首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leaching of NO 3 ? derived from ammoniacal fertilizers in the topsoil and subsequent uptake of NO 3 ? by plants from deeper layers may be used as a method of biological amelioration of subsurface soil acidity. This paper reports a glasshouse column experiment testing the above concept. Nitrogen with labelled 15N was supplied with and without lime to the surface soil (0–10 cm) as urea, (NH4)2SO4 or Ca(NO3)2 at a rate equivalent to 120 kg N ha?1. Soil columns were regularly watered from the top to facilitate NO 3 ? leaching. An aluminium-tolerant wheat genotype was grown for 38 days. The application of lime with nitrogen fertilizers increased growth of shoot and roots in all soil layers. The application of Ca(NO3)2 resulted in about 66% of recovery efficiency irrespective of whether lime was applied in the surface. This in turn resulted in about 0.2 units increase in rhizosphere pH in the subsurface (10–15 cm) soil layer compared to the same layer of the unlimed control. The supply of urea and (NH4)2SO4 alone or with lime did not increase rhizosphere pH in the subsurface soil layers. Importantly, this study indicates that it is possible to exploit the process of nitrate uptake by wheat to increase pH in acidic subsurface soil.  相似文献   

2.
The management of subsurface soil acidity remains a challenge. We tested the ability of calcium nitrate fertilization to force net anion uptake by wheat within acidic subsurface layers and hence its ability to increase, or at least maintain, soil pH within the acidic layer. The trials were conducted at two field sites: the moderately acidic site ran for 3 years (2006?C08) while the trial at the most acidic site was conducted for 2 years (2006?C07). Five treatments (nitrogen form and application method) were compared. Uptake efficiency of nitrogen (N) as measured by 15N was similar (at ~40 to 70%) for both urea and nitrate sources at both sites. The urea source acidified the soils (up to 0.2 pH in 3 years) whilst the nitrate form resulted in increases in soil pH (up to 0.3 pH). The increases in pH were of a similar magnitude to the acidification rate measured in a nearby long-term trial. The dry matter production and grain yield in our trials were compromised by the decade long drought in our region, so the work should be repeated during wetter seasons. Calcium nitrate fertilization is a useful tool for at least maintaining soil pH, and even reversing soil acidification, in acidic subsurface soil layers.  相似文献   

3.
Subsoil acidity occurs in many agricultural lands in the world, and is considered to be an irreversible constraint due to amelioration difficulties. This field study aimed to develop a biological method to ameliorate subsoil acidity through the root-induced alkalisation resulting from nitrate uptake. Aluminium (Al)-tolerant wheat variety Diamondbird and Al-sensitive variety Janz (Triticum aestivum L.) were grown at two contrasting field sites with mild and severe subsurface acidity, respectively, and were supplied with either Ca(NO3)2 at the soil surface, Ca(NO3)2 at 10 cm depth or urea at 10 cm depth. Application of nitrate increased rhizosphere pH up to 0.5 units and bulk soil pH to 0.3 units, and to a depth >30 cm in the Kandosol. The placement of nitrate at 10 cm increased subsoil pH more than the surface application. Nitrate application increased nitrate concentration in soil profiles as expected, whereas urea application increased NH 4 + concentration which in turn favored acidification processes. Diamondbird generally produced more tillers and shoot biomass at anthesis but the two varieties did not differ in grain yield or rhizosphere alkalisation. Similar grain yields were achieved under supply of nitrate and urea. The results suggest that biological amelioration through managing nitrate uptake is possible as part of an integrated approach to combat subsoil acidity in farming systems.  相似文献   

4.

Background and Aims

Increased plant density improves grain yield and nitrogen (N)–use efficiency in winter wheat (Triticum aestivum L.) by increasing the root length density (RLD) in the soil and aboveground N–uptake (AGN) at maturity. However, how the root distribution and N–uptake at different soil depths is affected by plant density is largely unknown.

Methods

A 2–year field study using the winter wheat cultivar Tainong 18 was conducted by injecting 15?N–labeled urea into soil at depths of 0.2, 0.6, and 1.0 m under four plant densities of 135 m?2, 270 m?2,405 m?2, and 540 m?2.

Results

We observed significant RLD and 15?N–uptake increases at each soil depth as the plant density increased from 135 to 405 m?2. 15?N–uptake increased with plant density as the soil depth increased, although the corresponding RLD value fell with depth. The 15?N–uptake at each soil depth was positively related to the RLD at the same depth. The total AGN was positively related to RLD in deep soil, especially at 0.8–1.2 m.

Conclusions

Increasing the plant density from 135 m?2 to the optimum increases AGN primarily by increasing the RLD in deep soil and therefore increasing the plant density of winter wheat can be used to efficiently recover N leached to deep soil. Moreover, the total root numbers per unit area and RLD still increased at supraoptimal density while shoot number and N uptake stagnated.  相似文献   

5.
The soil pH in the vicinity of the roots can be changed by an imbalance in supply of predominant anions or cations. A soil column experiment examined the effects of localised supply of nitrate and P on plant growth and pH change in a Podosol (pH 3.76 in 0.01 M CaCl2 and pH buffering capacity 0.81 cmol kg?1 pH?1). Nitrate [(Ca(NO3)2] and P [(NaH2PO4)] fertilizers were applied alone or in combination to either 0–5 cm or 10–15 cm layer of the soil column. Aluminium-tolerant (ET8) and sensitive (ES8) wheat (Triticum aestivum, L) were grown for 38 days. Plant height, water use and tiller number were measured during the growth period. Biomass production, root growth and soil pH were determined at the final harvest. On average, ET8 had a greater shoot biomass, root length and water use than ES8. The greatest shoot biomass and water use were achieved where N and P were applied together in the 0–5 cm layer, followed by N and P together in the 10–15 cm layer and the lowest where N was applied in the 0–5 cm and P in the 10–15 cm layer. Root length density in the subsoil was greatest where N and P were applied together followed by N alone, and the lowest with the supply of P alone. The effect of localised supply was greater on rhizosphere pH than bulk soil pH. The application of N and P together in topsoil and subsoil layers increased rhizosphere pH by 0.4 and 0.5 units respectively, compared to the corresponding layers in the treatment where N and P were applied uniformly in the whole soil column. Changes in rhizosphere pH were similar under both genotypes, although ET8 produced more roots than ES8 in the soil profile. The results suggest that the combined application of nitrate and P is necessary to maximise root proliferation and root-induced alkalisation in acid subsoil.  相似文献   

6.
To examine the effects of subsoil NaCl salinity in relation to water stress imposed at different growth stages, wheat was grown in a heavy texture clay soil (vertosol) under glasshouse conditions in polythene lined cylindrical PVC pots (100 cm long with 10.5 cm diameter) with very low salinity level (ECe 1.0 dS/m; ESP 1.0 and Cl 30 mg/kg soil) in top 10 cm soil (10–20 cm pot zone) and low salinity level (ECe 2.5 dS/m, ESP 5, and Cl 100 mg/kg soil) in top 10–20 cm soil (20–30 cm pot zone). The plants were exposed to three subsoil salinity levels in the 20–90 cm subsoil (30–100 cm pot zone) namely low salinity (ECe: 2.5 dS/m, ESP: 5, Cl: 100 mg/kg soil), medium salinity (ECe: 4.0 dS/m, ESP: 10, Cl: 400 mg/kg) and high salinity (ECe: 11.5 dS/m, ESP: 20, Cl: 1950 mg/kg) in the subsoil (20–90 cm soil layer: 30–100 cm pot zone). Watering of plants was withheld for 20 days commencing at either early booting or anthesis or mid grain filling, and then resumed until maturity, and these treatments were compared with no water stress. Water stress commencing at anthesis stage had the most depressing effect on grain yield and water use efficiency of wheat followed by water stress at grain filling stage and early booting stage. High subsoil salinity reduced grain yield by 39.1, 24.3%, and 13.4% respectively in plants water-stressed around anthesis, early booting, and mid grain filling compared with 36.6% in well-watered plants. There was a significant reduction in root biomass, rooting depth, water uptake and water use efficiency of wheat with increasing subsoil salinity irrespective of water regimes. Plants at high subsoil salinity had 64% of their root biomass in the top 0–30 cm soil and there was a marked reduction in subsoil water uptake. Roots also penetrated below the non-saline surface into salinised subsoil and led to attain high concentration of Na and Cl and reduced Ca/Na and K/Na ratio of flag leaf at anthesis stage. Results suggest that high subsoil salinity affects root growth and water uptake, grain yield and water use efficiency even in well water plants. Water stress at anthesis stage had the most depressing effect on wheat.  相似文献   

7.
The effect of soil acidity on root and rhizosheath development in wheat and barley seedlings was investigated in an acid Ferrosol soil to which various amounts of lime (CaCO3) were applied to modify soil Al concentrations (pH (CaCl2): 4.22 to 5.35 and Al (CaCl2 extract): 17.7 to 0.4 mg kg?1 soil; respectively), and Ferrosol soil from an adjacent location at the same site which had a higher Al concentration (pH 4.19; 29.2 mg kg?1 Al). The cereal lines were selected on the basis of differences in their rate of root growth, Al-resistance and root hair morphology. Root morphology was assessed after 7 days of growth. The length of fine (mainly lateral) roots of Al-sensitive genotypes was more sensitive to soil Al concentrations than that of the coarse (mainly primary) roots. The experiments demonstrated that even where root growth was protected by expression of the TaALMT1 gene for Al-resistance, root-soil contact was diminished by soil acidity because root hair length (in many lines), and root hair density and rhizosheath formation (all lines) were adversely affected by soil acidity. In the case of Al-sensitive lines, fine root growth and rhizosheath mass were reduced over much the same range of soil Al concentrations (i.e. >3–6 mg kg?1 Al). Although Al-resistant lines could maintain fine root length under these conditions, they were similarly unable to maintain rhizosheath mass. This finding may help to explain why Al-resistant wheats which yield relatively well in deep acid soils, may also benefit from application of lime to the surface layers of the soil.  相似文献   

8.

Background and aims

Much attention has focused on the effects of tropospheric ozone (O3) on terrestrial ecosystems and plant growth. Since O3 pollution is currently an issue in China and many parts of the world, understanding the effects of elevated O3 on soil carbon (C) and nitrogen (N) sequestration is essential for efforts to predict C and N cycles in terrestrial ecosystems under predicted increases in O3. Thus the main objective of this study was to determine whether an increases in atmospheric O3 concentration influenced soil organic C (SOC) and N sequestration.

Methods

A free-air O3 enrichment (O3-FACE) experiment was started in 2007 and used continuous O3 exposure from March to November each year during crop growth stage in a rice (Oryza sativa L.)—wheat (Triticum aestivum L.) rotation field in the Jiangsu Province, China. We investigated differences in SOC and N and soil aggregate composition in both elevated and ambient O3 conditions.

Results

Elevated atmospheric O3 (18–80 nmol mol?1 or 50 % above the ambient) decreased the SOC and N concentration in the 0–20 cm soil layer after 5 years. Elevated O3 significantly decreased the SOC concentration by 17 % and 5.6 % in the 0–3 cm and the 10–20 cm layers, respectively. Elevated O3 significantly decreased the N concentration by 8.2–27.8 % in three layers at the 20 cm depth. In addition, elevated O3 influenced the formation and transformation of soil aggregates and the distribution of SOC and N in the aggregates across soil layer classes. Elevated O3 significantly decreased the macro-sized aggregate fraction (16.8 %) and associated C and N (0.5 g kg?1 and 0.32 g kg?1, respectively), and significantly increased the silt+ clay-sized aggregate fraction (61 %) and associated C (1.7 g kg?1) in the 0–3 cm layer. Elevated O3 significantly decreased the macro-sized aggregate fraction (9.6 %) and associated C and N (1.4 g kg?1 and 0.35 g kg?1, respectively), and significantly increased the silt+ clay-sized aggregate fraction (41.8 %) and decreased the corresponding associated N (0.14 g kg?1) in the 3–10 cm layer. Elevated O3 did not significantly effect the formation and transformation of aggregates in the 10–20 cm layer, yet it did significantly increase the C concentration in the macro-sized fraction (1 g kg?1) and decrease the N concentration in the macro- and micro-sized fractions (0.24 g kg?1 and 0.16 g kg?1, respectively).

Conclusion

Long-term exposure to elevated atmospheric O3 negatively affected the physical structure of the soil and impaired soil C and N sequestration.  相似文献   

9.
Forest fires often result in a series of biogeochemical processes that increase soil nitrate (NO3 ?) concentrations for several years; however, the dynamic nature of inorganic nitrogen (N) cycling in the plant–microbe–soil complex makes it challenging to determine the direct causes of increased soil NO3 ?. We measured gross inorganic N transformation rates in mineral soils 2 years after wildfires in three central Idaho coniferous forests to determine the causes of the elevated soil NO3 ?. We also measured key factors that could affect the soil N processes, including temperature during soil incubation in situ, soil water content, pH and carbon (C) availability. We found no significant differences (P = 0.461) in gross nitrification rates between burned and control soils. However, microbial NO3 ? uptake rates were significantly lower (P = 0.078) in burned than control soils. The reduced consumption of NO3 ? caused slightly elevated NO3 ? concentrations in the burned soils. C availability was positively correlated with microbial NO3 ? uptake rates. Despite reduced microbial NO3 ? uptake capacity in the burned soils, soil microbes were a strong enough N sink to maintain low soil NO3 ? concentrations 2 years post fire. Soil NH4 + concentrations between the treatments were not significantly different (P = 0.673). However, gross NH4 + production and microbial uptake rates in burned soils were significantly lower (P = 0.028 and 0.035, respectively) than in the controls, and these rates were positively correlated with C availability. Our results imply that C availability is an important factor regulating soil N cycling of coniferous forests in the region.  相似文献   

10.
Soil organic carbon (soil C) sequestration in forests is often higher under nitrogen (N2)-fixing than under non-N2-fixing tree species. Here, we examined whether soil C could be increased using mixed-species plantations compared to monocultures, which are less productive aboveground than mixtures. In addition, we compared soil C sequestration under N2-fixing trees with non-N2-fixing trees that received N fertilizer. Monocultures of Eucalyptus globulus (E) and the N2-fixing Acacia mearnsii (A) and mixtures of these species were planted in a replacement series: 100%E, 75%E + 25%A, 50%E + 50%A, 25%E + 75%A and 100%A. Soil samples were also collected from fertilized monoculture treatments (100%EFer) of E. globulus (250 kg N ha?1). Total organic C, N and phosphorus were determined at age 8 years at two soil depths (0–10 cm and 10–30 cm) and three density fractions of soil organic matter (SOM) were quantified for 0–5 cm depth. Soil C was highest in the 50%E + 50%A mixed stand and was highly correlated with aboveground biomass, not to the percentage of A. mearnsii in mixtures. This was largely due to soil C at 10–30 cm because there were no treatment effects on soil C at 0–10 cm. All density fractions of SOM at 0–5 cm increased with the percentage of A. mearnsii. In E. globulus monocultures, N fertilization did not increase soil C when compared with unfertilized stands. These results indicate that the inclusion of N2-fixing trees into eucalypt plantations may increase soil C stocks through increased productivity.  相似文献   

11.
Microbial N turnover processes were investigated in three different forest soil layers [organic (O) layer, 0–10 cm depth (M1), 10–40 cm depth (M2)] after the clear cutting of a nitrogen (N) saturated spruce stand at the Höglwald Forest (Bavaria, Germany). The aim of the study was to provide detailed insight into soil-layer specific microbial production and the consumption of inorganic N within the main rooting zone. Furthermore, we intended to clarify the relevance of each soil layer investigated in respect of the observed high spatial variation of seepage water nitrate (NO 3 ? ) concentration at a depth of 40 cm. The buried bag and the 15N pool dilution techniques were applied to determine the net and gross N turnover rates. In addition, soil pH, C:N ratio, pool sizes of soil ammonium (NH 4 + ) and NO 3 ? , as well as quantities of microbial biomass carbon (Cmic) and nitrogen (Nmic) were determined. The 40 cm thick upper mineral soil was found to be the main place of NO 3 ? production with a NO 3 ? supply or net nitrification three times higher than in the considerably thinner O layer. Nevertheless, O layer nitrification processes determined via in situ field experiments showed significant correlation with seepage water NO 3 ? . An improved correlation noted several months after the cut may result from a transport-induced time shift of NO 3 ? with downstream hydrological pathways. In contrast, the soil laboratory incubation experiments found no indication that mineral soil is relevant for the spatial heterogeneity of seepage water NO 3 ? . The results from our study imply that in situ experiments may be better suited to studies investigating N turnover in relation to NO 3 ? loss via seepage water in similar ecosystems in order to gain representative data.  相似文献   

12.
Restoration of soil organic carbon (SOC) in arable lands represents potential sink for atmospheric CO2. The strategies for restoration of SOC include the appropriate land use management, cropping sequence, fertilizer and organic manures application. To achieve this goal, the dynamics of SOC and nitrogen (N) in soils needs to be better understood for which the long-term experiments are an important tool. A study was thus conducted to determine SOC and nitrogen dynamics in a long-term experiment in relation to inorganic, integrated and organic fertilizer application in rice-cowpea system on a sandy loam soil (Typic Rhodualf). The fertilizer treatments during rice included (i) 100% N (@ 100 kg N ha?1), (ii) 100% NP (100 kg N and 50 kg P2O5 ha?1), (iii) 100% NPK (100 kg N, 50 kg P2O5 and 50 kg K2O ha?1) as inorganic fertilizers, (iv) 50% NPK + 50% farm yard manure (FYM) (@ 5 t ha?1) and (v) FYM alone @ 10 t ha?1 compared with (vi) control treatment i.e. without any fertilization. The N alone or N and P did not have any significant effect on soil carbon and nitrogen. The light fraction carbon was 53% higher in NPK + FYM plots and 56% higher in FYM plots than in control plots, in comparison to 30% increase with inorganic fertilizers alone. The microbial biomass carbon and water-soluble carbon were relatively higher both in FYM or NPK + FYM plots. The clay fraction had highest concentration of C and N followed by silt, fine sand and coarse sand fractions in both surface (0–15 cm) and subsurface soil layers (15–30 cm). The C:N ratio was lowest in the clay fraction and increased with increase in particle size. The C and N enrichment ratio was highest for the clay fraction followed by silt and both the sand fractions. Relative decrease in enrichment ratio of clay in treatments receiving NPK and or FYM indicates comparatively greater accumulation of C and N in soil fractions other than clay.  相似文献   

13.
The objective of this study was to determine the effects of plant growth regulator (PGR) (no PGR, trinexapac-ethyl, and paclobutrazol) and N fertilizer (zero N, an average of 37 kg N ha?1 month?1, 6 and 12 kg N ha?1 week?1) on soil organic C (SOC) and soil N in creeping bentgrass (Agrostis stolonifera L.) fairway turf. After 4 years of field experiments soil samples were obtained from soil depths of 0–2.5, 2.5–5, 5–7.5, 7.5–10, 10–15, 15–20, and 20–30 cm. Soil bulk density, SOC, total N, NO 3 ? –N, and NH 4 + –N concentrations were determined. Paclobutrazol and trinexapac-ethyl application increased SOC. The 37 kg N ha?1 month?1 application increased SOC at the 0–2.5 cm depth with both PGRs. When paclobutrazol was used, N fertilizer always increased SOC; however, the greatest increase was observed with the 12 kg N ha?1 week?1 application when compared to other rates, inversely related to the NH 4 + –N concentration. Nitrogen application increased soil total N and NO 3 ? –N in the upper three depths. The application of PGRs and N fertilizer to creeping bentgrass fairway turf is an effective strategy for promoting C sequestration.  相似文献   

14.
A sophisticated soil microcosm system and 15N-labeled urea were used to investigate nitrogen (N) use efficiency and soil N dynamics in a rice monoculture system in two successive seasons. Topsoil (0 cm?C20 cm) and subsoil (20 cm?C50 cm) samples were collected from a traditional double rice cropping field in the Jiangxi Province, China, and these soil samples were derived from Quaternary red clay. Treatments were randomly assigned with two irrigation regimes and three N application rates (no application control, 80% traditional rate and 100% traditional rate noted as N0, N1 and N2, respectively). The levels of 15N recovery of plants, 15N and N remaining in soil were determined. Moreover, the N dynamic of soil solution from different layers of the soil profile was surveyed. The results showed that the effects of irrigation management and N application rate varied in different rice growing seasons. Irrigation regimes had remarkable effects on grain yield and chemical 15N fertilizers (CF-15N) uptake. When compared to flood irrigation (FI), the shallow water depth with wetting and drying (WD) increased grain yield up to 5.7%?C20%. Although the highest grain yield was obtained with reduced N application level, both N apparent recovery (NAR) and 15N use efficiency (the percentage of plant N uptake derived from applied N, %Ndfan) significantly decreased with increasing N inputs. However, the interaction between irrigation management and N application rate on grain yield and N use efficiency (NUE) of CF-15N were not significant. A survey of soil solutions every 5 days indicated that NH 4 + -N was the main residual form of N, and high NH 4 + -N leaching was observed. When compared to FI, WD decreased vertical NH 4 + -N and TN leaching, especially at 10?C50 cm depths of soil profile in the second season. NH 4 + -N was the main N residual form in the soil profile. Therefore, in this study, the WD irrigation regime and reduced rate (N1) was the optimal irrigation and fertilizer management strategy to increase the NUE of CF-N, increase the after effects of CF-15N, decrease leaching loss of CF-15N and minimize the shallow groundwater pollution risk, which were all beneficial for the ecological environment.  相似文献   

15.
Surface and subsurface litter fulfil many functions in the biogeochemical cycling of C and N in terrestrial ecosystems. These were explored using a microcosm study by monitoring dissolved inorganic nitrogen (DIN) (NH4 +–N?+?NO3 ?–N), dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) concentrations and fluxes in drainage water under ambient outdoor temperatures. Subsurface litter remarkably reduced the DIN concentrations in winter, probably by microbial N uptake associated with higher C:N ratio of added litter compared with soil at 10–25?cm depth. Fluxes of DIN were generally dominated by NO3 ?–N; but NH4 +–N strongly dominated DIN fluxes during freeze–thaw events. Appreciable concentrations of NH4 +–N were observed in the drainage from the acid grassland soils throughout the experiment, indicating NH4 +–N mobility and export in drainage water especially during freeze–thaw. Litter contributed substantially to DOC and DON production and they were correlated positively (p?<?0.01) for all treatments. DOC and DON concentrations correlated with temperature for the control (p?<?0.01) and surface litter (p?<?0.001) treatments and they were higher in late summer. The subsurface litter treatment, however, moderated the effect of temperature on DOC and DON dynamics. Cumulative N species fluxes confirmed the dominance of litter as the source of DON and DOC in the drainage water. DON constituted 42, 46 and 62% of cumulative TDN flux for control, surface litter and subsurface litter treatments respectively.  相似文献   

16.
Two-year potato rotations were evaluated for their effects on soil mineralizable N and soil N supply. Pre-plant soil samples (0–15 cm) collected from the potato year after seven rotation cycles were used to estimate soil mineralizable N using a 24 week aerobic incubation. Potentially mineralizable N (N 0 ) ranged from 102 to 149 kg N ha?1, and was greater after pea/white clover and oats/Italian ryegrass than after oats by an average of 35 and 22%, respectively. Labile, intermediate and stable mineralizable N pools were increased after pea/white clover compared with oats, whereas only the stable mineralizable N pool was increased after oats/Italian ryegrass. Potato plant N uptake with no fertilizer applied was greater in potato-pea/white clover compared with the three other rotations (126 vs. average of 67 kg N ha?1). Choice of rotation crop in potato production influences both the quantity and quality of soil mineralizable N.  相似文献   

17.
The practice of harvesting forest residues is rapidly increasing due to rising demand for renewable energy. However, major concerns have been raised about the sustainability of this practice and its net impact on long term soil ability to support forest productivity, particularly through second and subsequent rotations. In this study, soil chemical properties such as acidity, total N and C, available NO3–N and NH4–N and exchangeable cations were measured in all horizons in peaty gleys soils under one of the oldest experiments in Europe—a 28-year-old second rotation stand of Sitka spruce (Picea sitchensis), in Kielder forest, UK. Treatments included Whole Tree Harvesting (WTH—of all above ground biomass), Conventional stem-only harvesting (CH) of the first rotation crop, and repeated Fertilisation (FE) after the planting of the second rotation forest. This study demonstrates the soil changes underpinning the reduced second rotation tree productivity on these acidic upland sites under WTH, a further 18 years after the investigation by Proe and Dutch (1994). Overall, WTH increased soil acidity significantly (p < 0.05) and reduced soil base saturation whilst FE reduced soil acidity (p < 0.05) and increased soil base saturation as compared to CH. Soil moisture was significantly higher (p < 0.01) under WTH compared to CH and FE plots. There was no evidence that WTH decreased soil organic carbon (SOC) and soil nitrogen (N), but to the contrary there were significantly (p < 0.01) higher concentrations and stocks of total C and N in the WTH soils compared with CH and FE. The depletion of SOC and N in CH and FE plots was attributed to much higher soil mineralisation rates associated with the brash and fertilisation as compared to the WTH plots, where significantly less soil available NO3–N (p < 0.01) was found. In the long term WTH on peaty gley soils appears positive for soil C and N storage. However, WTH had a long term negative impact on soil and tree nutrition of K+ and P, which are currently at deficient levels, but has had a stabilising effect on tree N nutrition as measured in twigs and needles. These results suggest that whilst WTH lead to a reduction in aboveground tree biomass compared to conventional harvest, these practices on selected soil types and certain sites may be beneficial for soil C and N sequestration. The overall findings of this study imply that cost benefit analyses for each site should be carried out before decisions are made on the appropriate type of forest operations (harvesting and replanting), considering both geology and soils in order to serve both environmental benefits, long term sustainability and the available biomass production for timber and biofuel.  相似文献   

18.
Soil microbial properties play a key role in belowground ecosystem functioning, but are not well understood in forest ecosystems under nitrogen (N) enrichment. In this study, soil samples from 0–10 cm and 10–20 cm layers were collected from a Dahurian larch (Larix gmelinii Rupr.) plantation in Northeast China after six consecutive years of N addition to examine changes in soil pH, nutrient concentrations, and microbial biomass and activities. Nitrogen addition significantly decreased soil pH and total phosphorus, but had little effect on soil total organic carbon (TOC) and total N (TN) concentrations. The NO 3 ? -N concentrations in the two soil layers under N addition were significantly higher than that in the control, while NH 4 + -N concentrations were not different. After six years of N addition, potential net N mineralization and nitrification rates were dramatically increased. Nitrogen addition decreased microbial biomass C (MBC) and N (MBN), and MBC/TOC and MBN/TN in the 0–10 cm soil layer, but MBC/MBN was increased by 67% in the 0–10 cm soil layer. Soil basal respiration, microbial metabolic quotient (qCO2), and β-glucosidase, urease, acid phosphomonoesterase and nitrate reductase activities in the two soil layers showed little change after six years of N addition. However, soil protease and dehydrogenase activities in the 0–10 cm layer were 41% and 54% lower in the N addition treatment than in the control, respectively. Collectively, our results suggest that in the mid-term N addition leads to a decline in soil quality in larch plantations, and that different soil enzymes show differentiated responses to N addition.  相似文献   

19.

Purpose

This study investigated the residual contribution of legume and fertilizer nitrogen (N) to a subsequent crop under the effect of elevated carbon dioxide concentration ([CO2]).

Methods

Field pea (Pisum sativum L.) was labeled in situ with 15N (by absorption of a 15N-labeled urea solution through cut tendrils) under ambient and elevated (700 μmol mol–1) [CO2] in controlled environment glasshouse chambers. Barley (Hordeum vulgare L.) and its soil were also labeled under the same conditions by addition of 15N-enriched urea to the soil. Wheat (Triticum aestivum L.) was subsequently grown to physiological maturity on the soil containing either 15N-labeled field pea residues (including 15N-labeled rhizodeposits) or 15N-labeled barley plus fertilizer 15N residues.

Results

Elevated [CO2] increased the total biomass of field pea (21 %) and N-fertilized barley (23 %), but did not significantly affect the biomass of unfertilized barley. Elevated [CO2] increased the C:N ratio of residues of field pea (18 %) and N-fertilized barley (19 %), but had no significant effect on that of unfertilized barley. Elevated [CO2] increased total biomass (11 %) and grain yield (40 %) of subsequent wheat crop regardless of rotation type in the first phase. Irrespective of [CO2], the grain yield and total N uptake by wheat following field pea were 24 % and 11 %, respectively, higher than those of the wheat following N-fertilized barley. The residual N contribution from field pea to wheat was 20 % under ambient [CO2], but dropped to 11 % under elevated [CO2], while that from fertilizer did not differ significantly between ambient [CO2] (4 %) and elevated [CO2] (5 %).

Conclusions

The relative value of legume derived N to subsequent cereals may be reduced under elevated [CO2]. However, compared to N fertilizer application, legume incorporation will be more beneficial to grain yield and N supply to subsequent cereals under future (elevated [CO2]) climates.  相似文献   

20.

Background and aims

As low initial uptake and essentially zero later uptake limit efficacy of N fertilization for temperate conifers, we investigated factors limiting long-term tree uptake of residual 15?N-labeled fertilizer.

Methods

We used a pot bioassay to assess availability of 15?N from soil sampled 10 years after fertilization of a Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stand with 15?N-urea (200 kg N ha?1). Douglas-fir seedlings were grown for 2 years in organic (designated LFH) and mineral soil (0–10 cm) layers reconstructed from control and fertilized plots; residual fertilizer N amounted to 10 % of LHF and 5 % of MIN N.

Results

Percentage recovery of residual 15?N in seedlings was not affected by the original season of fertilization (spring vs. fall), but differed by the source of 15?N excess. LFH was a better source of residual 15?N; 12.4 % of residual LFH 15?N was taken up by seedlings and 7.6 % transferred to soil, whereas mineral soil yielded only 8.3 % of residual 15?N to seedling uptake and 2.4 % to LFH. Extractable inorganic N was 2–3 orders of magnitude higher in fallow pots.

Conclusions

Ten-year residual fertilizer 15?N was clearly cycling between LFH and mineral soil and available to seedlings, indicating that other factors such as denitrification, leaching, and asynchrony of soil N mineralization and tree uptake limit long-term residual N fertilizer uptake in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号