首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Idiopathic inflammatory myopathies (IIMs) comprise a group of autoimmune diseases that are characterized by symmetrical skeletal muscle weakness and muscle inflammation with no known cause. Like other autoimmune diseases, IIMs are treated with either glucocorticoids or immunosuppressive drugs. However, many patients with an IIM are frequently resistant to immunosuppressive treatments, and there is compelling evidence to indicate that not only adaptive immune but also several non-immune mechanisms play a role in the pathogenesis of these disorders. Here, we focus on some of the evidence related to pathologic mechanisms, such as the innate immune response, endoplasmic reticulum stress, non-immune consequences of MHC class I overexpression, metabolic disturbances, and hypoxia. These mechanisms may explain how IIM-related pathologic processes can continue even in the face of immunosuppressive therapies. These data indicate that therapeutic strategies in IIMs should be directed at both immune and non-immune mechanisms of muscle damage.  相似文献   

2.
Idiopathic inflammatory myopathies (IIMs) comprise a group of autoimmune diseases that are characterized by symmetrical skeletal muscle weakness and muscle inflammation with no known cause. Like other autoimmune diseases, IIMs are treated with either glucocorticoids or immunosuppressive drugs. However, many patients with an IIM are frequently resistant to immunosuppressive treatments, and there is compelling evidence to indicate that not only adaptive immune but also several non-immune mechanisms play a role in the pathogenesis of these disorders. Here, we focus on some of the evidence related to pathologic mechanisms, such as the innate immune response, endoplasmic reticulum stress, non-immune consequences of MHC class I overexpression, metabolic disturbances, and hypoxia. These mechanisms may explain how IIM-related pathologic processes can continue even in the face of immunosuppressive therapies. These data indicate that therapeutic strategies in IIMs should be directed at both immune and non-immune mechanisms of muscle damage.  相似文献   

3.
Mosquito-borne alphaviruses are a significant cause of both encephalitic and arthritic disease in humans worldwide. In contrast to the encephalitic alphaviruses, the pathogenesis of alphavirus-induced arthritic disease is not well understood. Utilizing a mouse model of Ross River virus (RRV) disease, we found that the primary targets of RRV infection are bone, joint, and skeletal muscle tissues of the hind limbs in both outbred CD-1 mice and adult C57BL/6J mice. Moreover, histological analyses demonstrated that RRV infection resulted in severe inflammation of these tissues. Characterization of the inflammatory infiltrate within the skeletal muscle tissue identified inflammatory macrophages, NK cells, and CD4+ and CD8+ T lymphocytes. To determine the contribution of the adaptive immune system, the outcome of RRV-induced disease was examined in C57BL/6J RAG-1(-/-) mice, which lack functional T and B lymphocytes. RAG-1(-/-) and wild-type mice developed similar disease signs, infiltration of inflammatory macrophages and NK cells, and muscle pathology, suggesting that the adaptive immune response does not play a critical role in the development of disease. These results establish the mouse model of RRV disease as a useful system for the identification of viral and host factors that contribute to alphavirus-induced arthritis and myositis.  相似文献   

4.
Muscle injury induces a classical inflammatory response in which cells of the innate immune system rapidly invade the tissue. Macrophages are prominently involved in this response and required for proper healing, as they are known to be important for clearing cellular debris and supporting satellite cell differentiation. Here, we sought to assess the role of the adaptive immune system in muscle regeneration after acute damage. We show that T lymphocytes are transiently recruited into the muscle after damage and appear to exert a pro-myogenic effect on muscle repair. We observed a decrease in the cross-sectional area of regenerating myofibers after injury in Rag2-/- γ-chain-/- mice, as compared to WT controls, suggesting that T cell recruitment promotes muscle regeneration. Skeletal muscle infiltrating T lymphocytes were enriched in CD4+CD25+FOXP3+ cells. Direct exposure of muscle satellite cells to in vitro induced Treg cells effectively enhanced their expansion, and concurrently inhibited their myogenic differentiation. In vivo, the recruitment of Tregs to acutely injured muscle was limited to the time period of satellite expansion, with possibly important implications for situations in which inflammatory conditions persist, such as muscular dystrophies and inflammatory myopathies. We conclude that the adaptive immune system, in particular T regulatory cells, is critically involved in effective skeletal muscle regeneration. Thus, in addition to their well-established role as regulators of the immune/inflammatory response, T regulatory cells also regulate the activity of skeletal muscle precursor cells, and are instrumental for the proper regeneration of this tissue.  相似文献   

5.
Trypanosoma cruzi induces inflammatory reactions in several tissues. The production of prostaglandin F2alpha, 6-keto-prostaglandin F1alpha and thromboxane B2, known to regulate the immune response and to participate in inflammatory reactions, was studied in mice experimentally infected with T. cruzi. The generation of nitric oxide (NO), which could be regulated by cyclooxygenase metabolites, was also evaluated. In the acute infection the extension of inflammatory infiltrates in skeletal muscle as well as the circulating levels of cyclooxygenase metabolites and NO were higher in resistant C3H mice than in susceptible BALB/c mice. In addition, the spontaneous release of NO by spleen cells increased earlier in the C3H mouse strain. In the chronic infections, the tissue inflammatory reaction was still prominent in both groups of mice, but a moderate increase of thromboxane B2 concentration and in NO released by spleen cells was observed only in C3H mice. This comparative study shows that these mediators could be mainly related to protective mechanisms in the acute phase, but seem not to be involved in its maintenance in the chronic T. cruzi infections.  相似文献   

6.
Polymyositis and dermatomyositis are diseases characterized by muscle weakness and muscle inflammatory infiltrates. Their pathogenesis remains unclear. A central role for endomysial autoaggressive CD8(+) T cells is suspected in polymyositis and for perivascular B cells in dermatomyositis. We compared the T cell repertoire of 10 polymyositis and 10 dermatomyositis patients by immunoscope, a method providing a global assessment of the T cell repertoire and a sensitive detection of clonal T cell expansions. Samples were analyzed qualitatively and quantitatively in the blood (unsorted cells and CD4(+) and CD8(+) cells) and in muscle infiltrates. Dramatic perturbations of the T cell repertoire were observed in the blood of polymyositis but not dermatomyositis patients (p < 0.0005), the latter being undistinguishable from controls. These perturbations were due to oligoclonal expansions of CD8(+) T cells and most blood clonal expansions were also found in muscle. These results indicate that the pathogenesis of polymyositis and dermatomyositis is different and reinforce the view that polymyositis but not dermatomyositis is an autoimmune CD8(+) T cell-mediated disease. Moreover, this method may be helpful for the differential diagnosis of polymyositis and dermatomyositis and for noninvasive follow-up of polymyositis patients.  相似文献   

7.
Inflammatory myopathies (IMs) are systemic diseases characterized by a T helper (Th) 1 type inflammatory response and cell infiltrates within skeletal muscles. The mainstay of treatment is drugs aimed at suppressing the immune system - corticosteroids and immunosuppressants. About 25% of patients are non-responders. Skeletal muscle cells seem actively involved in the immune-inflammatory response and not only a target; understanding the molecular bases of IMs might help drug development strategies. Within muscles the interaction between the chemokine interferon (IFN)γ inducible 10 kDa protein, CXCL10 or IP-10, and its specific receptor CXCR3, present on Th1 type infiltrating cells, likely plays a pivotal role, potentially offering the opportunity for therapeutic intervention. We aimed to clarify the involvement of human skeletal muscle cells in inflammatory processes in terms of CXCL10 secretion, to elucidate the engaged molecular mechanism(s) and, finally, to evaluate muscular cell responses, if any, to some immunosuppressants routinely used in IM treatment, such as methylprednisolone, methotrexate, cyclosporin A and Infliximab. We first isolated and characterized human fetal skeletal muscle cells (Hfsmc), which expressed the specific lineage markers and showed the competence to react in the context of an in vitro alloresponse. CXCL10 protein secretion by Hfsmc was similarly induced by the inflammatory cytokines interferon (IFN)γ and tumor necrosis factor (TNF)α, above undetectable control levels, through the activation of Stat1 and NF-kB pathways, respectively; CXCL10 secretion was significantly magnified by cytokine combination, and this synergy was associated to a significant up-regulation of TNFαRII; cytokine-induced CXCL10 secretion was considerably affected only by Infliximab. Our data suggested that human skeletal muscle cells might actively self-promote muscular inflammation by eliciting CXCL10 secretion, which is known to amplify Th1 cell tissue infiltration in vivo. In conclusion, we sustain that pharmacological targeting of CXCL10 within muscular cells might contribute to keep in control pro-Th1 polarization of the immune/inflammatory response.  相似文献   

8.
The pathogenesis of systemic vasculitis is complex and is likely to involve many mechanisms. There is a growing body of evidence that T cells may contribute to the pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides. Predominantly, T cells and monocytes are found in inflammatory infiltrates in patients with Wegener's granulomatosis (WG). The production of ANCA appears to be T-cell-dependent. T lymphocytes from the peripheral blood of patients with ANCA-associated vasculitis have been shown to proliferate in response to proteinase 3 (PR3). These and other findings outlined in this review indicate T-cell involvement, although further studies are still needed to elucidate the exact contribution of T cells to the pathogenesis of systemic vasculitis.  相似文献   

9.
Heart and skeletal muscle inflammation (HSMI) is a disease of marine farmed Atlantic salmon where the pathological changes associated with the disease involve necrosis and an infiltration of inflammatory cells into different regions of the heart and skeletal muscle. The aim of this work was to characterize cardiac changes and inflammatory cell types associated with a clinical HSMI outbreak in Atlantic salmon using immunohistochemistry. Different immune cells and cardiac tissue responses associated with the disease were identified using different markers. The spectrum of inflammatory cells associated with the cardiac pathology consisted of mainly CD3(+) T lymphocytes, moderate numbers of macrophages and eosinophilic granulocytes. Proliferative cell nuclear antigen (PCNA) immuno-reaction identified significantly increased nuclear and cytoplasmic staining as well as identifying hypertrophic nuclei. Strong immunostaining was observed for major histocompatibility complex (MHC) class II in HSMI hearts. Although low in number, a few positive cells in diseased hearts were detected using the mature myeloid cell line granulocytes/monocytes antibody indicating more positive cells in diseased than non-diseased hearts. The recombinant tumor necrosis factor-α (TNFα) antibody identified stained macrophage-like cells and endothelial cells around lesions in addition to eosinophilic granular cells (EGCs). These findings suggested that the inflammatory response in diseased hearts comprised of mostly CD3(+) T lymphocytes and eosinophilic granular cells and hearts exhibited high cell turnover where DNA damage/repair might be the case (as identified by PCNA, caspase 3 and terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) reactivity).  相似文献   

10.
The pathogenesis of systemic vasculitis is complex and is likely to involve many mechanisms. There is a growing body of evidence that T cells may contribute to the pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides. Predominantly, T cells and monocytes are found in inflammatory infiltrates in patients with Wegener's granulomatosis (WG). The production of ANCA appears to be T-cell-dependent. T lymphocytes from the peripheral blood of patients with ANCA-associated vasculitis have been shown to proliferate in response to proteinase 3 (PR3). These and other findings outlined in this review indicate T-cell involvement, although further studies are still needed to elucidate the exact contribution of T cells to the pathogenesis of systemic vasculitis.  相似文献   

11.
Street rabies virus (SRV)-infected T-lymphocyte-deficient (nude) mice, in contrast to euthymic mice, did not develop hindlimb paralysis prior to death. To document the role of T lymphocytes in rabies virus-associated paralysis, 10(8) spleen cells from normal immunocompetent euthymic mice were transferred to nude mice and the recipient mice were challenged with SRV. One hundred percent of the reconstituted mice developed paralysis and died. Depletion of T cells from the donor spleen suspension prior to transfer abrogated the development of paralysis but did not prevent the deaths of the recipient animals. Mice receiving 10(8) rabies virus-immune spleen cells did not become paralyzed and did not die. Nude mice inoculated with either rabies virus-immune or normal mouse serum prior to and following SRV inoculation did not develop paralysis. Immune serum protected the mice, whereas animals inoculated with normal serum died. Central nervous system inflammatory responses in nude mice immunologically reconstituted with normal spleen cells were characterized by diffuse cellular infiltrates in the parenchyma and extensive perivascular cuffing. Perivascular infiltrates included CD8+ and CD4+ T lymphocytes and Mac-1+ macrophage-microglial cells. Inflammatory cells in the parenchyma were limited to CD8+ lymphocytes and Mac-1+ cells. These observations indicate that paralysis of SRV-infected mice is dependent on T lymphocytes. Whether injury leading to paralysis is mediated by T lymphocytes or by an influence of T lymphocytes on macrophage-microglial cells or other cells remains to be determined.  相似文献   

12.
13.
The aim of this study was to provide evidence for the expression of iNOS in the cells of inflammatory infiltrates around larvae in skeletal muscles of T. spiralis infected mice. The BALB/c mice (n = 8) divided into subgroups, received either aminoguanidine (AMG)--a specific iNOS inhibitor or albendazole (ALB)--an antiparasitic drug of choice in trichinellosis treatment. Control animals (n = 2 in each subgroup) were either uninfected and treated or uninfected and untreated. Frozen sections of hind leg muscles from mice sacrificed at various time intervals after infection were cut and subjected to immunohistochemistry, using monoclonal anti-iNOS antibody. The ALB-treated mice revealed stronger iNOS staining in the infiltrating cells around larvae than the infected and untreated animals. On the contrary, in the AMG-treated animals, the infiltrating cells did not show any specific iNOS reaction. These data confirm the specificity of iNOS staining in the cellular infiltrates around T. spiralis larvae and shed some light on the role of nitric oxide during ALB treatment in experimental trichinellosis.  相似文献   

14.
In vivo electroporation (EP) has been shown to augment the immunogenicity of plasmid DNA vaccines, but its mechanism of action has not been fully characterized. In this study, we show that in vivo EP augmented cellular and humoral immune responses to a human immunodeficiency virus type 1 Env DNA vaccine in mice and allowed a 10-fold reduction in vaccine dose. This enhancement was durable for over 6 months, and re-exposure to antigen resulted in anamnestic effector and central memory CD8(+) T-lymphocyte responses. Interestingly, in vivo EP also recruited large mixed cellular inflammatory infiltrates to the site of inoculation. These infiltrates contained 45-fold-increased numbers of macrophages and 77-fold-increased numbers of dendritic cells as well as 2- to 6-fold-increased numbers of B and T lymphocytes compared to infiltrates following DNA vaccination alone. These data suggest that recruiting inflammatory cells, including antigen-presenting cells (APCs), to the site of antigen production substantially improves the immunogenicity of DNA vaccines. Combining in vivo EP with plasmid chemokine adjuvants that similarly recruited APCs to the injection site, however, did not result in synergy.  相似文献   

15.
Saturated free fatty acids (FFAs) act as lipid mediators and induce insulin resistance in skeletal muscle. Specifically, in obesity‐related diseases such as type 2 diabetes, FFAs directly reduce insulin sensitivity and glucose uptake in skeletal muscle. However, the knowledge of how FFAs mediate inflammation and subsequent tissue disorders, including fibrosis in skeletal muscle, is limited. FFAs are a natural ligand for toll‐like receptor 2 (TLR2) and TLR4, and induce chronic low‐grade inflammation that directly stimulates skeletal muscle tissue. However, persistent inflammatory stimulation in tissues could induce pro‐fibrogenic processes that ultimately lead to perturbation of the tissue architecture and dysfunction. Therefore, blocking the link between inflammatory primed skeletal muscle tissue and connective tissue might be an efficient therapeutic option for treating obesity‐induced muscle inactivity. In this study, we investigated the impact of conditioned medium obtained from human palatine tonsil‐derived mesenchymal stem cells (T‐MSCs) on the interaction between skeletal muscle cells stimulated with palmitic acid (PA) and fibroblasts. We found that PA‐treated skeletal muscle cells actively secreted interleukin‐1β (IL‐1β) and augmented the migration, proliferation and expression of fibronectin in L929 fibroblasts. Furthermore, T‐CM inhibited the skeletal muscle cell‐derived pro‐fibrogenic effect via the production of the interleukin‐1 receptor antagonist (IL‐1Ra), which is an inhibitor of IL‐1 signalling. Taken together, our data provide novel insights into the therapeutic potential of T‐MSC‐mediated therapy for the treatment of pathophysiological processes that occur in skeletal muscle tissues under chronic inflammatory conditions.  相似文献   

16.
17.
The role of T lymphocytes in the pathogenesis of experimental autoimmune thyroiditis in mice is well established while the role of B lymphocytes is unclear. Mice with thyroid lesions have thyroglobulin antibodies whereas these antibodies can occur in mice immunized with Tg that do not develop thyroid lesions. To determine whether thyroglobulin antibodies are necessary for the development of the thyroid infiltrates with mononuclear cells, which are characteristic for experimental autoimmune thyroiditis, AKR mice chronically treated from birth with goat anti-mouse IgM antibodies were immunized with mouse thyroglobulin in Freund's complete adjuvant when they were 7 weeks old. Control mice, similarly immunized, were chronically injected from birth with normal goat gamma-globulin. Three weeks after immunization, all mice were sacrificed, thyroglobulin antibodies in the serum were measured by hemagglutination assay and enzyme-linked immunosorbent assay, and thyroid pathology was assessed. The serum concentration of IgG and IgM, the percentage of B and T lymphocytes in the spleen (flow cytometry), and the in vitro proliferative response of spleen lymphocytes to stimulation by PHA, LPS, and Tg were also measured. All mice treated with anti-IgM antibodies did not have detectable thyroglobulin antibodies but 63% of these mice and 88% of control mice (all of which had thyroglobulin antibodies) had thyroid lesions. Mice treated with anti-IgM antibodies that did not have thyroid lesions had a more pronounced depression of B lymphocytes than similarly treated mice that had thyroid lesions. These experiments suggest that thyroglobulin antibodies are not necessary for the development of thyroid infiltrates with mononuclear cells. B lymphocytes could still participate in the production of experimental autoimmune thyroiditis by presenting thyroglobulin to helper T lymphocytes.  相似文献   

18.
The inhibition of apoptosis in myositis and in normal muscle cells   总被引:17,自引:0,他引:17  
The mechanism of injury and death of muscle cells in the inflammatory myopathies (dermatomyositis, polymyositis, and inclusion body myositis) remains obscure. We and others have not detected apoptosis in the muscle biopsies from patients with myositis despite clear evidence of cell damage and loss. We provide evidence in this study that Fas ligand (FasL) as well as Fas is present on muscle cells and inflammatory cells in myositis biopsies: Fas is present on most muscle cells and lymphocytes, and FasL is present on degenerating muscle cells and many infiltrating mononuclear cells. The expression of both Fas and FasL in the inflamed tissue makes the absence of apoptosis more striking. To address the mechanisms of this resistance to classical apoptosis in muscle cells, we have investigated the expression of the antiapoptotic molecule FLICE (Fas-associated death domain-like IL-1-converting enzyme)-inhibitory protein (FLIP) in muscle biopsies of myositis patients and in cultured human skeletal muscle cells. Using laser capture microscopy, we have shown that FLIP is expressed in the muscle fibers and on infiltrating lymphocytes of myositis biopsies. Furthermore, we have shown that FLIP, but not Bcl-2, is expressed in cultured human skeletal muscle cells stimulated with proinflammatory cytokines, and inhibition of FLIP with antisense oligonucleotides promotes significant cleavage of poly(ADP-ribose) polymerase autoantigen, a sensitive indicator of apoptosis. These studies strongly suggest that the resistance of muscle to Fas-mediated apoptosis is due to the expression of FLIP in muscle cells in the inflammatory environment in myositis.  相似文献   

19.
Plasma cells are found surrounding the inflammatory infiltrates of macrophages, T, and B cells in the synovial tissue of patients with rheumatoid and reactive arthritis. This characteristic arrangement suggests that in the synovial tissue CD20+ B cells differentiate into plasma cells. To examine clonal relationships, we have used micromanipulation to separately isolate CD20+ B cells and plasma cells from single infiltrates. DNA was extracted, and from both populations the VH/VL gene repertoires was determined. The data show that in the inflamed synovial tissue activated B cells are clonally expanded. During proliferation in the network of follicular dendritic cells, V gene variants are generated by the hypermutation mechanism. Surprisingly, we do not find identical rearrangements between CD20+ B cells and plasma cells. Nevertheless, the finding of clonally related plasma cells within single infiltrates suggests that these cells underwent terminal differentiation in the synovial tissue. These results indicate that B cell differentiation in the synovial tissue is a dynamic process. Whereas CD20+ B cells may turnover rapidly, plasma cells may well be long lived and thus accumulate in the synovial tissue. The analysis of individual B cells recovered from synovial tissue opens a new way to determine the specificity of those cells that take part in the local immune reaction. This will provide new insights into the pathogenesis of chronic inflammatory diseases like rheumatoid or reactive arthritis.  相似文献   

20.
It was recently reported that inducible nitric oxide synthase was expressed in advanced atheromatous plaques. So we investigated the effect of NO or peroxynitrite reactive product of NO or O(2)(-) released by iNOS induced in macrophages or T lymphocytes on inflammatory cells in atheromatous plaques of human coronary arteries by immunohistochemistry. We found that iNOS was expressed in T lymphocytes and macrophages in T lymphocytes and macrophages coexisted advanced atheromatous areas. Most of the smooth muscle cells are not coexisted with T lymphocytes. We could not find iNOS in those smooth muscle cells. Only a small number of iNOS-positive smooth muscle cells were found close to T lymphocytes and macrophages. Markers for apoptotic cells induced in situ terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) showed that many apoptotic T lymphocytes and macrophages existed near iNOS induced cells. Fas and Fas ligand were expressed in almost same areas that iNOS was expressed. By double-label immunostaining, Fas was expressed in T lymphocytes but Fas ligand was expressed in macrophages and in some T lymphocytes. These results suggest that NO from iNOS induces Fas and Fas ligand-mediated apoptosis and associates with regression of atherosclerosis. On the other hand, nitrotyrosine was detected wider areas than iNOS. So peroxynitrite from iNOS damages cells and tissues widely and may associate with progression of atherosclerosis. These results suggest an important role of iNOS in mediating both regressive changes and progressive change in atheromatous plaques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号