首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 86 毫秒
1.
The ability of 96 microbial strains degrading oil and 32 strains degrading polycyclic aromatic hydrocarbons (PAHs) to consume diesel fuel and oil at 4-6 degrees C and 24 degrees C and at elevated NaCl concentrations was studied. The temperature range, salt tolerance, ability to produce bioemulsifiers, range of substrates, and antibiotic resistance were determined. The eleven most active oil-degrading and PAH-degrading strains were genotyped by a polymerase chain reaction with BoxA1R primers and a restriction analysis of ribosomal DNA amplicons. For six strains, the degree of oil degradation at 4-6 degrees C was higher than at 24 degrees C. For the most active strains, the degree of oil degradation in liquid mineral medium ranged from 15 to 26% at 24 degrees C and from 28 to 47% at 4-6 degrees C. An artificial association of six of the strains degraded the oil by 46% at 24 degrees C.  相似文献   

2.
Oil-degrading bacteria were isolated from soil and water samples taken in Russia, Kazakhstan, and the Antarctic; 13 of 86 strains proved to be thermotolerant. These bacteria utilized crude oil at 45–50°C; their growth optimum (35–37°C) and range (20–53°C) differ from those of mesophilic bacteria. Thermotolerant strains were identified as representatives of the genera Rhodococcus and Gordonia. It was shown that their ability to degrade petroleum products does not differ at 24 and 45°C. The strains Rhodococcus sp. Par7 and Gordonia sp. 1D utilized 14 and 20% of the oil, respectively, in 14 days at 45°C. All of the isolated thermotolerant bacteria grew in a medium containing 3% NaCl; the medium for the strains Gordonia amicalis 1B and Gordonia sp. 1D contained up to 10% NaCl. The bacteria G. amicalis and Rhodococcus erythropolis were able to utilize crude oil and individual hydrocarbons at higher (up to 50°C) temperatures.  相似文献   

3.
【背景】通过实施多轮次微生物采油,华北油藏产出液菌浓达到了106个/mL以上,油藏内部已经形成了较稳定的微生物发酵场,从其中筛选出能够乳化降解原油的微生物,并在地面对其进行扩大培养,然后再应用到微驱油藏,以进一步提高微生物采油实施效果。【目的】筛选乳化降解原油性能良好的菌株,对其进行多相分类学鉴定和性能评价。【方法】利用原油为底物筛选乳化降解性能良好的菌株,通过形态特征观察、生理生化测定、16S rRNA基因序列分析等确定菌株的分类地位。通过乳化能力、降解率等方法确定菌株的原油乳化降解特性。【结果】从华北油田采集的地层水样品中分离得到一株乳化原油的菌株BLG74,经多相分类鉴定表明其是土壤堆肥芽孢杆菌(Compostibacillus humi)的新菌株,亲源性99.6%。该菌株的生长温度为30-60℃ (最适温度45℃),pH6.5-9.5(最适pH7.0),NaCl浓度0%-7%(质量体积比)。菌株BLG74在玉米浆培养基中培养,其发酵液的表面张力为56.3 mN/m,乳化力约95%,在初始原油质量浓度0.5%、温度45℃的条件下培养20d,对原油的降解率可达40.8%。【结论】菌株BLG74是可乳化降解原油的新成员,其在热盐条件下乳化降解原油的特性在石油开采中有一定的潜力。  相似文献   

4.
Germination of Peronospora viciae sporangia washed off infected leaves varied from 20% to 60%. Sporangia shaken off in the dry state gave 11–19% germination. Most sporangia lost viability within 3 days after being shed, though a few survived at least 5 days. Infected leaves could produce sporangia up to 6 weeks after infection, and sporulating lesions carried viable sporangia for 3 weeks. Sporangia germinated over the range 1–24 °C, with an optimum between 4 and 8 °C. Light and no effct. The temperature limits for infection were the same as for germination, but with an optimum between 12 and 20 °C. A minimum leaf-wetness period of 4h was required, and was independent of temperature over the range 4–24 °C. Maximum infectivity occurred after 6h leaf wetness at temperatures between 8 and 20 °C. Infection occurred equally in continuous light or in darkness. After an incubation period of 6–10 days sporangia were produced on infected leaves at temperatures between 4 and 24 °C, with an optimum of 12–20 °C. Exposure to temperatures of 20–24 °C for 10 days reduced subsequent sporulation. Sporangia produced at suboptimal temperatures were larger, and at 20 °C. smaller, than those produce at 12–16 °C. Viability was also reduced. No sporangia were produced in continuous light, or at relative humidities below 91%. For maximum sporulaiton an r.h. of 100% was required, following a lower r.h. during incubation. Oospores wre commonly formed in sporulating lesions, and also where conditons limited or prevented sporulation. The results are discussed briefly in relaiton to disease development under field conditions.  相似文献   

5.
In this study we determined oil degradation rates in the North Sea under most natural conditions. We used the heavy fuel oil, Bunker C, the major oil pollutant of the North Sea, as the model oil. Experiments were conducted in closed systems with water sampled during winter and repeated under identical conditions with water collected during summer. No nitrogen or phosphorous was added and conditions were chosen such that neither oxygen nor nutrients, present in the water, would become limiting during the experiments. We detected a fourfold increased degradation rate for water samples taken in summer (18°C water temperature) as compared to water sampled in winter (4°C water temperature). Under the assumption that biodegradation of oil can be regarded as a Michaelis-Menten type kinetic reaction, the kinectic constants Vmax and KM were determined for oil biodegradation at 4°C and 18°C. At both temperatures KM was about 40 ppm, whereas Vmax was 3–4 times higher at 18°C. From both Vmax and the results of fermentation studies, we determined the maximum rates of Bunker C oil degradation in the North Sea as ∼20 g m−3a−1 at 4°C in winter and 60–80 g m−3a−1 at 18°C in summer. Furthermore, while over 25% of the oil was degraded within 6 weeks in summer, only 6.6% of the oil was degraded in winter. A higher incubation temperature in winter (18°C) increased both the rate and the percentage of oil degraded, but degradation did not reach the level obtained during the summer. While these data reflect the oxidation only of the hydrocarbons, we conducted experiments directly in the open sea to determine the contribution of abiotic factors to oil removal. Approximately 42% of the oil was lost within 6 weeks under these conditions in summer and 65% in winter. However, GC-MS analysis of the recovered oil showed no significant change in the alkane pattern that would indicate enhanced degradation. Thus, mainly abiotic factors such as erosion and dispersion rather than degradation were responsible for enhanced oil removal. Especially the high loss during winter can be attributed to frequent storms resulting in greater dispersion. In conclusion, the higher oil degrading potential of the microbial population in the North Sea was represented by a four times faster oil degradation during the summer. In-situ experiments showed that abiotic factors can have an equal (summer) or even higher (winter) impact on oil removal.  相似文献   

6.
High lipid concentration contained in wastewater inhibits the activity of microorganisms in biological wastewater treatment systems such as activated sludge and methane fermentation. To reduce the inhibitory effects, microorganisms capable of efficiently degrading edible oils were screened from various environmental sources. From Japanese soil, we isolated 2 bacteria strains with high degradation abilities at an alkaline pH without consumption of biological oxygen demand (BOD) constituents. Acinetobacter sp. strain SS-192 and Pseudomonas aeruginosa strain SS-219 degraded 77.5 ± 0.6% and 89.5 ± 1.5%, respectively, of 3,000 ppm of mixed oil consisting of salad oil/lard/beef tallow (1/1/1, w/w/w) at 37°C and pH 9.0 in 24 h. Efficient degradation by the two strains occurred at pH 8–9 and 25–40°C. Strain SS-219 degraded lipids even at pH 3. The degradation rate of 3,000 ppm of salad oil, lard, and beef tallow by strain SS-192 was 79.9 ± 2.6%, 63.6 ± 1.9%, and 70.1 ± 1.2%, respectively, during a 24-h cultivation. The degradation rate of 3,000 ppm of salad oil, lard, and beef tallow by strain SS-219 was 82.3 ± 2.1%, 71.9 ± 2.2%, and 71.0 ± 1.1%, respectively, during a 24-h cultivation. After mixed oil degradation by both strains, the BOD value of the cell culture increased from 2,100 ppm to 3,200–4,000 ppm. The fact that neither strain utilizes BOD ingredients will be beneficial to pretreatment of methane fermentation systems such as upflow anaerobic sludge blanket reactors. In addition, the growth of usual heterotrophic microorganisms utilizing soluble BOD can be suppressed under alkaline pH.  相似文献   

7.
The wastewater from the dairy industries usually contains high concentrations of contaminants and, since the volume generated is also high, the total contaminant load is very significant. Among the available options for treatment, biological degradation looks like the most promising one. Furthermore, the supplementation of the native microbial populations with external microorganisms with high specific degradation rates (bio-augmentation) has demonstrated to improve the performance of treatment. The main objective of this research was to select a combination of bacteria to improve the aerobic treatment of dairy processing wastewater. For this purpose, eleven fat/protein-degrading microorganisms belonging to the genera Bacillus, Serratia, Lactococcus, Enterococcus, Stenotrophomonas, Klebsiella and Escherichia, were evaluated as potential degrading bacteria using a Plackett-Burman design. Assays were carried out to select the strains that most significantly influenced the degradation of wastewater and biomass yield, in terms of COD removal. A simulated dairy industry effluent was used as culture medium. Four strains were selected as potential members of the microbial consortium: Lactococcus garvieae, Bacillus thuringiensis, Escherichia coli and Stenotrophomonas sp. The optimal operation temperature and pH range of the selected consortium were 32°C and 6 ~ 8, respectively. The degradation percentages reached with the selected consortium were 80.67 and 83.44% at 24 and 48 h, respectively. The selected consortium significantly improved the degradation of the dairy wastewater, and the degradation degree achieved by this consortium was higher than by using the strains individually.  相似文献   

8.
Four novel metabolic 1,4-dioxane degrading bacteria possessing high ability to degrade 1,4-dioxane (designated strains D1, D6, D11 and D17) were isolated from soil in the drainage area of a chemical factory. Strains D6, D11 and D17 were allocated to Gram-positive actinomycetes, similar to previously reported metabolic 1,4-dioxane degrading bacteria, whereas strain D1 was allocated to Gram-negative Afipia sp. The isolated strains could utilize a variety of carbon sources, including cyclic ethers, especially those with carbons at position 2 that were modified with methyl- or carbonyl-groups. The cell yields on 1,4-dioxane were relatively low (0.179–0.223 mg-protein (mg-1,4-dioxane)?1), which was likely due to requiring energy for C–O bond fission. The isolated strains showed 2.6–13 times higher specific 1,4-dioxane degradation rates (0.052–0.263 mg-1,4-dioxane (mg-protein)?1 h?1) and 2.3–7.8 fold lower half saturation constants (20.6–69.8 mg L?1) than the most effective 1,4-dioxane degrading bacterium reported to date, Pseudonocardia dioxanivorans CB1190, suggesting high activity and affinity toward 1,4-dioxane degradation. Strains D1 and D6 possessed inducible 1,4-dioxane degrading enzymes, whereas strains D11 and D17 possessed constitutive ones. 1,4-Dioxane degradation (100 mg L?1) by Afipia sp. D1 was not affected by the co-existence of up to 3,000 mg L?1 of ethylene glycol. The effects of initial pH, incubation temperature and NaCl concentration on 1,4-dioxane degradation by the four strains revealed that they could degrade 1,4-dioxane under a relatively wide range of conditions, suggesting that they have a certain adaptability and applicability for industrial wastewater treatment.  相似文献   

9.
In a moist chamber Pseudopeziza medicaginis ascospores infected alfalfa (Medi sativa L.) moderately to abundantly within 6–10 h at 10–20 °C and within a longer time-span outside this temperature range. Approximate limits of the range were 2.5 and 28 °C; no infection took place at 30 °C. At 14°C ascospores infected alfalfa abundantly at 98 %relative humidity (RH) and above, moderately at 97%, sparsely at 95 and 96%, but not at 94% and below. Ascospores were hydrophilic, germinating best at or near 100%, RH but did not germinate at or below 93 % RH. After infection was established, tiny leafspots became visible within 6–7 days at constant temperatures of 15–25°, 10 days of 10°C, 13 days of 5 °C, and 25 days of 2.5 °C. They failed to develop into normal size spots within 4 weeks at constant temperatures near 30 °C, or near 10 °C and lower. Temporary exposure of incipiently diseased plants 1–6 days to 30–38 °C adversely affected subsequent leafspot development at 20–24°C. Inhibition depended on temperature and on the extent of post-infection disease development.  相似文献   

10.
The ability of microbial degraders of polycyclic aromatic hydrocarbons to grow at 24°C in liquid mineral medium supplemented with oil as the sole source of carbon and energy was studied. Growth characteristics (CFU) and the level of oil destruction by plasmid-bearing and plasmid-free strains were determined after seven days of cultivation. The presence of catabolic plasmids in the degrader strains, including rhizosphere pseudomonads, was shown to increase cell growth and enhance the level of oil degradation. Strain Pseudomonas chlororaphis BS1391 bearing plasmid pBS216 was found to be the most effective oil degrader.  相似文献   

11.
We bred a microbial community capable of degrading rice straw with high efficiency. The microbial community degraded more than 60% of rice straw within 4 days at 50 °C. The high stability of the community's degradation ability was demonstrated by its tolerance of being subcultured several times in medium with/without cellulosic material, being heated to 95 °C, and freezing at –80 °C. The community degraded both nonsterilized and sterilized substrate; and its degradation ability was not affected by pH changes in the medium (initial pH 5–9). PCR-denaturing gradient gel electrophoresis (DGGE) analyses based on 16S rDNA fragments showed that the community structure remained constant after multiple subcultures extending over 2 years. DNA sequence analyses of DGGE bands indicated the coexistence of both aerobic and anaerobic bacteria in the community. Electronic Publication  相似文献   

12.
Microbial degradation of nickel and vanadium porphyrins is an economically important and environment-friendly alternative to physicochemical processes currently used in refining crude oil. This study involved the screening of 23 microbial isolates from crude oil–contaminated soils in the Philippines. Two microbial consortia concocted out of four bacteria and three fungi from Guimaras Island Province degraded significantly higher amounts of nickel protoporphyrin disodium (NiPPDS) and vanadium oxide octaethyl porphyrin (VOOEP) than their corresponding member components. Culture parameters were varied and then optimized by the Taguchi method in assays in minimal salt medium supplemented with metalloporphyrins. Optimal degradations by consortium GI-2,3 (Bacterium megaterium–Enterobacter cloacae) were 79 ± 1.5% for NiPPDS at 40 mg/L, pH 7, 30°C and 89 ± 1.7% for VOOEP at 20 mg/L, pH 6, 30°C. For consortium As-2,P (Aspergillus unguis–Penicillium griseofulvum), optimal degradations w`ere 71 ± 1.3% for NiPPDS at 20 mg/L, pH 5.5, 30°C and 90 ± 2.8% for VOOEP at 20 mg/L, pH 4.5, 40°C.  相似文献   

13.
The effect of light and temperature on the growth and photosynthesis of the Japanese agarophyte, Gracilariopsis chorda (Gracilariaceae, Rhodophyta), was determined to better understand its physiology so that we could identify candidates for mass cultivation. Above the photosynthetic active radiation of 66 μmol photons m?2 s?1, photosynthetic rates saturated for all strains that were collected from six different locations (Hokkaido, Chiba, Tokushima, Saga, Kagoshima, and Okinawa); furthermore, either photosynthesis or growth was observed at all temperature treatments examined in our study (4–32 °C for photosynthesis, 16–32 °C for growth experiments). We identified a temperature range for optimal photosynthesis and growth, which occurred within 20.1–29.1 °C and roughly correlated with the water temperatures of the collection locations and strongly suggests that this species tolerates a wide variety of water temperature. In particular, the Kagoshima strain had the widest range of optimal temperatures (20.8–29.1 °C), whereas the Saga strain had the narrowest range (23.1–27.3 °C). It is important to note that all the optimal temperature ranges overlapped among the strains; therefore, no definitive distinction can be determined. The broad tolerance to temperatures commonly observed from northern to southern Japan suggests that the cultivation of this species should succeed during spring to summer in the majority of the coastal regions in Japan.  相似文献   

14.
To develop a microbial treatment of edible oil-contaminated wastewater, microorganisms capable of rapidly degrading edible oil were screened. The screening study yielded a yeast coculture comprising Rhodotorula pacifica strain ST3411 and Cryptococcus laurentii strain ST3412. The coculture was able to degrade efficiently even at low contents of nitrogen ([NH4–N] = 240 mg/L) and phosphorus sources ([PO4–P] = 90 mg/L). The 24-h degradation rate of 3,000 ppm mixed oils (salad oil/lard/beef tallow, 1:1 w/w) at 20°C was 39.8% ± 9.9% (means ± standard deviations of eight replicates). The highest degradation rate was observed at 20°C and pH 8. In a scaled-up experiment, the salad oil was rapidly degraded by the coculture from 671 ± 52.0 to 143 ± 96.7 ppm in 24 h, and the degradation rate was 79.4% ± 13.8% (means ± standard deviations of three replicates). In addition, a repetitive degradation was observed with the cell growth by only pH adjustment without addition of the cells.  相似文献   

15.
The lipids (fats and oils) degradation capabilities of soil microorganisms were investigated for possible application in treatment of lipids-contaminated wastewater. We isolated a strain of the bacterium Raoultella planticola strain 232-2 that is capable of efficiently catabolizing lipids under acidic conditions such as in grease traps in restaurants and food processing plants. The strain 232-2 efficiently catabolized a mixture (mixed lipids) of commercial vegetable oil, lard, and beef tallow (1:1:1, w/w/w) at 20–35 °C, pH 3–9, and 1,000–5,000 ppm lipid content. Highly effective degradation rate was observed at 35 °C and pH 4.0, and the 24-h degradation rate was 62.5?±?10.5 % for 3,000 ppm mixed lipids. The 24-h degradation rate for 3,000 ppm commercial vegetable oil, lard, beef tallow, mixed lipids, and oleic acid was 71.8 %, 58.7 %, 56.1 %, 55.3?±?8.5 %, and 91.9 % at pH 4 and 30 °C, respectively. R. planticola NBRC14939 (type strain) was also able to efficiently catabolize the lipids after repeated subculturing. The composition of the culture medium strongly influenced the degradation efficiency, with yeast extract supporting more complete dissimilation than BactoPeptone or beef extract. The acid tolerance of strain 232-2 is proposed to result from neutralization of the culture medium by urease-mediated decomposition of urea to NH3. The rate of lipids degradation increased with the rates of neutralization and cell growth. Efficient lipids degradation using strain 232-2 has been achieved in the batch treatment of a restaurant wastewater.  相似文献   

16.
Suspending erythrocytes in medium containing sucrose prevented heat-induced lysis at its early stage. This allowed determination of the thermohaemolysis-related ion permeability by measuring the initial rate of the stipulated shrinkage of erythrocytes. Thus, correspondingly, the coefficient P of the ion permeability was calculated for heated human erythrocytes using ouabain-pretreated cells in 37–45°C range and intact cells in 50–58°C range. The values obtained for P obeyed a straight line Arrhenius plot over the entire 37–58°C range suggesting that the ion permeability was activated by a single mechanism earlier identified as relevant to thermohaemolysis. At the 37–58°C range, the activation energy of the P was 250±15 kJ/mol which was markedly different from the value of 56 kJ/mol known for the 10–37°C range. For erythrocytes from five mammals, similar temperature dependencies of the P were obtained over 45–60°C range. For erythrocytes from all species, excluding horse, the P, extrapolated at 37°C, had a value comparable with the known coefficient of the passive, ouabain-insensitive cation permeability at 37°C. For ouabain-treated human erythrocytes at 37°C, the period of thermohaemolysis-related shrinkage in sucrose containing media was found to be about six times shorter than the life-span of intact cells which substantiated the role of the active transport in balancing the thermohaemolysis-related diffusion of ions at 37°C. Consequently, the thermal resistance of erythrocytes, which was earlier related to their sphingomyelin content, was now found also to be in good correlation with their life-span in the circulation of 11 mammals.  相似文献   

17.
一株低温玉米秸秆降解真菌的筛选、鉴定及降解特性   总被引:2,自引:1,他引:2  
【背景】在我国北方地区玉米秸秆还田时期地温低、秸秆降解慢,如何加速玉米秸秆低温腐解成为研究热点。【目的】从冷凉地区土壤中筛选具有高效降解纤维素能力的低温菌株,为秸秆的有效利用奠定基础。【方法】在低温培养条件下,采用稀释涂布平板法、羧甲基纤维素钠(sodium carboxymethyl cellulose,CMC-Na)水解圈测定法、胞外酶活测定法、秸秆失重法进行低温秸秆降解菌株的初筛、复筛和秸秆降解性能的测定;根据菌株形态学特征及ITSrDNA序列分析对筛选菌株进行鉴定;利用3,5-二硝基水杨酸(3,5-dinitrosalicylic acid,DNS)法和秸秆失重法对菌株在不同接种量、培养基初始pH、温度情况下的纤维素酶活力和玉米秸秆降解能力进行研究。【结果】以16°C为筛选温度,获得一株在刚果红-羧甲基纤维素钠平板上D/d值为2.17、CMC酶活力为703 U/mL的高产纤维素酶低温真菌SDF-25;该菌株在4°C可以生长,10-16°C为最适生长温度,37°C条件下仍能生长;综合菌株的形态学和分子生物学测定结果,菌株SDF-25为草酸青霉菌(Penicillium oxalicum);该菌株最佳产纤维素酶的培养条件为接种量2%、初始pH为7.0、培养温度为10°C,在该培养条件下菌株SDF-25的CMC酶活为993.3 U/mL。失重法测定接种SDF-25于10°C培养15 d时秸秆降解率为39.5%,16°C时为44.9%。【结论】草酸青霉菌SDF-25可在低温条件下生长并具有较强的纤维素酶生产能力,在秸秆还田方面具有良好的应用前景。  相似文献   

18.
【背景】高尿酸症由血液中尿酸含量明显升高而导致,利用乳酸菌对人体的益生作用缓解高尿酸血症越来越受到关注。【目的】获得具有降解尿酸能力的乳酸菌复合菌系与纯培养菌株。【方法】以泡菜为样品来源,以尿酸为底物,采用MRS培养基筛选降解尿酸的乳酸菌复合菌系,通过高效液相色谱法测定复合菌系对尿酸的降解能力。【结果】得到一组乳酸菌复合菌系,当培养温度为37 °C、pH值为6.20、静置培养72 h后复合菌系对尿酸的降解率为12.08%;通过优化培养条件,当该菌系在以牛肉膏为单一氮源、初始pH值为5.00、温度为35 °C的条件下培养72 h,尿酸降解率上升至17.19%,降解率比优化前提高了42.3%;从该菌系中分离出两株具有尿酸降解能力的菌株UA-1与UA-2,它们的尿酸降解率分别为10.85%和8.65%;通过形态学观察和16S rRNA基因序列分析,经鉴定两株菌均为布氏乳杆菌(Lactobacillus buchneri)。将两株单菌组合降解尿酸试验发现,UA-1与UA-2比例为2:1的尿酸降解率为20.2%,比原复合菌系的降解能力提高了67.22%。【结论】研究证明了乳酸菌复合菌系对尿酸的降解能力优于单个菌株,为后续利用乳酸菌复合菌系应用提供了数据支持。  相似文献   

19.
To determine the concentration of soluble 1,4-dioxane during biodegradation, a new method using of high-performance liquid chromatography equipped with a hydrophilic interaction chromatography column was developed. The developed method enabled easy and rapid determination of 1,4-dioxane, even in saline medium. Microbes capable of degrading 1,4-dioxane were selected from the seawater samples by the seawater-charcoal perfusion apparatus. Among 32 candidate 1,4-dioxane degraders,, strain RM-31 exhibited the strongest 1,4-dioxane degradation ability. 16S rDNA sequencing and the similarity analysis of strain RM-31 suggested that this organism was most closely related to Pseudonocardia carboxydivorans. This species is similar to Pseudonocardia dioxanivorans, which has previously been reported as a 1,4-dioxane degrader. Strain RM-31 could degrade 300 mg/L within 2 days. As culture incubation times increasing, the residual 1,4-dioxane concentration was decreasing and the total protein contents extracted from growth cells were increasing. The optimum initial pH of the broth medium and incubation temperature for 1,4-dioxane degradation were pH 6–8 and 25 °C. The biodegradation rate of 1,4-dioxane by strain RM-31 at 25 °C in broth medium with 3 % NaCl was almost 20 % faster than that without NaCl. It was probably a first bacteria from the seawater that can exert a strong degrading ability.  相似文献   

20.
Out of the 30 strains capable of oil degradation at 4-6 degrees C, four were selected by the ability to degrade 40% of the oil substrate present in the growth medium: Rhodococcus spp. DS-07 and DS-21 and Pseudomonas spp. DS-09 and DS-22. We studied the activity of these strains as degraders of oil products of various condensation degrees (crude oil, masut, petroleum oils, benzene resins and ethanol-benzene resins) at 4-6 degrees C. The maximum degrees of degradation of masut and ethanol-benzene resins were observed in Pseudomonas spp. DS-22 (17.2% and 5.2%, respectively). The maximum degradation of petroleum oils and benzene resins was observed in Rhodococcus spp. DS-07 (40% and 16.6%, respectively). The strains provide a basis for developing biodegrader preparations applicable to bioremediation of oil-polluted sites under the conditions of cold climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号