首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

A peptide able to transduce cardiac tissue specifically, delivering cargoes to the heart, would be of significant therapeutic potential for delivery of small molecules, proteins and nucleic acids. In order to identify peptide(s) able to transduce heart tissue, biopanning was performed in cell culture and in vivo with a M13 phage peptide display library.

Methods and Results

A cardiomyoblast cell line, H9C2, was incubated with a M13 phage 12 amino acid peptide display library. Internalized phage was recovered, amplified and then subjected to a total of three rounds of in vivo biopanning where infectious phage was isolated from cardiac tissue following intravenous injection. After the third round, 60% of sequenced plaques carried the peptide sequence APWHLSSQYSRT, termed cardiac targeting peptide (CTP). We demonstrate that CTP was able to transduce cardiomyocytes functionally in culture in a concentration and cell-type dependent manner. Mice injected with CTP showed significant transduction of heart tissue with minimal uptake by lung and kidney capillaries, and no uptake in liver, skeletal muscle, spleen or brain. The level of heart transduction by CTP also was greater than with a cationic transduction domain.

Conclusions

Biopanning using a peptide phage display library identified a peptide able to transduce heart tissue in vivo efficiently and specifically. CTP could be used to deliver therapeutic peptides, proteins and nucleic acid specifically to the heart.  相似文献   

2.
We investigated whether the T7 system of phage display could produce peptide libraries of greater diversity than the M13 system of phage display due to the differing processes of lytic and filamentous phage morphogenesis. Using a bioinformatics-assisted computational approach, collections of random peptide sequences obtained from a T7 12-mer library (X(12)) and a T7 7-mer disulfide-constrained library (CX(7)C) were analyzed and compared with peptide populations obtained from New England BioLabs' M13 Ph.D.-12 and Ph.D.-C7C libraries. Based on this analysis, peptide libraries constructed with the T7 system have fewer amino acid biases, increased peptide diversity, and more normal distributions of peptide net charge and hydropathy than the M13 libraries. The greater diversity of T7-displayed libraries provides a potential resource of novel binding peptides for new as well as previously studied molecular targets. To demonstrate their utility, several of the T7-displayed peptide libraries were screened for streptavidin- and neutravidin-binding phage. Novel binding motifs were identified for each protein.  相似文献   

3.

Background  

Phage Display technology is a well established technique for high throughput screening of affinity ligands. Here we describe a new compact chromato-panning procedure for selection of suitable binders from a phage peptide display library.  相似文献   

4.
噬菌体短肽库是将随机合成的寡核苷酸序列通过与单链噬菌体外壳蛋白基因融合,从而将随机短肽表达于噬菌体的表面。将体外随机化学合成的寡聚核苷酸序列重组到单价噬菌体表达载体,构建了噬菌体短肽库,证明其库容为2×10 ̄7集落形成单位(cfu),重组率为93%。同时将11个随机克隆进行序列测定,证实其寡聚核苷酸序列和氨基酸的分布几乎是完全随机的,其多样性可以满足特异性短肽筛选的要求。  相似文献   

5.
Phage display relies on an iterative cycle of selection and amplification of random combinatorial libraries to enrich the initial population of those peptides that satisfy a priori chosen criteria. The effectiveness of any phage display protocol depends directly on library amino acid sequence diversity and the strength of the selection procedure. In this study we monitored the dynamics of the selective pressure exerted by the host organism on a random peptide library in the absence of any additional selection pressure. The results indicate that sequence censorship exerted by Escherichia coli dramatically reduces library diversity and can significantly impair phage display effectiveness.  相似文献   

6.

Background

At present, screening of the population at risk for gambiense human African trypanosomiasis (HAT) is based on detection of antibodies against native variant surface glycoproteins (VSGs) of Trypanosoma brucei (T.b.) gambiense. Drawbacks of these native VSGs include culture of infective T.b. gambiense trypanosomes in laboratory rodents, necessary for production, and the exposure of non-specific epitopes that may cause cross-reactions. We therefore aimed at identifying peptides that mimic epitopes, hence called “mimotopes,” specific to T.b. gambiense VSGs and that may replace the native proteins in antibody detection tests.

Methodology/Principal Findings

A Ph.D.-12 peptide phage display library was screened with polyclonal antibodies from patient sera, previously affinity purified on VSG LiTat 1.3 or LiTat 1.5. The peptide sequences were derived from the DNA sequence of the selected phages and synthesised as biotinylated peptides. Respectively, eighteen and twenty different mimotopes were identified for VSG LiTat 1.3 and LiTat 1.5, of which six and five were retained for assessment of their diagnostic performance. Based on alignment of the peptide sequences on the original protein sequence of VSG LiTat 1.3 and 1.5, three additional peptides were synthesised. We evaluated the diagnostic performance of the synthetic peptides in indirect ELISA with 102 sera from HAT patients and 102 endemic negative controls. All mimotopes had areas under the curve (AUCs) of ≥0.85, indicating their diagnostic potential. One peptide corresponding to the VSG LiTat 1.3 protein sequence also had an AUC of ≥0.85, while the peptide based on the sequence of VSG LiTat 1.5 had an AUC of only 0.79.

Conclusions/Significance

We delivered the proof of principle that mimotopes for T.b. gambiense VSGs, with diagnostic potential, can be selected by phage display using polyclonal human antibodies.  相似文献   

7.
Phage display relies on an iterative cycle of selection and amplification of random combinatorial libraries to enrich the initial population of those peptides that satisfy a priori chosen criteria. The effectiveness of any phage display protocol depends directly on library amino acid sequence diversity and the strength of the selection procedure. In this study we monitored the dynamics of the selective pressure exerted by the host organism on a random peptide library in the absence of any additional selection pressure. The results indicate that sequence censorship exerted by Escherichia coli dramatically reduces library diversity and can significantly impair phage display effectiveness.  相似文献   

8.

Background

LPS-binding protein (LBP) and its ligand CD14 are located upstream of the signaling pathway for LPS-induced inflammation. Blocking LBP and CD14 binding might prevent LPS-induced inflammation. In previous studies, we obtained a peptide analog (MP12) for the LBP/CD14 binding site and showed that this peptide analog had anti-endotoxin activity. In this study, we used in vitro directed evolution for this peptide analog to improve its in vivo and in vitro anti-endotoxin activity.

Methods

We used error-prone PCR (ep-PCR) and induced mutations in the C-terminus of LBP and attached the PCR products to T7 phages to establish a mutant phage display library. The positive clones that competed with LBP for CD14 binding was obtained by screening. We used both in vivo and in vitro experiments to compare the anti-endotoxin activities of a polypeptide designated P1 contained in a positive clone and MP12.

Results

11 positive clones were obtained from among target phages. Sequencing showed that 9 positive clones had a threonine (T) to methionine (M) mutation in amino acid 287 of LBP. Compared to polypeptide MP12, polypeptide P1 significantly inhibited LPS-induced TNF-α expression and NF-κB activity in U937 cells (P<0.05). Compared to MP12, P1 significantly improved arterial oxygen pressure, an oxygenation index, and lung pathology scores in LPS-induced ARDS rats (P<0.05).

Conclusion

By in vitro directed evolution of peptide analogs for the LBP/CD14 binding site, we established a new polypeptide (P1) with a threonine (T)-to-methionine (M) mutation in amino acid 287 of LBP. This polypeptide had high anti-endotoxin activity in vitro and in vivo, which suggested that amino acid 287 in the C-terminus of LBP may play an important role in LBP binding with CD14.  相似文献   

9.

Background  

Recent studies point to a great diversity of non-ribosomal peptide synthesis systems with major roles in amino acid and co-factor biosynthesis, secondary metabolism, and post-translational modifications of proteins by peptide tags. The least studied of these systems are those utilizing tRNAs or aminoacyl-tRNA synthetases (AAtRS) in non-ribosomal peptide ligation.  相似文献   

10.
A DNA-binding peptide was selected from a random peptide phage display library. For competitive elution using the DNA methyltransferase M · TaqI in the selection step, a biotin-labeled duplex oligodeoxyribonucleotide containing the 5′-TCGA-3′ recognition sequence of M · TaqI was employed. Nine of ten phages selected were found to have the same deduced amino acid sequence SVSVGMKPSPRP. The selected phage binds to DNA, as demonstrated in an ELISA.  相似文献   

11.
Phage libraries displaying linear or disulfide-constrained peptides often yield weak binders, upon screening against a target, and must be optimized to improve affinity. The disadvantages of libraries based on larger complex proteins, such as single chain antibodies, have stimulated interest in the development of smaller nonimmunoglobulin protein scaffolds. A promising candidate is the Trp cage motif, a 20-residue C-terminal sequence of exendin-4. Amino acid substitution within the Trp cage resulted in a 20-mer peptide recognized as an ultrafast cooperative folding miniprotein, with ideal characteristics for the discovery of small structured nonimmunoglobulin motifs having a stable tertiary structure. Although we were unable to display the Trp cage on M13 phage, successful display was achieved using the lytic T7 phage. Interestingly, mutations were observed at a frequency dependent on display valency. A Trp cage library designed with randomized amino acids at seven solvent-exposed positions was developed from 1.6 x 10(9) primary clones in T7Select10-3b. DNA sequencing of 109 library clones revealed 38% mutants and 16% truncations by TAG codons at randomized positions. Amino acid frequencies were largely within expected bounds and DIVAA analysis revealed that the library had an average diversity of 0.67. Utility of the library was demonstrated by identification of HPQ containing Trp cage miniproteins, which bound streptavidin, and AAADPYAQWLQSMGPHSGRPPPR, which bound to human bronchial epithelial cells. A high complexity library based on the Trp cage miniprotein has demonstrated potential for identifying novel cell and protein binding peptides that could be used for the delivery of therapeutic molecules or as target-specific therapeutic agents.  相似文献   

12.

Background

Combinatorial phage display has been used in the last 20 years in the identification of protein-ligands and protein-protein interactions, uncovering relevant molecular recognition events. Rate-limiting steps of combinatorial phage display library selection are (i) the counting of transducing units and (ii) the sequencing of the encoded displayed ligands. Here, we adapted emerging genomic technologies to minimize such challenges.

Methodology/Principal Findings

We gained efficiency by applying in tandem real-time PCR for rapid quantification to enable bacteria-free phage display library screening, and added phage DNA next-generation sequencing for large-scale ligand analysis, reporting a fully integrated set of high-throughput quantitative and analytical tools. The approach is far less labor-intensive and allows rigorous quantification; for medical applications, including selections in patients, it also represents an advance for quantitative distribution analysis and ligand identification of hundreds of thousands of targeted particles from patient-derived biopsy or autopsy in a longer timeframe post library administration. Additional advantages over current methods include increased sensitivity, less variability, enhanced linearity, scalability, and accuracy at much lower cost. Sequences obtained by qPhage plus pyrosequencing were similar to a dataset produced from conventional Sanger-sequenced transducing-units (TU), with no biases due to GC content, codon usage, and amino acid or peptide frequency. These tools allow phage display selection and ligand analysis at >1,000-fold faster rate, and reduce costs ∼250-fold for generating 106 ligand sequences.

Conclusions/Significance

Our analyses demonstrates that whereas this approach correlates with the traditional colony-counting, it is also capable of a much larger sampling, allowing a faster, less expensive, more accurate and consistent analysis of phage enrichment. Overall, qPhage plus pyrosequencing is superior to TU-counting plus Sanger sequencing and is proposed as the method of choice over a broad range of phage display applications in vitro, in cells, and in vivo.  相似文献   

13.

Background  

In expressed sequence tag (EST) sequencing, we are often interested in how many genes we can capture in an EST sample of a targeted size. This information provides insights to sequencing efficiency in experimental design, as well as clues to the diversity of expressed genes in the tissue from which the library was constructed.  相似文献   

14.
15.

Background  

Recent advances in sequencing strategies make possible unprecedented depth and scale of sampling for molecular detection of microbial diversity. Two major paradigm-shifting discoveries include the detection of bacterial diversity that is one to two orders of magnitude greater than previous estimates, and the discovery of an exciting 'rare biosphere' of molecular signatures ('species') of poorly understood ecological significance. We applied a high-throughput parallel tag sequencing (454 sequencing) protocol adopted for eukaryotes to investigate protistan community complexity in two contrasting anoxic marine ecosystems (Framvaren Fjord, Norway; Cariaco deep-sea basin, Venezuela). Both sampling sites have previously been scrutinized for protistan diversity by traditional clone library construction and Sanger sequencing. By comparing these clone library data with 454 amplicon library data, we assess the efficiency of high-throughput tag sequencing strategies. We here present a novel, highly conservative bioinformatic analysis pipeline for the processing of large tag sequence data sets.  相似文献   

16.
Protein kinase substrate phage (PKS phage) was constructed by fusing the substrate recognition consensus sequence of cAMP-dependent protein kinase (cAPK) with bacteriophage minor coat protein g3p and by dis-playing it on the surface of filamentous bacteriophage fd. Phosphorylation in vitro by cAPK showed a unique labelled band of approximately 60 ku, which was consistent with the molecular weight of the PKS-g3p fusion protein. Some weakly phosphorylated bands for both PKS phage and wild-type phage were also observed. Phage display random 15-mer peptide library phosphorylated by cAPK was selected with ferric (Fe3 ) chelalion affinity resin. After 4 rounds of screening, phage clones were picked out to determine the displayed peptide sequences by DNA sequencing. The results showed that 5 of 14 sequenced phages displayed the cAPK recognition sequence motif (R)RXS/T. Their in vitro phosphorylation analyses revealed the specific labelled bands corresponding to the positive PKS phages with and without the typ  相似文献   

17.
To develop a multi-antigen-specific immunoglobulin new antigen receptor (IgNAR) variable (V) region phage display library, CDR3 in the V region of IgNAR from banded houndshark (Triakis scyllium) was artificially randomized, and clones specific for hen egg white lysozyme (HEL) were obtained by the biopanning method. The nucleotide sequence of CDR3 in the V region was randomly rearranged by PCR. Randomized CDR3-containing segments of the V region were ligated into T7 phage vector to construct a phage display library and resulted in a phage titer of 3.7?×?107 PFU/ml. Forty clones that contained randomized CDR3 inserts were sequenced and shown to have different nucleotide sequences. The HEL-specific clones were screened by biopanning using HEL-coated ELISA plates. After six rounds of screening, nine clones were identified as HEL-specific, eight of which showed a strong affinity to HEL in ELISA compared to a negative control (i.e., empty phage clone). The deduced amino acid sequences of CDR3 from the HEL-specific phage clones fell into four types (I?IV): type I contains a single cysteine residue and type II?IV contain two cysteine residues. These results indicated that the artificially randomized IgNAR library is useful for the rapid isolation of antigen-specific IgNAR V region without immunization of target antigen and showed that it is possible to isolate an antigen-specific IgNAR V region from this library.  相似文献   

18.
Monoclonal antibody (mAb) 5D10 is directed against the human breast cancer cell line MCF-7. Biochemical characterization of the antibody epitope was attempted and revealed a complex, most likely carbohydrate-linked nature, which prevented isolation and further studies of the interaction. A major goal of this work was to generate structural mimics of the 5D10 epitope to serve as putative substitutes in such studies. A peptide library displayed on filamentous phage was used to select for mimotope peptide sequences. All positive phage clones selected from the library displayed the amino acid sequence H(2)N-QMNPMYYR-CO(2)H. This peptide sequence, as well as a branched form of the peptide, was found to bind mAb 5D10. Moreover, both peptide sequences were able to inhibit the binding of 5D10 to the MCF-7 cells in a concentration-dependent manner, with an EC(50) value in the range of 65 microM. According to these results, random phage peptide libraries can serve to identify mimotopic peptides for unknown complex cell surface epitopes.  相似文献   

19.

Objectives

To screen and identify the probe markers specifically binding to human cervical cancer, a phage-displayed 12-mer peptide library was used for biopanning of SiHa cells.

Results

After four rounds of whole-cell subtraction biopanning, the phage recovery was 21-fold higher (from 3.9 × 10?5 to 8.3 × 10?4) than that of the first round, and specific phage clones were significantly enriched. 57 randomly selected phage clones were tested by ELISA, and 36 phage clones were identified as positive clones. After sequencing of positive clones, six different peptide sequences were obtained and CSP3 showed best affinity and specificity to SiHa cells via immunofluorescence assay.

Conclusions

Peptide, CSP3, bound to SiHa cells specifically and sensitively. It may be a potential candidate for molecular imaging detection and targeting therapy of cervical cancer.
  相似文献   

20.

Background

Bacterial viruses (phages) play a critical role in shaping microbial populations as they influence both host mortality and horizontal gene transfer. As such, they have a significant impact on local and global ecosystem function and human health. Despite their importance, little is known about the genomic diversity harbored in phages, as methods to capture complete phage genomes have been hampered by the lack of knowledge about the target genomes, and difficulties in generating sufficient quantities of genomic DNA for sequencing. Of the approximately 550 phage genomes currently available in the public domain, fewer than 5% are marine phage.

Methodology/Principal Findings

To advance the study of phage biology through comparative genomic approaches we used marine cyanophage as a model system. We compared DNA preparation methodologies (DNA extraction directly from either phage lysates or CsCl purified phage particles), and sequencing strategies that utilize either Sanger sequencing of a linker amplification shotgun library (LASL) or of a whole genome shotgun library (WGSL), or 454 pyrosequencing methods. We demonstrate that genomic DNA sample preparation directly from a phage lysate, combined with 454 pyrosequencing, is best suited for phage genome sequencing at scale, as this method is capable of capturing complete continuous genomes with high accuracy. In addition, we describe an automated annotation informatics pipeline that delivers high-quality annotation and yields few false positives and negatives in ORF calling.

Conclusions/Significance

These DNA preparation, sequencing and annotation strategies enable a high-throughput approach to the burgeoning field of phage genomics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号