首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Equipped with a mini brain smaller than one cubic millimeter and containing only 950,000 neurons, honeybees could be indeed considered as having rather limited cognitive abilities. However, bees display a rich and interesting behavioral repertoire, in which learning and memory play a fundamental role in the framework of foraging activities. We focus on the question of whether adaptive behavior in honeybees exceeds simple forms of learning and whether the neural mechanisms of complex learning can be unraveled by studying the honeybee brain. Besides elemental forms of learning, in which bees learn specific and univocal links between events in their environment, bees also master different forms of non-elemental learning, including categorization, contextual learning and rule abstraction, both in the visual and in the olfactory domain. Different protocols allow accessing the neural substrates of some of these learning forms and understanding how complex problem solving can be achieved by a relatively simple neural architecture. These results underline the enormous richness of experience-dependent behavior in honeybees, its high flexibility, and the fact that it is possible to formalize and characterize in controlled laboratory protocols basic and higher-order cognitive processing using an insect as a model. This paper is dedicated to the memory of Guillermo ‘Willy’ Zaccardi (1972–2007), disciple and friend beyond time and distance, who will always be remembered with a smile.  相似文献   

2.
I re-examine the four most widely proposed mechanisms of kin discrimination among vertebrates and conclude that the current categorization of kin discrimination mechanisms has been counterproductive because it has a hindered a clear understanding of the basic mechanisms by which animals discriminate kin. I suggest that there likely is only one authentic mechanism of kin discrimination and that this mechanism is learning, particularly associative learning and habituation. Observed differences in the way animals discriminate between kin and non-kin are due only to the cues (e.g., individually-distinctive, family-distinctive, or self) that are used, and not to different mechanisms per se. I also consider whether kin discrimination is mediated by specially evolved kin recognition systems, defined as neural mechanisms that allow animals to directly classify conspecifics as either kin or non-kin. A preliminary analysis of vertebrate recognition systems suggests that specialized neural, endocrine, and developmental mechanisms specifically for recognizing kin have not evolved. Rather, kin discrimination results from an extension of other, non-specialized sensory and cognitive abilities of animals, and may be derived from other forms of social recognition, such as individual, group, or species recognition.  相似文献   

3.
Acute ethanol administration is associated with sedation and analgesia as well as behavioral disinhibition and memory loss but the mechanisms underlying these effects remain to be elucidated. During the past decade, insects have emerged as important model systems to understand the neural and genetic bases of alcohol effects. However, novel assays to assess ethanol''s effects on complex behaviors in social or isolated contexts are necessary. Here we used the honey bee as an especially relevant model system since bees are typically exposed to ethanol in nature when collecting standing nectar crop of flowers, and there is recent evidence for independent biological significance of this exposure for social behavior. Bee''s inhibitory control of the sting extension response (SER) and a conditioned-place aversion assay were used to study ethanol effects on analgesia, behavioral disinhibition, and associative learning. Our findings indicate that although ethanol, in a dose-dependent manner, increases SER thresholds (analgesic effects), it disrupts the ability of honey bees to inhibit SER and to associate aversive stimuli with their environment. These results suggest that ethanol''s effects on analgesia, behavioral disinhibition and associative learning are common across vertebrates and invertebrates. These results add to the use of honey bees as an ethanol model to understand ethanol''s effects on complex, socially relevant behaviors.  相似文献   

4.
The associative learning abilities of the fruit fly, Drosophila melanogaster, have been demonstrated in both classical and operant conditioning paradigms. Efforts to identify the neural pathways and cellular mechanisms of learning have focused largely on olfactory classical conditioning. Results derived from various genetic and molecular manipulations provide considerable evidence that this form of associative learning depends critically on neural activity and cAMP signaling in brain neuropil structures called mushroom bodies. Three other behavioral learning paradigms in Drosophila serve as the main subject of this review. These are (1) visual and motor learning of flies tethered in a flight simulator, (2) a form of spatial learning that is independent of visual and olfactory cues, and (3) experience-dependent changes in male courtship behavior. The present evidence suggests that at least some of these modes of learning are independent of mushroom bodies. Applying targeted genetic manipulations to these behavioral paradigms should allow for a more comprehensive understanding of neural mechanisms responsible for diverse forms of associative learning and memory.  相似文献   

5.
Many studies investigating culture in nonhuman animals tend to focus on the inferred need of social learning mechanisms that transmit the form of a behavior to explain the population differences observed in wild animal behavioral repertoires. This research focus often results in studies overlooking the possibility of individuals being able to develop behavioral forms without requiring social learning. The disregard of individual learning abilities is most clearly observed in the nonhuman great ape literature, where there is a persistent claim that chimpanzee behaviors, in particular, require various forms of social learning mechanisms. These special social learning abilities have been argued to explain the acquisition of the relatively large behavioral repertoires observed across chimpanzee populations. However, current evidence suggests that although low‐fidelity social learning plays a role in harmonizing and stabilizing the frequency of behaviors within chimpanzee populations, some (if not all) of the forms that chimpanzee behaviors take may develop independently of social learning. If so, they would be latent solutions—behavioral forms that can (re‐)emerge even in the absence of observational opportunities, via individual (re)innovations. Through a combination of individual and low‐fidelity social learning, the population‐wide patterns of behaviors observed in great ape species are then established and stably maintained. This is the Zone of Latent Solutions (ZLS) hypothesis. The current study experimentally tested the ZLS hypothesis for pestle pounding, a wild chimpanzee behavior. We tested the reinnovation of this behavior in semi‐wild chimpanzees at Chimfunshi Wildlife Orphanage in Zambia, Africa, (N = 90, tested in four social groups). Crucially, all subjects were naïve to stick pounding before testing. Three out of the four tested groups reinnovated stick pounding—clearly demonstrating that this behavioral form does not require social learning. These findings provide support for the ZLS hypothesis alongside further evidence for the individual learning abilities of chimpanzees.  相似文献   

6.
Development in animals is frequently characterized by periods of heightened capacity for both neural and behavioral change. So-called sensitive periods of development are windows of opportunity in which brain and behavior are most susceptible to modification. Understanding what factors regulate sensitive periods constitutes one of the main goals of developmental neuroscience. Why is the ability to learn complex behavioral patterns often restricted to sensitive periods of development? Songbirds provide a model system for unraveling the mysteries of neural mechanisms of learning during development. Like many songbirds, zebra finches (Taeniopygia guttata) learn a specific vocal pattern during a restricted period early in life. Young birds must hear songs produced by members of their species; this auditory experience is thought to engender specific changes in the brain to guide the process of vocal learning. Many studies of the songbird system have focused on examining relationships between brain development and learning. One goal of this work is to elucidate mechanisms that regulate basic processes of neural development, and in so doing to shed light on factors governing the emergence of a complex learned behavior.  相似文献   

7.
The mind through chick eyes: memory,cognition and anticipation   总被引:4,自引:0,他引:4  
To understand the animal mind, we have to reconstruct how animals recognize the external world through their own eyes. For the reconstruction to be realistic, explanations must be made both in their proximate causes (brain mechanisms) as well as ultimate causes (evolutionary backgrounds). Here, we review recent advances in the behavioral, psychological, and system-neuroscience studies accomplished using the domestic chick as subjects. Diverse behavioral paradigms are compared (such as filial imprinting, sexual imprinting, one-trial passive avoidance learning, and reinforcement operant conditioning) in their behavioral characterizations (development, sensory and motor aspects of functions, fitness gains) and relevant brain mechanisms. We will stress that common brain regions are shared by these distinct paradigms, particularly those in the ventral telencephalic structures such as AIv (in the archistriatum) and LPO (in the medial striatum). Neuronal ensembles in these regions could code the chick's anticipation for forthcoming events, particularly the quality/quantity and the temporal proximity of rewards. Without the internal representation of the anticipated proximity in LPO, behavioral tolerance will be lost, and the chick makes impulsive choice for a less optimized option. Functional roles of these regions proved compatible with their anatomical counterparts in the mammalian brain, thus suggesting that the neural systems linking between the memorized past and the anticipated future have remained highly conservative through the evolution of the amniotic vertebrates during the last 300 million years. With the conservative nature in mind, research efforts should be oriented toward a unifying theory, which could explain behavioral deviations from optimized foraging, such as "na?ve curiosity," "contra-freeloading," "Concorde fallacy," and "altruism."  相似文献   

8.
The study of social learning in captivity and behavioral traditions in the wild are two burgeoning areas of research, but few empirical studies have tested how learning mechanisms produce emergent patterns of tradition. Studies have examined how social learning mechanisms that are cognitively complex and possessed by few species, such as imitation, result in traditional patterns, yet traditional patterns are also exhibited by species that may not possess such mechanisms. We propose an explicit model of how stimulus enhancement and reinforcement learning could interact to produce traditions. We tested the model experimentally with tufted capuchin monkeys (Cebus apella), which exhibit traditions in the wild but have rarely demonstrated imitative abilities in captive experiments. Monkeys showed both stimulus enhancement learning and a habitual bias to perform whichever behavior first obtained them a reward. These results support our model that simple social learning mechanisms combined with reinforcement can result in traditional patterns of behavior.  相似文献   

9.
《Journal of Physiology》1996,90(5-6):395-398
A top-down approach as applied to learning and memory in honeybees provides the opportunity of relating different levels of complexity to each other, and of analyzing the rules and mechanisms from the viewpoint of the respective next higher level. Olfactory conditioning of harnessed bees exemplifies essential elements of associative learning and, in general, forms a bridge between the systems and the cellular levels of analysis. Intracellular recordings of identified neurons during olfactory conditioning play a key role in this effort. They allow testing of the assumptions made by modern behavioral theories of associative learning and provide access to cellular and molecular studies, owing to the identification of their transmitters and the peculiarities of the connectivities. Analysis at this intermediate level of complexity is particularly profitable in the bee, because essential neural elements of the associative network are known and can be tested during ongoing learning behavior. In this respect, the honeybee offers unique properties for the building of bridges between the molecular, cellular neuronal, network and behavioral levels of associative learning.  相似文献   

10.
In vertebrates, and in humans in particular, so-called omitted stimulus potentials can be electrically recorded from the brain or scalp upon repeated stimulation with simple stimuli such as light flashes.While standard evoked potentials follow each stimulus in a series, omitted stimulus potentials occur when an additional stimulus is expected after the end of a stimulus series. These potentials represent neuronal plasticity and are assumed to be involved in basic cognitive processes.We recorded electroretinograms from the eyes and visually evoked potentials from central brain areas of honey bees and ants, social insects to which cognitive abilities have been ascribed and whose rich-behavioral repertoires include navigation, learning and memory.We demonstrate that omitted stimulus potentials occur in these insects. Omitted stimulus potentials in bees and ants show similar temporal characteristics to those found in crayfish and vertebrates, suggesting that common mechanisms may underlie this form of short-term neuronal plasticity.  相似文献   

11.
Asymmetries in CNS neuroanatomy are assumed to underlie the widespread cognitive and behavioral asymmetries in vertebrates. Studies in humans have shown that the laterality of some cognitive asymmetries is independent of the laterality of the viscera; discrete mechanisms may therefore regulate visceral and neural lateralization. However, through analysis of visceral, neuroanatomical, and behavioral asymmetries in the frequent-situs-inversus (fsi) line of zebrafish, we show that the principal left-right body asymmetries are coupled to certain brain asymmetries and lateralized behaviors. fsi fish with asymmetry defects show concordant reversal of heart, gut, and neuroanatomical asymmetries in the diencephalon. Moreover, the neuroanatomical reversals in reversed fsi fish correlate with reversal of some behavioral responses in both fry and adult fsi fish. Surprisingly, two behavioral asymmetries do not reverse, suggesting that at least two separable mechanisms must influence functional lateralization in the CNS. Partial reversal of CNS asymmetries may generate new behavioral phenotypes; supporting this idea, reversed fsi fry differ markedly from their normally lateralized siblings in their behavioral response to a novel visual feature. Revealing a link between visceral and brain asymmetry and lateralized behavior, our studies help to explain the complexity of the relationship between the lateralities of visceral and neural asymmetries.  相似文献   

12.
Invertebrates have contributed greatly to our understanding of associative learning because they allow learning protocols to be combined with experimental access to the nervous system. The honeybee Apis mellifera constitutes a standard model for the study of appetitive learning and memory since it was shown, almost a century ago, that bees learn to associate different sensory cues with a reward of sugar solution. However, up to now, no study has explored aversive learning in bees in such a way that simultaneous access to its neural bases is granted. Using odorants paired with electric shocks, we conditioned the sting extension reflex, which is exhibited by harnessed bees when subjected to a noxious stimulation. We show that this response can be conditioned so that bees learn to extend their sting in response to the odorant previously punished. Bees also learn to extend the proboscis to one odorant paired with sugar solution and the sting to a different odorant paired with electric shock, thus showing that they can master both appetitive and aversive associations simultaneously. Responding to the appropriate odorant with the appropriate response is possible because two different biogenic amines, octopamine and dopamine subserve appetitive and aversive reinforcement, respectively. While octopamine has been previously shown to substitute for appetitive reinforcement, we demonstrate that blocking of dopaminergic, but not octopaminergic, receptors suppresses aversive learning. Therefore, aversive learning in honeybees can now be accessed both at the behavioral and neural levels, thus opening new research avenues for understanding basic mechanisms of learning and memory.  相似文献   

13.
Hygienic behavior in honey bees is a behavioral mechanism of disease resistance. Bees bred for hygienic behavior exhibit an increased olfactory sensitivity to odors of diseased brood, which is most likely differentially enhanced in the hygienic line by the modulatory effects of octopamine (OA), a noradrenaline-like neuromodulator. Here, we addressed whether the hygienic behavioral state is linked to other behavioral activities known to be modulated by OA. We specifically asked if, during learning trials, bees from hygienic colonies discriminate better between odors of diseased and healthy brood because of differences in sucrose (reward) response thresholds. This determination had to be tested because sucrose response thresholds are susceptible to OA modulation and may have influenced the honey bee's association of the conditioned stimulus (odor) with the unconditioned stimulus (i.e., the sucrose reward). Because the onset of first foraging is also modulated by OA, we also examined whether bees from hygienic colonies differentially forage at an earlier age compared to bees from non-hygienic colonies. Our study revealed that 1-day- and 15- to 20-day-old bees from the hygienic line do not have lower sucrose response thresholds compared to bees from the non-hygienic lines. In addition, hygienic bees did not forage at an earlier age or forage preferentially for pollen as compared to non-hygienic bees. These results support the idea that OA does not function in honey bees simply to enhance the detection of all chemical cues non-selectively or control related behaviors regardless of their environmental milieu. Our results indicate that the behavioral profile of the hygienic bee is sculpted by multiple factors including genetic, neural, social and environmental systems.  相似文献   

14.
Food preferences are acquired through experience and can exert strong influence on choice behavior. In order to choose which food to consume, it is necessary to maintain a predictive representation of the subjective value of the associated food stimulus. Here, we explore the neural mechanisms by which such predictive representations are learned through classical conditioning. Human subjects were scanned using fMRI while learning associations between arbitrary visual stimuli and subsequent delivery of one of five different food flavors. Using a temporal difference algorithm to model learning, we found predictive responses in the ventral midbrain and a part of ventral striatum (ventral putamen) that were related directly to subjects' actual behavioral preferences. These brain structures demonstrated divergent response profiles, with the ventral midbrain showing a linear response profile with preference, and the ventral striatum a bivalent response. These results provide insight into the neural mechanisms underlying human preference behavior.  相似文献   

15.
Honeybees have been shown to exhibit cognitive performances that were thought to be specific to some vertebrates. However, the molecular and cellular mechanisms of such cognitive abilities of the bees have not been understood. We have identified a novel gene, Mahya, expressed in the brain of the honeybee, Apis mellifera, and other Hymenoptera. Mahya orthologues are present in Deuterostomes but are absent or highly diverged in nematodes and, intriguingly, in two dipteran insects (fruit fly and mosquito) and Lepidoptera (silk moth). Mahya genes encode novel secretory proteins with a follistatin-like domain (Kazal-type serine/threonine protease inhibitor domain and EF-hand calcium-binding domain), two immunoglobulin domains, and a C-terminal novel domain. Honeybee Mahya is expressed in the mushroom bodies and antennal lobes of the brain. Zebra fish Mahya orthologues are expressed in the olfactory bulb, telencephalon, habenula, optic tectum, and cerebellum of the brain. Mouse Mahya orthologues are expressed in the olfactory bulb, hippocampus, and cerebellum of the brain. These results suggest that Mahya may be involved in learning and memory and in processing of sensory information in Hymenoptera and vertebrates. Furthermore, the limited existence of Mahya in the genomes of Hymenoptera and Deuterostomes supports the hypothesis that the genes typically represented by Mahya were lost or highly diverged during the evolution of the central nervous system of specific Bilaterian branches under the specific selection and subsequent adaptation associated with different ecologies and life histories.  相似文献   

16.
It is widely recognized that animals respond to odors by generating or modulating specific motor behaviors. These reactions are important for daily activities, reproduction, and survival. In the sea lamprey, mating occurs after ovulated females are attracted to spawning sites by male sex pheromones. The ubiquity and reliability of olfactory-motor behavioral responses in vertebrates suggest tight coupling between the olfactory system and brain areas controlling movements. However, the circuitry and the underlying cellular neural mechanisms remain largely unknown. Using lamprey brain preparations, and electrophysiology, calcium imaging, and tract tracing experiments, we describe the neural substrate responsible for transforming an olfactory input into a locomotor output. We found that olfactory stimulation with naturally occurring odors and pheromones induced large excitatory responses in reticulospinal cells, the command neurons for locomotion. We have also identified the anatomy and physiology of this circuit. The olfactory input was relayed in the medial part of the olfactory bulb, in the posterior tuberculum, in the mesencephalic locomotor region, to finally reach reticulospinal cells in the hindbrain. Activation of this olfactory-motor pathway generated rhythmic ventral root discharges and swimming movements. Our study bridges the gap between behavior and cellular neural mechanisms in vertebrates, identifying a specific subsystem within the CNS, dedicated to producing motor responses to olfactory inputs.  相似文献   

17.
18.
One of the hallmarks of human society is the ubiquitous interactions among individuals. Indeed, a significant portion of human daily routine decision making is socially related. Normative economic theory, namely game theory, has prescribed the canonical decision strategy when "rational" social agents have full information about the decision environment. In reality, however, social decision is often influenced by the trait and state parameters of selves and others. Therefore, understanding the cognitive and neural processes of inferring the decision parameters is pivotal for social decision making. Recently, both correlational and causal non-invasive neuroimaging studies have started to reveal the critical neural computations underlying social learning and decision-making, and highlighted the unique roles of "social" brain structures such as temporal-parietal junction(TPJ) and dorsomedial prefrontal cortex(dmPFC). Here we review recent advances in social decision neuroscience and maintain the focus on how the inference about others is dynamically acquired during social learning, as well as how the prosocial(altruistic)behavior results from orchestrated interactions of different brain regions specified under the social utility framework. We conclude by emphasizing the importance of combining computational decision theory with the identification of neural mechanisms that represent, evaluate and integrate value related social information and generate decision variables guiding behavioral output in the complex social environment.  相似文献   

19.
The antennal lobe (AL) is the first center for processing odors in the insect brain, as is the olfactory bulb (OB) in vertebrates. Both the AL and the OB have a characteristic glomerular structure; odors sensed by olfactory receptor neurons are represented by patterns of glomerular activity. Little is known about when and how an odor begins to be perceived in a developing brain. We address this question by using calcium imaging to monitor odor-evoked neural activity in the ALs of bees of different ages. We find that odor-evoked neural activity already occurs in the ALs of bees as young as 1 or 2 days. In young bees, the responses to odors are relatively weak and restricted to a small number of glomeruli. However, different odors already evoke responses in different combinations of glomeruli. In mature bees, the responses are stronger and are evident in more glomeruli, but continue to have distinct odor-dependent signatures. Our findings indicate that the specific glomerular patterns for odors are conserved during the development, and that odor representations are fully developed in the AL during the first 2 weeks following emergence.  相似文献   

20.
Deciphering the genetic code that determines how the vertebrate nervous system assembles into neural circuits that ultimately control behavior is a fascinating and challenging question in modern neurobiology. Because of the complexity of this problem, successful strategies require a simple yet focused experimental approach without limiting the scope of the discovery. Unbiased, large-scale forward genetic screens in invertebrate organisms have yielded great insight into the genetic regulation of neural circuit assembly and function. For many reasons, this highly successful approach has been difficult to recapitulate in the behavioral neuroscience field's classic vertebrate model organisms-rodents. Here, we discuss how larval zebrafish provide a promising model system to which we can apply the design of invertebrate behavior-based screens to reveal the genetic mechanisms critical for neural circuit assembly and function in vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号