首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

The nuclear receptors peroxisome proliferator-activated receptor γ (PPARγ) and peroxisome proliferator-activated receptor δ (PPARδ) play central roles in regulating metabolism in adipose tissue, as well as being targets for the treatment of insulin resistance. While the role of PPARγ in regulating insulin sensitivity has been well defined, research into PPARδ has been limited until recently due to a scarcity of selective PPARδ agonists.  相似文献   

2.
Peroxisome proliferator-activated receptors (PPARs) play an important role in different compartments of the female reproductive system in rodents and humans. However, expressional profiles and physiological functions of PPARs in the endometrium prior to the placentation are not well understood. In this study, we determined expressional profiles of the PPARs during early pregnancy. Immunocytochemistry revealed that both PPARα and PPARβ/δ were strongly detected in the endometrial stroma on days 4.5–6.5 of pregnancy, which is just a starting time of implantation. Delayed implantation animal model showed that the expressions of PPARα and PPARβ/δ occurred after the initiation of implantation in the endometrial stroma. Moreover, an in vitro decidualization model further revealed that the expression of PPARα increased in the cultured rat endometrial stromal cells at 24 h after the decidualization treatment, but the expression of PPARβ/δ was delayed and increased at 48 h after the treatment. PPARγ was expressed in the endometrial stroma and its expression decreased significantly at 2.5 days post-coitum and maintained a low level of expression during the period of implantation. These results indicate that PPARα is expressed and induced by the initiation of implantation, prior to the expression of PPARβ/δ in decidualized endometrium. Increasing expression of PPARγ during fertilization and its decline during the period of implantation further suggest that PPARs may play important roles during early pregnancy.  相似文献   

3.

Background  

Adipose tissues serve not only as a store for energy in the form of lipid, but also as endocrine tissues that regulates metabolic activities of the organism by secreting various kinds of hormones. Peroxisome proliferator activated receptor γ (PPARγ) is a key regulator of adipocyte differentiation that induces the expression of adipocyte-specific genes in preadipocytes and mediates their differentiation into adipocytes. Furthermore, PPARγ has an important role to maintain the physiological function of mature adipocyte by controlling expressions of various genes properly. Therefore, any reduction in amount and activity of PPARγ is linked to the pathogenesis of metabolic syndrome.  相似文献   

4.

Introduction  

We recently described the ability of retinoid X receptor (RXR) ligand LG100268 (LG268) to inhibit interleukin-1-beta (IL-1-β)-driven matrix metalloproteinase-1 (MMP-1) and MMP-13 gene expression in SW-1353 chondrosarcoma cells. Other investigators have demonstrated similar effects in chondrocytes treated with rosiglitazone, a ligand for peroxisome proliferator-activated receptor-gamma (PPARγ), for which RXR is an obligate dimerization partner. The goals of this study were to evaluate the inhibition of IL-1-β-induced expression of MMP-1 and MMP-13 by combinatorial treatment with RXR and PPARγ ligands and to investigate the molecular mechanisms of this inhibition.  相似文献   

5.

Background  

Conjugated linoleic acids (CLAs) are receiving increasing attention because of their beneficial effects on human health, with milk and meat products derived from ruminants as important sources of CLA in the human diet. SCD gene is responsible for some of the variation in CLA concentration in adipose tissues, and PPARγ, PPARα and SREBP1 genes are regulator of SCD gene. The aim of this work was to evaluate the effect of the feeding system on fatty acid composition, CLA content and relative gene expression of Δ9-desaturase (SCD), Peroxisome Proliferator-Activated Receptor Gamma (PPARγ), Peroxisome Proliferator-Activated Receptor Alpha, (PPARα) and Sterol Regulatory Element Binding Protein (SREBP1) in Rasa Aragonesa light lambs in semitendinous muscle. Forty-four single-born male lambs were used to evaluate the effect of the feeding system, varying on an intensity gradient according to the use of concentrates: 1. grazing alfalfa, 2. grazing alfalfa with a supplement for lambs, 3. indoor lambs with grazing ewes and 4. drylot.  相似文献   

6.
7.
8.

Background  

The γδ T cells serve as early immune defense against certain encountered microbes. Only a few γδ T cell-recognized ligands from microbial antigens have been identified so far and the mechanisms by which γδ T cells recognize these ligands remain unknown. Here we explored the mechanism of interaction of human γδ T cells in peripheral blood with Lipid A (LA).  相似文献   

9.
The human COX-2 promoter contains a direct repeat 1 (DR1) which was shown to confer responsiveness to PPARs. We found that in AN3CA and F9 cells, this hCOX-2 DR1 mediates responsiveness to all-trans-retinoic acid (tRA) or 9-cis-retinoic acid (9cRA), but this effect was suppressed by PPARδ. Truncated PPARδ lacking the activation domain AF2 cannot suppress RA-induced activation of the hCOX-2 gene via DR1, suggesting that cofactor recruitment by AF2 is required for the suppression by PPARδ. Gel shift assay showed that PPAR/RXR, RARβ/RXR, and RXR/RXR, bind to hCOX-2 DR1, revealing the promiscuity of this DR1. Particularly, RXR homodimer was able to bind to this DR1 only in the presence of 9cRA. Our results established that tRA and 9cRA are potent inducers of hCOX-2 and that the hCOX-2 DR1 could either serve as RARE or RXRE depending on cellular contexts.  相似文献   

10.

Background  

In a previous study we demonstrated the existence of numerical and functional alterations of γδ T cells in healthy elderly. Recently, we analysed the involvement of γδ T lymphocytes in malignant melanoma, describing a lower frequency of circulating γδ T cells, an altered pattern of cytokine production, and an impaired in vitro expansion of these cells in primary cutaneous melanoma patients.  相似文献   

11.
12.

Background  

DNA polymerase δ is essential for eukaryotic DNA replication and also plays a role in DNA repair. The processivity of this polymerase complex is dependent upon its interaction with the sliding clamp PCNA and the polymerase-PCNA interaction is largely mediated through the p66 polymerase subunit. We have analysed the interactions of the human p66 DNA polymerase δ subunit with PCNA and with components of the DNA polymerase δ complex in vivo.  相似文献   

13.

Background  

DNA polymerases α and δ play essential roles in the replication of chromosomal DNA in eukaryotic cells. DNA polymerase α (Pol α)-primase is required to prime synthesis of the leading strand and each Okazaki fragment on the lagging strand, whereas DNA polymerase δ (Pol δ) is required for the elongation stages of replication, a function it appears capable of performing on both leading and lagging strands, at least in the absence of DNA polymerase ε (Pol ε).  相似文献   

14.
15.

Introduction  

Interleukin (IL)-23 is essential for the development of various experimental autoimmune models. However, the role of IL-23 in non-autoimmune experimental arthritis remains unclear. Here, we examined the role of IL-23 in the non-autoimmune antigen-induced arthritis (AIA) model. In addition, the regulatory potential of IL-23 in IL-17A and retinoic acid-related orphan receptor gamma t (RORγt) expression in CD4+ and TCRγδ+ T cells was evaluated systemically as well as at the site of inflammation.  相似文献   

16.
Epidemiological studies have shown that severe inflammatory responses occur in patients with hyperglycemia. The molecular nature of these changes is currently under intense investigations. A central role of nuclear receptors PPAR has been shown in the regulation of metabolic changes associated with hyperglycemia, a selective agonist of nuclear receptor PPARγ rosiglitazone is used as a hypoglycemic drug. Rosiglitazone is known to have anti-inflammatory effects, but its properties as an anti-inflammatory drug in hyperglycemic conditions have not been studied. This was an aim of our work. We used a human cell culture model of hyperglycemia: HeLa cells incubated in the conditions of 25 mM glucose for 3 days. Control cells were incubated with 5 mM glucose. The cells were stimulated with lipopolysaccharide (LPS) that is known to trigger innate immune response through activation of Toll-like receptor 4 and influence mRNA expression levels of three of PPAR (α, β/δ, γ) isotypes as well as cyclooxygenase (COX-1 and COX-2). We have shown that under hyperglycemic conditions expression levels of PPARα and PPARβ/δ decreased almost twofold, expression level of COX-2 also decreased, while expression levels of COX-1 and PPARγ remained unchanged compared to those under normal glucose concentration. LPS administration in control cells leads to a 1.5–2.5-fold stimulation of expression of COX-2 and PPAR isotypes. In contrast, under hyperglycemia, LPS exhibited no effect on expression of COX-2 and the PPAR isotypes, which indicates potential mechanisms of hyperglycemia-related alterations in innate immunity. Rosiglitazone, an agonist of PPARγ, decreased expression level of PPARβ/δ and abolished the effect of LPS under hyperglycemia. Rosiglitazone also reduced expression level of COX-1 and COX-2, which indicates on the agonist possible role as an anti-inflammatory agent under high glucose concentrations. These data broaden applicability of rosiglitazone as an anti-inflammatory agent in hyperglycemic conditions.  相似文献   

17.
18.

Background  

DNA polymerase δ plays an essential role in chromosomal DNA replication in eukaryotic cells, being responsible for synthesising the bulk of the lagging strand. In fission yeast, Pol δ is a heterotetrameric enzyme comprising four evolutionarily well-conserved proteins: the catalytic subunit Pol3 and three smaller subunits Cdc1, Cdc27 and Cdm1. Pol3 binds directly to the B-subunit, Cdc1, which in turn binds the C-subunit, Cdc27. Human Pol δ comprises the same four subunits, and the crystal structure was recently reported of a complex of human p50 and the N-terminal domain of p66, the human orthologues of Cdc1 and Cdc27, respectively.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号