首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heme-regulated eukaryotic initiation factor 2α (eIF2α) kinase (HRI), functions in response to heme shortage in reticulocytes and aids in the maintenance of a heme:globin ratio of 1:1. Under normal conditions, heme binds to HRI and blocks its function. However, during heme shortage, heme dissociates from the protein and autophosphorylation subsequently occurs. Autophosphorylation comprises a preliminary critical step before the execution of the intrinsic function of HRI; specifically, phosphorylation of Ser-51 of eIF2α to inhibit translation of the globin protein. The present study indicates that dephosphorylated mouse HRI exhibits strong intramolecular interactions (between the N-terminal and C-terminal domains) compared to phosphorylated HRI. It is therefore suggested that autophosphorylation reduces the intramolecular interaction, which induces irreversible catalytic flow to the intrinsic eIF2α kinase activity after heme dissociates from the protein. With the aid of MS, we identified 33 phosphorylated sites in mouse HRI overexpressed in Escherichia coli. Phosphorylated sites at Ser, Thr and Tyr were predominantly localized within the kinase insertion region (16 sites) and kinase domain (12 sites), whereas the N-terminal domain contained five sites. We further generated 30 enzymes with mutations at the phosphorylated residues and examined their catalytic activities. The activities of Y193F, T485A and T490A mutants were significantly lower than that of wild-type protein, whereas the other mutant proteins displayed essentially similar activity. Accordingly, we suggest that Tyr193, Thr485 and Thr490 are essential residues in the catalysis.  相似文献   

2.
Cytoplasmic stresses, including heat shock, osmotic stress, and oxidative stress, cause rapid inhibition of protein synthesis in cells through phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha) by eIF2alpha kinases. We have investigated the role of heme-regulated inhibitor (HRI), a heme-regulated eIF2alpha kinase, in stress responses of erythroid cells. We have demonstrated that HRI in reticulocytes and fetal liver nucleated erythroid progenitors is activated by oxidative stress induced by arsenite, heat shock, and osmotic stress but not by endoplasmic reticulum stress or nutrient starvation. While autophosphorylation is essential for the activation of HRI, the phosphorylation status of HRI activated by different stresses is different. The contributions of HRI in various stress responses were assessed with the aid of HRI-null reticulocytes and fetal liver erythroid cells. HRI is the only eIF2alpha kinase activated by arsenite in erythroid cells, since HRI-null cells do not induce eIF2alpha phosphorylation upon arsenite treatment. HRI is also the major eIF2alpha kinase responsible for the increased eIF2alpha phosphorylation upon heat shock in erythroid cells. Activation of HRI by these stresses is independent of heme and requires the presence of intact cells. Both hsp90 and hsc70 are necessary for all stress-induced HRI activation. However, reactive oxygen species are involved only in HRI activation by arsenite. Our results provide evidence for a novel function of HRI in stress responses other than heme deficiency.  相似文献   

3.
Bauer BN  Rafie-Kolpin M  Lu L  Han A  Chen JJ 《Biochemistry》2001,40(38):11543-11551
In heme-deficient reticulocytes, protein synthesis is inhibited due to the activation of heme-regulated eIF2alpha kinase (HRI). Activation of HRI is accompanied by its phosphorylation. We have investigated the role of autophosphorylation in the formation of active and stable HRI. Two autophosphorylated species of recombinant HRI expressed in Escherichia coli were resolved by SDS-PAGE. Both species of HRI were multiply autophosphorylated on serine, threonine, and to a lesser degree also tyrosine residues. Species II HRI exhibited a much higher extent of autophosphorylation and thus migrates slower in SDS-PAGE than species I HRI. Similarly, HRI naturally present in reticulocytes also exhibited these species with different degrees of phosphorylation. Importantly, in heme-deficient intact reticulocytes, inactive species I HRI was converted completely into species II. We further separated and characterized these two species biochemically. We found that species I was inactive and had a tendency to aggregate while the more extensively autophosphorylated species II was an active heme-regulated eIF2alpha kinase and stable homodimer. Our results strongly suggest that autophosphorylation regulates HRI in a two-stage mechanism. In the first stage, autophosphorylation of newly synthesized HRI stabilizes species I HRI against aggregation. Although species I is an active autokinase, it is still without eIF2alpha kinase activity. Additional multiple autophosphorylation in the second stage is required for the formation of stable dimeric HRI (species II) with eIF2alpha kinase activity that is regulated by heme.  相似文献   

4.
The human double-stranded RNA-dependent protein kinase (PKR) is an important component of the interferon response to virus infection. The activation of PKR is accompanied by autophosphorylation at multiple sites, including one in the N-terminal regulatory region (Thr-258) that is required for full kinase activity. Several protein kinases are activated by phosphorylation in the region between kinase subdomains VII and VIII, referred to as the activation loop. We show that Thr-446 and Thr-451 in the PKR activation loop are required in vivo and in vitro for high-level kinase activity. Mutation of either residue to Ala impaired translational control by PKR in yeast cells and COS1 cells and led to tumor formation in mice. These mutations also impaired autophosphorylation and eukaryotic initiation factor 2 subunit α (eIF2α) phosphorylation by PKR in vitro. Whereas the Ala-446 substitution substantially reduced PKR function, the mutant kinase containing Ala-451 was completely inactive. PKR specifically phosphorylated Thr-446 and Thr-451 in synthetic peptides in vitro, and mass spectrometry analysis of PKR phosphopeptides confirmed that Thr-446 is an autophosphorylation site in vivo. Substitution of Glu-490 in subdomain X of PKR partially restored kinase activity when combined with the Ala-451 mutation. This finding suggests that the interaction between subdomain X and the activation loop, described previously for MAP kinase, is a regulatory feature conserved in PKR. We found that the yeast eIF2α kinase GCN2 autophosphorylates at Thr-882 and Thr-887, located in the activation loop at exactly the same positions as Thr-446 and Thr-451 in PKR. Thr-887 was more critically required than was Thr-882 for GCN2 kinase activity, paralleling the relative importance of Thr-446 and Thr-451 in PKR. These results indicate striking similarities between GCN2 and PKR in the importance of autophosphorylation and the conserved Thr residues in the activation loop.  相似文献   

5.
In heme deficiency, protein synthesis in reticulocytes is inhibited by activation of heme-regulated alpha-subunit of eukaryotic initiation factor-2alpha (eIF-2alpha) kinase (HRI). Previous studies indicate that HRI contains two distinct heme-binding sites per HRI monomer. To study the role of the N terminus in the heme regulation of HRI, two N-terminally truncated mutants, Met2 and Met3 (deletion of the first 103 and 130 amino acids, respectively), were prepared. Met2 and Met3 underwent autophosphorylation and phosphorylated eIF-2alpha with a specific activity of approximately 50% of that of the wild type HRI. These mutants were significantly less sensitive to heme regulation both in vivo and in vitro. In addition, the heme contents of purified Met2 and Met3 HRI were less than 5% of that of the wild type HRI. These results indicated that the N terminus was important but was not the only domain involved in the heme-binding and heme regulation of HRI. Heme binding of the individual HRI domains showed that both N terminus and kinase insertion were able to bind hemin, whereas the C terminus and the catalytic domains were not. Thus, both the N terminus and the kinase insertion, which are unique to HRI, are involved in the heme binding and the heme regulation of HRI.  相似文献   

6.
Dey M  Cao C  Dar AC  Tamura T  Ozato K  Sicheri F  Dever TE 《Cell》2005,122(6):901-913
The antiviral protein kinase PKR inhibits protein synthesis by phosphorylating the translation initiation factor eIF2alpha on Ser51. Binding of double-stranded RNA to the regulatory domains of PKR promotes dimerization, autophosphorylation, and the functional activation of the kinase. Herein, we identify mutations that activate PKR in the absence of its regulatory domains and map the mutations to a recently identified dimerization surface on the kinase catalytic domain. Mutations of other residues on this surface block PKR autophosphorylation and eIF2alpha phosphorylation, while mutating Thr446, an autophosphorylation site within the catalytic-domain activation segment, impairs eIF2alpha phosphorylation and viral pseudosubstrate binding. Mutational analysis of catalytic-domain residues preferentially conserved in the eIF2alpha kinase family identifies helix alphaG as critical for the specific recognition of eIF2alpha. We propose an ordered mechanism of PKR activation in which catalytic-domain dimerization triggers Thr446 autophosphorylation and specific eIF2alpha substrate recognition.  相似文献   

7.
To study the mechanism by which heme regulates the heme-regulated eIF-2 alpha kinase (HRI), the effects of various protoporphyrin IX (PP) compounds on the kinase activities and intersubunit disulfide formation of HRI and on protein synthesis in reticulocyte lysates were examined. Hemin and cobalt protoporphyrin (CoPP) are more effective than ZnPP, NiPP, SnPP, and metal-free PP in promoting intersubunit disulfide bond formation in HRI, in inhibiting the autokinase and eIF-2 alpha kinase activities of HRI, in inhibiting phosphorylation of eIF-2 alpha in rabbit reticulocytes, in maintaining protein synthesis, and in reversing the inhibition of protein synthesis in heme deficiency. There is an apparent correlation of in vitro intersubunit disulfide formation of HRI and the regulation of HRI kinase activities and protein synthesis by these porphyrin compounds. HRI in the reticulocyte lysate can be cross-linked by 1,6-bismaleimidohexane (bis-NEM). The formation of bis-NEM cross-linked dimers in lysates is prevented completely by N-ethylmaleimide (NEM) which alkylates free sulfhydryl groups and is diminished by hemin and CoPP. These results support the view that HRI in hemin-supplemented lysates is in equilibrium between the noncovalently linked dimer and the disulfide-linked dimer. The molecular size of HRI in control, hemin-supplemented, or NEM-treated hemin-supplemented lysates is identical to that of purified HRI; activation of HRI and changes in its thiol status do not significantly affect its molecular size.  相似文献   

8.
Protein synthesis is regulated by the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) in response to different environmental stresses. One member of the eIF2alpha kinase family, heme-regulated inhibitor kinase (HRI), is activated under heme-deficient conditions and blocks protein synthesis, principally globin, in mammalian erythroid cells. We identified two HRI-related kinases from Schizosaccharomyces pombe which have full-length homology with mammalian HRI. The two HRI-related kinases, named Hri1p and Hri2p, exhibit autokinase and kinase activity specific for Ser-51 of eIF2alpha, and both activities were inhibited in vitro by hemin, as previously described for mammalian HRI. Overexpression of Hri1p, Hri2p, or the human eIF2alpha kinase, double-stranded-RNA-dependent protein kinase (PKR), impeded growth of S. pombe due to elevated phosphorylation of eIF2alpha. Cells from strains with deletions of the hri1(+) and hri2(+) genes, individually or in combination, exhibited a reduced growth rate when exposed to heat shock or to arsenic compounds. Measurements of in vivo phosphorylation of eIF2alpha suggest that Hri1p and Hri2p differentially phosphorylate eIF2alpha in response to these stress conditions. These results demonstrate that HRI-related enzymes are not unique to vertebrates and suggest that these eIF2alpha kinases are important participants in diverse stress response pathways in some lower eukaryotes.  相似文献   

9.
J K Pal  J J Chen  I M London 《Biochemistry》1991,30(9):2555-2562
A highly purified preparation of heme-regulated inhibitor (HRI), an eIF-2 alpha kinase, from rabbit reticulocyte lysates has been used for generating monoclonal antibodies (mAB). Two hybridoma clones secreting HRI-specific antibodies (mAB A and mAB F) were obtained. Both antibodies immunoprecipitated biosynthetically labeled as well as phosphorylated HRI in reticulocyte lysates and also recognized denatured HRI in a Western blot. In in vitro protein kinase assays, preincubation of HRI with the antibodies significantly diminished both autokinase and eIF-2 alpha kinase activities. HRI from reticulocyte lysates could be quantitatively removed by immunoprecipitation with mAB F, and such HRI-depleted lysates were able to maintain protein synthesis under conditions of heme deficiency. With these monoclonal antibodies, HRI was detected only in the reticulocytes and bone marrow of anemic rabbits, among several rabbit tissues tested. The antibodies did not detect cross-reacting HRI in rat or human reticulocytes or in mouse erythroleukemic cells or human K562 cells even after induction of differentiation, although eIF-2 alpha kinase activity was detected in them. Polyclonal anti-rabbit HRI antibody detected HRI in rat reticulocytes. However, no cross-reacting HRI was detected by polyclonal antibody in human reticulocytes or other cell types tested. These findings suggest that HRI is not ubiquitous, and may be erythroid-specific, and that it is antigenically different in different species.  相似文献   

10.
Four distinct eukaryotic initiation factor 2alpha (eIF2alpha) kinases phosphorylate eIF2alpha at S51 and regulate protein synthesis in response to various environmental stresses. These are the hemin-regulated inhibitor (HRI), the interferon-inducible dsRNA-dependent kinase (PKR), the endoplasmic reticulum (ER)-resident kinase (PERK) and the GCN2 protein kinase. Whereas HRI and PKR appear to be restricted to mammalian cells, GCN2 and PERK seem to be widely distributed in eukaryotes. In this study, we have characterized the second eIF2alpha kinase found in Drosophila, a PERK homologue (DPERK). Expression of DPERK is developmentally regulated. During embryogenesis, DPERK expression becomes concentrated in the endodermal cells of the gut and in the germ line precursor cells. Recombinant wild-type DPERK, but not the inactive DPERK-K671R mutant, exhibited an autokinase activity, specifically phosphorylated Drosophila eIF2alpha at S50, and functionally replaced the endogenous Saccharomyces cerevisiae GCN2. The full length protein, when expressed in 293T cells, located in the ER-enriched fraction, and its subcellular localization changed with deletion of different N-terminal fragments. Kinase activity assays with these DPERK deletion mutants suggested that DPERK localization facilitates its in vivo function. Similar to mammalian PERK, DPERK forms oligomers in vivo and DPERK activity appears to be regulated by ER stress. Furthermore, the stable complexes between wild-type DPERK and DPERK-K671R mutant were mediated through the N terminus of the proteins and exhibited an in vitro eIF2alpha kinase activity.  相似文献   

11.
The family of eukaryotic initiation factor 2alpha (eIF2alpha) protein kinases plays an important role in regulating cellular protein synthesis under stress conditions. The mammalian kinases PKR and HRI and the yeast kinase GCN2 specifically phosphorylate Ser-51 on the alpha subunit of the translation initiation factor eIF2. By using an in vivo assay in yeast, the substrate specificity of these three eIF2alpha kinases was examined by substituting Ser-51 in eIF2alpha with Thr or Tyr. In yeast, phosphorylation of eIF2 inhibits general translation but derepresses translation of the GCN4 mRNA. All three kinases phosphorylated Thr in place of Ser-51 and were able to regulate general and GCN4-specific translation. In addition, both PKR and HRI were found to phosphorylate eIF2alpha-S51Y and stimulate GCN4 expression. Isoelectric focusing analysis of eIF2alpha followed by detection using anti-eIF2alpha and anti-phosphotyrosine-specific antibodies demonstrated that PKR and HRI phosphorylated eIF2alpha-S51Y on Tyr in vivo. These results provide new insights into the substrate recognition properties of the eIF2alpha kinases, and they are intriguing considering the potential for alternate substrates for PKR in cellular signaling and growth control pathways.  相似文献   

12.
Heme-regulated eukaryotic initiation factor 2alpha (eIF2alpha) kinase (HRI) functions in response to the heme iron concentration. At the appropriate heme iron concentrations under normal conditions, HRI function is suppressed by binding of the heme iron. Conversely, upon heme iron shortage, HRI autophosphorylates and subsequently phosphorylates the substrate, eIF2alpha, leading to the termination of protein synthesis. The molecular mechanism of heme sensing by HRI, including identification of the specific binding site, remains to be established. In the present study we demonstrate that His-119/His-120 and Cys-409 are the axial ligands for the Fe(III)-protoporphyrin IX complex (hemin) in HRI, based on spectral data on site-directed mutant proteins. Cys-409 is part of the heme-regulatory Cys-Pro motif in the kinase domain. A P410A full-length mutant protein displayed loss of heme iron affinity. Surprisingly, inhibitory effects of the heme iron on catalysis and changes in the heme dissociation rate constants in full-length His-119/His-120 and Cys-409 mutant proteins were marginally different to wild type. In contrast, heme-induced inhibition of Cys-409 mutants of the isolated kinase domain and N-terminal-truncated proteins was substantially weaker than that of the full-length enzyme. A pulldown assay disclosed heme-dependent interactions between the N-terminal and kinase domains. Accordingly, we propose that heme regulation is induced by interactions between heme and the catalytic domain in conjunction with global tertiary structural changes at the N-terminal domain that accompany heme coordination and not merely by coordination of the heme iron with amino acids on the protein surface.  相似文献   

13.
The heme-regulated eukaryotic initiation factor-2alpha (eIF2alpha) kinase (HRI) regulates the initiation of protein synthesis in reticulocytes. The binding of NO to the N-terminal heme-binding domain (NTD) of HRI positively modulates its kinase activity. By utilizing UV-visible absorption, resonance Raman, EPR and CD spectroscopies, two histidine residues have been identified that are crucial for the binding of heme to the NTD. The UV-visible absorption and resonance Raman spectra of all the histidine to alanine mutants constructed were similar to those of the unmutated NTD. However, the change in the CD spectra of the NTD construct containing mutation of His78 to Ala (H78A) indicated loss of the specific binding of heme. The EPR spectrum for the ferric H78A mutant was also substantially perturbed. Thus, His78 is one of the axial ligands for the NTD of HRI. Significant changes in the EPR spectrum of the H123A mutant were also observed, and heme readily dissociated from both the H123A and the H78A NTD mutants, suggesting that His123 was also an axial heme ligand. However, the CD spectrum for the Soret region of the H123A mutant indicated that this mutant still bound heme specifically. Thus, while both His78 and His123 are crucial for stable heme binding, the effects of their mutations on the structure of the NTD differed. His78 appears to play the primary role in the specific binding of heme to the NTD, acting analogously to the "proximal histidine" ligand of globins, while His123 appears to act as the "distal" heme ligand.  相似文献   

14.
Heme-regulated eukaryotic initiation factor 2α kinase (HRI) functions under conditions of heme shortage caused by blood diseases such as erythropoietic protoporphyria and β-thalassemia, and retains the heme:globin ratio at 1:1 by sensing the heme concentration in reticulocytes. This HRI function is regulated by various factors including autophosphorylation and protein-protein interactions. A heat-shock protein controls HRI function, however, the molecular mechanism of catalytic regulation of HRI by the heat-shock protein is unclear. In the present study, we examined the interactions of HRI with a heat-shock protein, Hsp90, under various conditions, using a pull-down assay and measuring catalytic activity. It was found that [1] an interaction between Hsp90 and phosphorylated HRI was evident, whereas no interaction was observed between Hsp90 and HRI dephosphorylated by treatment with λ protein phosphatase; [2] Hsp90 enhanced the kinase activity of phosphorylated HRI but not dephosphorylated HRI, but this enhancement was not observed in the presence of heme; and, [3] autophosphorylation of HRI was not influenced by Hsp90. Therefore, we propose that autophosphorylation of HRI is critical for catalytic regulation by Hsp90 under heme-shortage conditions.  相似文献   

15.
16.
Recent studies indicate that p50(cdc37) facilitates Hsp90-mediated biogenesis of certain protein kinases. In this report, we examined whether p50(cdc37) is required for the biogenesis of the heme-regulated eIF2 alpha kinase (HRI) in reticulocyte lysate. p50(cdc37) interacted with nascent HRI co-translationally and this interaction persisted during the maturation and activation of HRI. p50(cdc37) stimulated HRI's activation in response to heme deficiency, but did not activate HRI per se. p50(cdc37) function was specific to immature and inactive forms of the kinase. Analysis of mutant Cdc37 gene products indicated that the N-terminal portion of p50(cdc37) interacted with immature HRI, but not with Hsp90, while the C-terminal portion of p50(cdc37) interacted with Hsp90. The Hsp90-specific inhibitor geldanamycin disrupted the ability of both Hsp90 and p50(cdc37) to bind HRI and promote its activation, but did not disrupt the native association of p50(cdc37) with Hsp90. A C-terminal truncated mutant of p50(cdc37) inhibited HRI's activation, prevented the interaction of Hsp90 with HRI, and bound to HRI irrespective of geldanamycin treatment. Additionally, native complexes of HRI with p50(cdc37) were detected in cultured K562 erythroleukemia cells. These results suggest that p50(cdc37) provides an activity essential to HRI biogenesis via a process regulated by nucleotide-mediated conformational switching of its partner Hsp90.  相似文献   

17.
Disulfide bond formation in the regulation of eIF-2 alpha kinase by heme   总被引:8,自引:0,他引:8  
The inhibition of the autophosphorylation of the heme-regulated eukaryotic initiation factor (eIF)-2 alpha kinase (HRI) by hemin is very similar to that produced by thiol oxidation by diamide. The results obtained from the analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of unphosphorylated and phosphorylated HRI under reducing and nonreducing conditions indicate that hemin promotes disulfide formation in HRI. Hemin-promoted disulfide formation in HRI occurs under quasi-physiological conditions, i.e. 30 degrees C, 10 min at hemin concentrations of 5-10 microM. Under nondenaturing conditions, unphosphorylated HRI, phosphorylated HRI, hemin-treated unphosphorylated HRI, and hemin-treated prephosphorylated HRI are all eluted identically on Sephacryl S-300 column chromatography with an apparent molecular mass of 290,000 daltons. It appears, therefore, that the disulfide formation promoted by hemin occurs within the unit of 290,000 daltons. In addition, hemin treatment of phosphorylated HRI results in the appearance of a disulfide-linked form of higher molecular mass when analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions. A similar high molecular mass form is observed when HRI is treated with 1,6-bismaleimidohexane, a double sulfhydryl cross-linker agent, and the autophosphorylation of HRI and the phosphorylation of eIF-2 alpha by HRI are greatly diminished; these effects are similar to the effects of hemin on HRI. We conclude that disulfide formation by hemin provides a likely mechanism by which hemin prevents the activation and inhibits the activity of HRI.  相似文献   

18.
The eIF2α kinase activity of the heme-regulated inhibitor (HRI) is regulated by heme which makes it a unique member of the family of eIF2α kinases. Since heme concentrations create an equilibrium for the kinase to be active/inactive, it becomes important to study the heme binding effects upon the kinase and understanding its mechanism of functionality. In the present study, we report the thermostability achieved by the catalytic kinase domain of HRI (HRI.CKD) upon ligand (heme) binding. Our CD data demonstrates that the HRI.CKD retains its secondary structure at higher temperatures when it is in ligand bound state. HRI.CKD when incubated with hemin loses its monomeric state and attains a higher order oligomeric form resulting in its stability. The HRI.CKD fails to refold into its native conformation upon mutation of H377A/H381A, thereby confirming the necessity of these His residues for correct folding, stability, and activity of the kinase. Though our in silico study demonstrated these His being the ligand binding sites in the kinase insert region, the spectra-based study did not show significant difference in heme affinity for the wild type and His mutant HRI.CKD.  相似文献   

19.
Nitric oxide (NO) has been reported to inhibit protein synthesis in eukaryotic cells by increasing the phosphorylation of the alpha-subunit of eukaryotic initiation factor (eIF) 2. However, the mechanism through which this increase occurs has not been characterized. In this report, we examined the effect of the diffusible gases nitric oxide (NO) and carbon monoxide (CO) on the activation of the heme-regulated eIF2alpha kinase (HRI) in rabbit reticulocyte lysate. Spectral analysis indicated that both NO and CO bind to the N-terminal heme-binding domain of HRI. Although NO was a very potent activator of HRI, CO markedly suppressed NO-induced HRI activation. The NO-induced activation of HRI was transduced through the interaction of NO with the N-terminal heme-binding domain of HRI and not through S-nitrosylation of HRI. We postulate that the regulation of HRI activity by diffusible gases may be of wider physiological significance, as we further demonstrate that NO generators increase eIF2alpha phosphorylation levels in NT2 neuroepithelial and C2C12 myoblast cells and activate HRI immunoadsorbed from extracts of these non-erythroid cell lines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号