1 (ATP,Mg-dependent) protein phosphatases. In the cytosolic fraction, however, type-2A (polycation-stimulated) phosphatase(s) contributed significantly to the dephosphorylation of phosphorylase and of in vitro phosphorylated muscular synthase. Liver synthase b, used as substrate for the measurement of synthase phosphatase throughout this work, was only activated by modulator-sensitive phosphatases. Trypsin treatment of the subcellular fractions resulted in a dramatically increased (up to 1000-fold) sensitivity to modulator, a several-fold increase in phosphorylase phosphatase activity and a complete loss of synthase phosphatase activity. Similar changes occurred during dilution of the glycogen-bound enzyme. A preincubation with the deinhibitor protein, which is known to counteract the effects of inhibitor-1 and modulator, increased several-fold the phosphorylase phosphatase activity, but exclusively in the cytosolic and microsomal fractions. It did not affect the synthase phosphatase activity. Taken together, the results indicate the existence of distinct, multi-subunit type-1 phosphatases in the cytosolic, microsomal and glycogen fractions.  相似文献   

16.
We have investigated the intracellular distribution of several enzymes on homogenates of late foetal, early postnatal and adult rat livers. Homogenates were subjected to differential centrifugations in 0.25 M sucrose and four fractions were isolated which corresponded to the N (nuclear) ML (total mitochondrial) P (microsomal) and S (soluble) fractions of de Duve et al. (1955). In general the age of the animal did not significantly affect the distribution pattern. Reference enzymes of mitochondria, lysosomes and peroxisomes were mainly recovered in the total mitochondrial fraction (ML). Glucose-6-phosphatase and esterase, both located in the endoplasmic reticulum, were chiefly associated with the microsomal fraction P together with galactosyltransferase (a reference enzyme of the Golgi apparatus). 5'-Nucleotidase, (a plasma membrane enzyme) exhibits a bimodal distribution and is mainly recovered in the N and the P fractions. Such results indicate that the membrane composition of the fractions isolated by the fractionation scheme was used, does not appreciably differ for the late foetal, early postnatal and adult rat livers. An analytical fractionation of the mitochondrial (ML) fraction of livers at different stages of development was performed by isopycnic centrifugation in sucrose gradients and in glycogen gradients using sucrose solutions of various concentrations as the solvents. The distribution of mitochondria, lysosomes and peroxisomes were assessed by establishing the distribution of their reference enzymes. Some physical characteristics of the particles were deduced from the manner in which the distributions were influenced by the sucrose concentration of the centrifugation medium. The distribution of liver mitochondrial enzymes one day prenatal differs strikingly from that of enzymes one day postnatal; foetal mitochondria seem characterized by a high osmotic space and a high hydrated matrix density; neonatal mitochondria seem devoid of an osmotic space and the density of their hydrated matrix is markedly lower than that of the foetal mitochondria. As ascertained by the distribution of mitochondrial enzymes in a sucrose 2H2O gradient, the high density of a foetal mitochondria matrix does not mainly originate from a lower amount of hydration water. The behavior of lysosomal enzymes in media with increasing concentrations of sucrose suggests that lysosomes originating from late foetal rat liver are endowed with a very small osmotic space. As for the peroxisomes, our results do not display significant behavior differences in centrifugations that would indicate physicochemical changes of these particles during the perinatal period.  相似文献   

17.
Liver takes up retinol-binding protein from plasma   总被引:4,自引:0,他引:4  
Retinol is transported in plasma bound to a specific transport protein, retinol-binding protein. We prepared 125I-tyramine cellobiose-labeled rat retinol-binding protein and studied its tissue uptake 1, 5, and 24 h after intravenous injection into rats. The liver was the organ containing most radioactivity at all time points studied. After 5 and 24 h, 30 and 22% of the injected dose were recovered in liver, respectively. After separating the liver into parenchymal and nonparenchymal cells in the 5-h group, we found that both cell fractions contained approximately the same amount of radioactivity (per gram of liver). Most of the retinol-binding protein radioactivity in the nonparenchymal cell fraction was in the stellate cells. The implication of these results for a possible transfer mechanism for retinol between parenchymal and stellate cells is discussed.  相似文献   

18.
The heritability, subcellular location, and tissue distribution of liver protein alterations found in the two-dimensional electrophoresis patterns of 4 offspring from male mice treated with N-ethyl-N-nitrosourea (ENU) were studied. Mice homozygous for each of the 4 ENU-induced protein variants were found to be viable and fertile, although the number of homozygous offspring from crosses between heterozygous carriers of one variant (ENU 2) was less than that expected for a nondetrimental trait. Two of the proteins altered by ENU-induced mutations were associated with the crude mitochondrial fraction, another was found predominantly in the microsomal fraction, and the fourth was associated with the mitochondrial, microsomal, and cytosol fractions. All of the ENU-induced mutations affected proteins that were not liver-specific; i.e., the proteins were found in other tissues in addition to the liver.  相似文献   

19.
We have investigated the esterification by liver membranes of retinol bound to cellular retinol-binding protein (CRBP). When CRBP carrying [3H]retinol as its ligand was purified from rat liver cytosol and incubated with rat liver microsomes, a significant fraction of the [3H]retinol was converted to [3H]retinyl ester. Esterification of the CRBP-bound [3H]retinol, which was maximal at pH 6-7, did not require the addition of an exogenous fatty acyl group. Indeed, when additional palmitoyl-CoA or coenzyme A was provided, the rate of esterification increased either very slightly or not at all. The esterification reaction had a Km for [3H]retinol-CRBP of 4 +/- 0.6 microM and a maximum velocity of 145 +/- 52 pmol/min/mg of microsomal protein (n = 4). The major products were retinyl palmitate/oleate and retinyl stearate in a ratio of approximately 2 to 1 over a range of [3H]retinol-CRBP concentrations from 1 to 8 microM. The addition of progesterone, a known inhibitor of the acyl-CoA:retinol acyltransferase reaction, consistently increased the rate of retinyl ester formation when [3H]retinol was delivered bound to CRBP. These experiments indicate that retinol presented to liver microsomal membranes by CRBP can be converted to retinyl ester and that this process, in contrast to the esterification of dispersed retinol, is independent of the addition of an activated fatty acid and produces a pattern of retinyl ester species similar to that observed in intact liver. A possible role of phospholipids as endogenous acyl donors in the esterification of retinol bound to CRBP is supported by our observations that depletion of microsomal phospholipid with phospholipase A2 prior to addition of retinol-CRBP decreased the retinol-esterifying activity almost 50%. Conversely, incubating microsomes with a lipid-generating system containing choline, CDP-choline, glycerol 3-phosphate, and an acyl-CoA-generating system prior to addition of retinol-CRBP increased retinol esterification significantly as compared to buffer-treated controls.  相似文献   

20.
Receptor-mediated endocytosis of 125I-insulin and 125I-prolactin into liver parenchymal cells has been studied by quantitative subcellular fractionation. Differential centrifugation yielded three particulate fractions, N (nuclear), ML (large granule), and P (microsomes), and a final supernatant (S). Quantitative differences in the extent and rates of accumulation of 125I-insulin and 125I-prolactin into the fractions were observed. The acidotropic agent chloroquine and the microtubule disrupting agent colchicine were administered separately to rats. The agents increased significantly the T 1/2 of hormone clearance from the liver and augmented the accumulation of both ligands in the low-speed ML fraction. However, differences in the rates of accumulation of insulin and prolactin into all cell fractions were still maintained. Analytical centrifugation of each of the particulate fractions was carried out in order to determine if different endocytic components were specific to insulin or prolactin internalization. This was not the case. An "early" endosomal component of density 1.11 was identified in microsomes. A "late" endosome of density 1.10 was identified in the large granule (ML) fraction. Both endosomal components appeared to accumulate insulin and prolactin but at different rates. Marker enzyme analysis identified the presumed plasma membrane component in microsomes (density approximately 1.155). This component showed a significant difference in the rate of loss of 125I-insulin (T 1/2 approximately 4.1 min) as compared to that of 125I-prolactin (T 1/2 approximately 12.7 min). A further difference in the handling of the ligands was observed in early endosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号