首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rich information on point mutation studies is scattered across heterogeneous data sources. This paper presents an automated workflow for mining mutation annotations from full-text biomedical literature using natural language processing (NLP) techniques as well as for their subsequent reuse in protein structure annotation and visualization. This system, called mSTRAP (Mutation extraction and STRucture Annotation Pipeline), is designed for both information aggregation and subsequent brokerage of the mutation annotations. It facilitates the coordination of semantically related information from a series of text mining and sequence analysis steps into a formal OWL-DL ontology. The ontology is designed to support application-specific data management of sequence, structure, and literature annotations that are populated as instances of object and data type properties. mSTRAPviz is a subsystem that facilitates the brokerage of structure information and the associated mutations for visualization. For mutated sequences without any corresponding structure available in the Protein Data Bank (PDB), an automated pipeline for homology modeling is developed to generate the theoretical model. With mSTRAP, we demonstrate a workable system that can facilitate automation of the workflow for the retrieval, extraction, processing, and visualization of mutation annotations -- tasks which are well known to be tedious, time-consuming, complex, and error-prone. The ontology and visualization tool are available at (http://datam.i2r.a-star.edu.sg/mstrap).  相似文献   

2.
Due to advances in high-throughput biotechnologies biological information is being collected in databases at an amazing rate, requiring novel computational approaches that process collected data into new knowledge in a timely manner. In this study, we propose a computational framework for discovering modular structure, relationships and regularities in complex data. The framework utilizes a semantic-preserving vocabulary to convert records of biological annotations of an object, such as an organism, gene, chemical or sequence, into networks (Anets) of the associated annotations. An association between a pair of annotations in an Anet is determined by the similarity of their co-occurrence pattern with all other annotations in the data. This feature captures associations between annotations that do not necessarily co-occur with each other and facilitates discovery of the most significant relationships in the collected data through clustering and visualization of the Anet. To demonstrate this approach, we applied the framework to the analysis of metadata from the Genomes OnLine Database and produced a biological map of sequenced prokaryotic organisms with three major clusters of metadata that represent pathogens, environmental isolates and plant symbionts.  相似文献   

3.
MOTIVATION: The SWISS-PROT sequence database contains keywords of functional annotations for many proteins. In contrast, information about the sub-cellular localization is available for only a few proteins. Experts can often infer localization from keywords describing protein function. We developed LOCkey, a fully automated method for lexical analysis of SWISS-PROT keywords that assigns sub-cellular localization. With the rapid growth in sequence data, the biochemical characterisation of sequences has been falling behind. Our method may be a useful tool for supplementing functional information already automatically available. RESULTS: The method reached a level of more than 82% accuracy in a full cross-validation test. Due to a lack of functional annotations, we could infer localization for fewer than half of all proteins in SWISS-PROT. We applied LOCkey to annotate five entirely sequenced proteomes, namely Saccharomyces cerevisiae (yeast), Caenorhabditis elegans (worm), Drosophila melanogaster (fly), Arabidopsis thaliana (plant) and a subset of all human proteins. LOCkey found about 8000 new annotations of sub-cellular localization for these eukaryotes.  相似文献   

4.
5.
6.
The goal of the Gene Ontology (GO) project is to provide a uniform way to describe the functions of gene products from organisms across all kingdoms of life and thereby enable analysis of genomic data. Protein annotations are either based on experiments or predicted from protein sequences. Since most sequences have not been experimentally characterized, most available annotations need to be based on predictions. To make as accurate inferences as possible, the GO Consortium's Reference Genome Project is using an explicit evolutionary framework to infer annotations of proteins from a broad set of genomes from experimental annotations in a semi-automated manner. Most components in the pipeline, such as selection of sequences, building multiple sequence alignments and phylogenetic trees, retrieving experimental annotations and depositing inferred annotations, are fully automated. However, the most crucial step in our pipeline relies on software-assisted curation by an expert biologist. This curation tool, Phylogenetic Annotation and INference Tool (PAINT) helps curators to infer annotations among members of a protein family. PAINT allows curators to make precise assertions as to when functions were gained and lost during evolution and record the evidence (e.g. experimentally supported GO annotations and phylogenetic information including orthology) for those assertions. In this article, we describe how we use PAINT to infer protein function in a phylogenetic context with emphasis on its strengths, limitations and guidelines. We also discuss specific examples showing how PAINT annotations compare with those generated by other highly used homology-based methods.  相似文献   

7.
MOTIVATION: Despite increased availability of genome annotation data, a comprehensive resource for in-depth analysis of splice signal distributions and alternative splicing (AS) patterns in eukaryote genomes is still lacking. To meet this need, we have developed EuSplice--a unique splice-centric database which provides reliable splice signal and AS information for 23 eukaryotes. RESULTS: The EuSplice database contains 95,822 AS events and 2.1 million splice signals associated with over 270,000 protein-coding genes. The intuitive, user-friendly EuSplice web interface has powerful data mining and graphics capabilities for inter-genomic comparative analysis of splice signals, putative cryptic splice sites and AS events. Moreover, the seamless integration of splicing data to extensive gene-specific annotations, such as homolog annotations, functional information, mutations and sequence details makes EuSplice a powerful one-stop information resource for investigating the molecular mechanisms of complex splicing events, disease associations and the evolution of splicing in eukaryotes. AVAILABILITY: http://66.170.16.154/EuSplice. SUPPLEMENTARY INFORMATION: Supplementary tables and figures at Bioinfo online.  相似文献   

8.
Immunoinformatics is an emerging new field that benefits from computational analyses and tools that facilitate the understanding of the immune system. A large number of immunoinformatics resources such as immune-related databases and analysis software are available through the World Wide Web for the benefit of the research community. However, immunoinformatics developments have sometimes remained isolated from mainstream bioinformatics. Therefore, there is clearly a need for integration, which will empower the exchange of data and annotations within the scientific community in a quick and efficient fashion. Here, we have chosen the Distributed Annotation System (DAS), for integrating in house annotations on experimental and predicted HLA I-restriction elements of CD8 T-cell epitopes with sequence and structural information.  相似文献   

9.
Banerjee-Basu S  Baxevanis AD 《Genome biology》2002,3(8):interactions1004.1-interactions10044
Functional annotation is used to catalog information that would be of value in experimental design and analysis but annotations in public databases are often incorrect. Here, one such case is discussed.  相似文献   

10.
Since the proposal for pangenomic study, there have been a dozen software tools actively in use for pangenomic analysis. By the end of 2014, Panseq and the pan-genomes analysis pipeline(PGAP) ranked as the top two most popular packages according to cumulative citations of peerreviewed scientific publications. The functions of the software packages and tools, albeit variable among them, include categorizing orthologous genes, calculating pangenomic profiles, integrating gene annotations, and constructing phylogenies. As epigenomic elements are being gradually revealed in prokaryotes, it is expected that pangenomic databases and toolkits have to be extended to handle information of detailed functional annotations for genes and non-protein-coding sequences including non-coding RNAs, insertion elements, and conserved structural elements. To develop better bioinformatic tools, user feedback and integration of novel features are both of essence.  相似文献   

11.
CyanoBase provides an online resource for access to data on genomic information about the cyanobacterium Synechocystis sp. strain PCC6803. The database contains annotations for each protein-coding gene deduced from the entire nucleotide sequence of the genome, gene classification lists, and keyword and similarity search engines. Core portions of CyanoBase consist of annotations for each of the 3168 protein genes deduced from the entire nucleotide sequence of this genome. The contents of each gene were improved by updating with the results of similarity searches and by introducing references for analysis in bioinformatics. The database now contains repository facilities that store and provide experimental information, in addition to providing proposals for the function of each gene. This information should help to avoid unnecessary, overlapping experiments and should assist communication between scientists who wish to elucidate the function of putative genes on the cyanobacteria genome. The current URL of CyanoBase is http://www.kazusa.or.jp:8080/cyano/  相似文献   

12.

Background  

Genome databases contain diverse kinds of information, including gene annotations and nucleotide and amino acid sequences. It is not easy to integrate such information for genomic study. There are few tools for integrated analyses of genomic data, therefore, we developed software that enables users to handle, manipulate, and analyze genome data with a variety of sequence analysis programs.  相似文献   

13.
Gene-expression analysis and network discovery using Genevestigator   总被引:11,自引:0,他引:11  
The Genevestigator software suite belongs to a new generation of web-based tools that provide categorized quantitative information about elements (genes or annotations) contained in large microarray databases. The first version of Genevestigator, in use since 2004, has now been updated to enable faster, more powerful and more diverse types of queries for gene-function analysis and network discovery.  相似文献   

14.
A recent paper (Nehrt et al., PLoS Comput. Biol. 7:e1002073, 2011) has proposed a metric for the "functional similarity" between two genes that uses only the Gene Ontology (GO) annotations directly derived from published experimental results. Applying this metric, the authors concluded that paralogous genes within the mouse genome or the human genome are more functionally similar on average than orthologous genes between these genomes, an unexpected result with broad implications if true. We suggest, based on both theoretical and empirical considerations, that this proposed metric should not be interpreted as a functional similarity, and therefore cannot be used to support any conclusions about the "ortholog conjecture" (or, more properly, the "ortholog functional conservation hypothesis"). First, we reexamine the case studies presented by Nehrt et al. as examples of orthologs with divergent functions, and come to a very different conclusion: they actually exemplify how GO annotations for orthologous genes provide complementary information about conserved biological functions. We then show that there is a global ascertainment bias in the experiment-based GO annotations for human and mouse genes: particular types of experiments tend to be performed in different model organisms. We conclude that the reported statistical differences in annotations between pairs of orthologous genes do not reflect differences in biological function, but rather complementarity in experimental approaches. Our results underscore two general considerations for researchers proposing novel types of analysis based on the GO: 1) that GO annotations are often incomplete, potentially in a biased manner, and subject to an "open world assumption" (absence of an annotation does not imply absence of a function), and 2) that conclusions drawn from a novel, large-scale GO analysis should whenever possible be supported by careful, in-depth examination of examples, to help ensure the conclusions have a justifiable biological basis.  相似文献   

15.

Background

Annotations that describe the function of sequences are enormously important to researchers during laboratory investigations and when making computational inferences. However, there has been little investigation into the data quality of sequence function annotations. Here we have developed a new method of estimating the error rate of curated sequence annotations, and applied this to the Gene Ontology (GO) sequence database (GOSeqLite). This method involved artificially adding errors to sequence annotations at known rates, and used regression to model the impact on the precision of annotations based on BLAST matched sequences.

Results

We estimated the error rate of curated GO sequence annotations in the GOSeqLite database (March 2006) at between 28% and 30%. Annotations made without use of sequence similarity based methods (non-ISS) had an estimated error rate of between 13% and 18%. Annotations made with the use of sequence similarity methodology (ISS) had an estimated error rate of 49%.

Conclusion

While the overall error rate is reasonably low, it would be prudent to treat all ISS annotations with caution. Electronic annotators that use ISS annotations as the basis of predictions are likely to have higher false prediction rates, and for this reason designers of these systems should consider avoiding ISS annotations where possible. Electronic annotators that use ISS annotations to make predictions should be viewed sceptically. We recommend that curators thoroughly review ISS annotations before accepting them as valid. Overall, users of curated sequence annotations from the GO database should feel assured that they are using a comparatively high quality source of information.  相似文献   

16.
Characterising gene function for the ever-increasing number and diversity of species with annotated genomes relies almost entirely on computational prediction methods. These software are also numerous and diverse, each with different strengths and weaknesses as revealed through community benchmarking efforts. Meta-predictors that assess consensus and conflict from individual algorithms should deliver enhanced functional annotations. To exploit the benefits of meta-approaches, we developed CrowdGO, an open-source consensus-based Gene Ontology (GO) term meta-predictor that employs machine learning models with GO term semantic similarities and information contents. By re-evaluating each gene-term annotation, a consensus dataset is produced with high-scoring confident annotations and low-scoring rejected annotations. Applying CrowdGO to results from a deep learning-based, a sequence similarity-based, and two protein domain-based methods, delivers consensus annotations with improved precision and recall. Furthermore, using standard evaluation measures CrowdGO performance matches that of the community’s best performing individual methods. CrowdGO therefore offers a model-informed approach to leverage strengths of individual predictors and produce comprehensive and accurate gene functional annotations.  相似文献   

17.
Protein–protein interaction extraction through biological literature curation is widely employed for proteome analysis. There is a strong need for a tool that can assist researchers in extracting comprehensive PPI information through literature curation, which is critical in research on protein, for example, construction of protein interaction network, identification of protein signaling pathway, and discovery of meaningful protein interaction. However, most of current tools can only extract PPI relations. None of them are capable of extracting other important PPI information, such as interaction directions, effects, and functional annotations. To address these issues, this paper proposes PPICurator, a novel tool for extracting comprehensive PPI information with a variety of logic and syntax features based on a new support vector machine classifier. PPICurator provides a friendly web‐based user interface. It is a platform that automates the extraction of comprehensive PPI information through literature, including PPI relations, as well as their confidential scores, interaction directions, effects, and functional annotations. Thus, PPICurator is more comprehensive than state‐of‐the‐art tools. Moreover, it outperforms state‐of‐the‐art tools in the accuracy of PPI relation extraction measured by F‐score and recall on the widely used open datasets. PPICurator is available at https://ppicurator.hupo.org.cn .  相似文献   

18.
19.
Systematically annotating function of enzymes that belong to large protein families encoded in a single eukaryotic genome is a very challenging task. We carried out such an exercise to annotate function for serine-protease family of the trypsin fold in Drosophila melanogaster, with an emphasis on annotating serine-protease homologues (SPHs) that may have lost their catalytic function. Our approach involves data mining and data integration to provide function annotations for 190 Drosophila gene products containing serine-protease-like domains, of which 35 are SPHs. This was accomplished by analysis of structure-function relationships, gene-expression profiles, large-scale protein-protein interaction data, literature mining and bioinformatic tools. We introduce functional residue clustering (FRC), a method that performs hierarchical clustering of sequences using properties of functionally important residues and utilizes correlation co-efficient as a quantitative similarity measure to transfer in vivo substrate specificities to proteases. We show that the efficiency of transfer of substrate-specificity information using this method is generally high. FRC was also applied on Drosophila proteases to assign putative competitive inhibitor relationships (CIRs). Microarray gene-expression data were utilized to uncover a large-scale and dual involvement of proteases in development and in immune response. We found specific recruitment of SPHs and proteases with CLIP domains in immune response, suggesting evolution of a new function for SPHs. We also suggest existence of separate downstream protease cascades for immune response against bacterial/fungal infections and parasite/parasitoid infections. We verify quality of our annotations using information from RNAi screens and other evidence types. Utilization of such multi-fold approaches results in 10-fold increase of function annotation for Drosophila serine proteases and demonstrates value in increasing annotations in multiple genomes.  相似文献   

20.
SUMMARY: Modern experimental techniques, as for example DNA microarrays, as a result usually produce a long list of genes, which are potentially interesting in the analyzed process. In order to gain biological understanding from this type of data, it is necessary to analyze the functional annotations of all genes in this list. The Gene-Ontology (GO) database provides a useful tool to annotate and analyze the functions of a large number of genes. Here, we introduce a tool that utilizes this information to obtain an understanding of which annotations are typical for the analyzed list of genes. This program automatically obtains the GO annotations from a database and generates statistics of which annotations are overrepresented in the analyzed list of genes. This results in a list of GO terms sorted by their specificity. AVAILABILITY: Our program GOstat is accessible via the Internet at http://gostat.wehi.edu.au  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号