共查询到20条相似文献,搜索用时 375 毫秒
1.
Owen Jeffrey S. Wang Ming Kuang Sun Hai Lin King Hen Biau Wang Chung Ho Chuang Chin Fang 《Plant and Soil》2003,251(1):167-174
We used the buried bag incubation method to study temporal patterns of net N mineralization and net nitrification in soils at Ta-Ta-Chia forest in central Taiwan. The site included a grassland zone, (dominant vegetation consists of Yushania niitakayamensis and Miscanthus transmorrisonensis Hayata) and a forest zone (Tsuga chinensis var. formosana and Yushania niitakamensis). In the grassland, soil concentration NH4
+ in the organic horizon (0.1–0.2 m) ranged from 1.0 to 12.4 mg N kg–1 soil and that of NO3
– varied from 0.2 to 2.1 mg N kg–1 soil. In the forest zone, NH4
+ concentration was between 2.8 and 25.0 mg N kg–1 soil and NO3
–varied from 0.2 to 1.3 mg N kg–1 soil. There were lower soil NH4
+ concentrations during the summer than other seasons. Net N mineralization was higher during the summer while net nitrification rates did not show a distinct seasonal pattern. In the grassland, net N mineralization and net nitrification rates were between –0.1 and 0.24 and from –0.04 to 0.04 mg N kg–1 soil day–1, respectively. In the forest zone, net N mineralization rates were between –0.03 and 0.45 mg N kg–1 soil day–1 and net nitrification rates were between –0.01 and 0.03 mg N kg–1 soil day–1. These differences likely result from differing vegetation communities (C3 versus C4 plant type) and soil characteristics. 相似文献
2.
火烧对草地土壤氮总矿化、硝化及无机氮消耗速率的影响 总被引:8,自引:1,他引:8
采用同位素^15N库稀释技术结合扰动较小的管型取样法,测定了羊草草地火烧区与未烧区不同季节土壤氮的总矿化速率、总硝化速率、无机氮消耗速率.结果表明,火烧地的氮总矿化与硝化速率在牧草返青后的4、5月份均高于未烧地,7月份差异不显著,到生长季末的9月份又低于未烧地;火烧地NH^4-N的消耗速率7月份以前均高于未烧地,9月份低于未烧地,N03^--N的消耗4、5份火烧地要高于未烧地,7、9月份又低于未烧地;火烧地土壤NH4^ -N含量在4、5和7月份均高于未烧地,9月份基本没有差别,而N03^--N在4、5月份无大差别,7、9月份高于未烧地. 相似文献
3.
Danilo Hottis Lyra Leandro de Freitas Mendonça Giovanni Galli Filipe Couto Alves Ítalo Stefanine Correia Granato Roberto Fritsche-Neto 《Molecular breeding : new strategies in plant improvement》2017,37(6):80
In maize breeding, genomic prediction may be an efficient tool for selecting single-crosses evaluated under abiotic stress conditions. In addition, a promising strategy is applying multiple-trait genomic prediction using selection indices (SIs), increasing genetics gains and reducing time per cycles. In this study, we aimed (i) to compare accuracy of single- and multi-trait genomic prediction (STGP; MTGP) in two maize datasets, (ii) to evaluate prediction of four selection indices that could contribute to the selection of tropical maize hybrids under contrasting nitrogen conditions, and (iii) to compare the use of linear (GBLUP) and nonlinear (RKHS/GK) kernels in STGP and MTGP analyses. For either single-trait GBLUP and RKHS analyses, the highest values obtained for accuracy were 0.40 and 0.41 using harmonic mean (HM), respectively. From multi-trait GBLUP and GK, using the combination of selection indices in MTGP seems to be suitable, increasing the accuracy. Adding grain yield and plant height in MTGP showed a slight improvement in accuracy compared to STGP. In general, there was a modest benefit of using single-trait RKHS and GK multi-trait, rather than GBLUP. 相似文献
4.
Simulation of the decomposition and nitrogen mineralization of aboveground plant material in two unfertilized grassland ecosystems 总被引:3,自引:1,他引:3
A simple model of the decomposition and nitrogen mineralization of plant material from two unfertilized grassland ecosystems has been developed, with only the proportion of leaves and stems in the original material, the initial nitrogen contents of these plant parts and temperature as input data. The model simulates carbon losses from stems and leaves, using a double exponential decay function, with the temperature sum as independent variable. Mineralization of nitrogen is not calculated via microbial growth rates, but simulated on the basis of the carbon utilization efficiency of the microorganisms and the critical C/N ratio, i.e. the C/N ratio of the litter at which the microbial demand for nitrogen is met exactly. The parameter values for leaching fractions of carbon and nitrogen, relative decay rates, microbial carbon utilization efficiencies and critical C/N ratios were derived from a litter bag experiment with 12 litter types (species) including both green and dead materials, carried out in two unfertilized grassland ecosystems differing in production level. The model was evaluated using a cross-validation method, in which one species was omitted from the parametrization procedure, and its decomposition and mineralization were predicted by the resulting model. In general there was good agreement between the observed and predicted amounts of carbon and nitrogen remaining for all green litter types/species, but carbon and nitrogen dynamics in the dead material of Festuca rubra were poorly predicted. This disparity has been attributed to the proportion of leaves in the material of Festuca rubra (95%) being far beyond the range of leaf proportions in the three litter types the calibration set consisted of (8–35%). When the data of all litter types were used to determine the model parameters, good agreement was obtained between measured and simulated values for the changes in nitrogen and carbon in all litter types of both the green and dead material series. Optimization yielded parameter values for microbial carbon utilization efficiencies of 0.30 for microorganisms associated with green litter and 0.35 for those associated with dead litter. The critical C/N ratios for green and dead material were found to be 29 and 36, respectively. 相似文献
5.
Seasonal variations in nitrogen mineralization under three land use types in a grassland landscape 总被引:1,自引:0,他引:1
Soil nitrogen (N) mineralization is an important component of the N cycling process in ecosystems. In this study, we assessed the seasonal patterns of net soil N mineralization and nitrification using an intact soil core incubation method in the upper 0–10 cm soil layer in three representative land use types. These included a fenced steppe, an abandoned field and a crop field in a grassland landscape of Inner Mongolia, China. The study was conducted from September 2004 to August 2005. Our results demonstrate marked seasonal variations in inorganic N pools, net nitrogen mineralization and net nitrification. Net N mineralization was higher in the crop field than in the fenced steppe and the abandoned field. Daily rates of N mineralization and nitrification during the growing season were approximately twice their corresponding mean annual rates. Accumulative mineralization and nitrification of N during the growing season accounted for about 90 and 85% of that measured for the entire year. Rates of mineralization and nitrification were positively correlated with soil bulk density, but negatively correlated with soil pH. Net N mineralization and nitrification were strongly regulated by land use, precipitation, soil water and temperature. 相似文献
6.
The amounts of mineral-nitrogen (NH4−N+NO3−N) extracted by 2MKCL and the net amounts of N mineralized (δ Min-N) during a 10-day incubation of field-moist soils, air-dried then rewetted
samples, and chloroform-fumigated samples, were measured in a range of 20 topsoils from grasslands. Air-drying generally increased
extractable-N and the δ Min-N of the remoistened soils, but decreased the Min-N flush after fumigation. The C∶N ratios (CO2−C production: net Min-N production) over 10 days decreased significantly from an average of 25 to 12 after initial air-drying,
suggesting that substrates of low C∶N ratio, such as microbial cells, were contributiong to the extra N mineralized after
the air-drying treatment. A procedure to quantify the contribution from microbial-N to the increased δ Min-N after air-drying
was only partially successful, but indicated a large proportion of this increase was derived from microbial cells killed by
desccation. 相似文献
7.
冬小麦/夏玉米轮作体系中土壤氮素矿化及预测 总被引:17,自引:2,他引:17
应用田间试验结果研究了冬小麦和夏玉米生长期的土壤氮素矿化量,并用间隙淋洗好气培养试验结合一级动力学模型对田间氮素矿化量进行了预测。结果表明,土壤氮素矿化量在年际间和作物间的变异很大,夏玉米季一般高于冬小麦季,从而导致夏玉米季施用氮肥的增产作用不明显,冬小麦季矿化量占当季作物最高吸氮量的31%~60%,夏玉米季占62%~108%,加上起始Nmin的供氮,造成了作物产量尤其是夏玉米产量对施入氮肥反应不明显,土壤氮素净矿化量均随土壤供氮量的增加而显著减少,在一般供氮量范围内(0~300kgN·hm^-2)均表现为净矿化,一级动力学模型只能预测作物整个生育期土壤氮素矿化总的趋势,并不能反映某一阶段矿化量的变化,但模型能在种植作物以前估计出土壤氮素净矿化量,从这个意义上说,模型的预测作用仍是不可低估的。 相似文献
8.
We analysed the stable isotope composition of emitted N2O in a one-year field experiment (June 1998 to April 1999) in unfertilized controls, and after adding nitrogen by applying slurry or mineral N (calcium ammonium nitrate). Emitted N2O was analysed every 2–4 weeks, with additional daily sampling for 10 days after each fertilizer application. In supplementary soil incubations, the isotopic composition of N2O was measured under defined conditions, favouring either denitrification or nitrification. Soil incubated for 48 h under conditions favouring nitrification emitted very little N2O (0.024 mol gdw
–1) and still produced N2O from denitrification. Under denitrifying incubation conditions, much more N2O was formed (0.91 mol gdw
–1 after 48 h). The isotope ratios of N2O emitted from denitrification stabilized at 15N = –40.8 ± 5.7 and 18O = 2.7 ± 6.3. In the field experiment, the N2O isotope data showed no clear seasonal trends or treatment effects. Annual means weighted by time and emission rate were 15N = –8.6 and 18O = 34.7 after slurry application, 15N = –4.6 and 18O = 24.0 after mineral fertilizer application and 15N = –6.4 and 18O = 35.6 in the control plots, respectively. So, in all treatments the emitted N2O was 15N-depleted compared to ambient air N2O (15N = 11.4 ± 11.6, 18O = 36.9 ± 10.7). Isotope analyses of the emitted N2O under field conditions per se allowed no unequivocal identification of the main N2O producing process. However, additional data on soil conditions and from laboratory experiments point to denitrification as the predominant N2O source. We concluded (1) that the isotope ratios of N2O emitted from the field soil were not only influenced by the source processes, but also by microbial reduction of N2O to N2 and (2) that N2O emission rates had to exceed 3.4 mol N2O m–2 h–1 to obtain reliable N2O isotope data. 相似文献
9.
Herbivore influence on soil microbial biomass and nitrogen mineralization in a northern grassland ecosystem: Yellowstone National Park 总被引:8,自引:0,他引:8
Microorganisms are largely responsible for soil nutrient cycling and energy flow in terrestrial ecosystems. Although soil
microorganisms are affected by topography and grazing, little is known about how these two variables may interact to influence
microbial processes. Even less is known about how these variables influence microorganisms in systems that contain large populations
of free-roaming ungulates. In this study, we compared microbial biomass size and activity, as measured by in situ net N mineralization,
inside and outside 35- to 40-year exclosures across a topographic gradient in northern Yellowstone National Park. The objective
was to determine the relative effect of topography and large grazers on microbial biomass and nitrogen mineralization. Microbial
C and N varied by almost an order of magnitude across sites. Topographic depressions that contained high plant biomass and
fine-textured soils supported the greatest microbial biomass. We found that plant biomass accurately predicted microbial biomass
across our sites suggesting that carbon inputs from plants constrained microbial biomass. Chronic grazing neither depleted
soil C nor reduced microbial biomass. We hypothesize that microbial populations in grazed grasslands are sustained mainly
by inputs of labile C from dung deposition and increased root turnover or root exudation beneath grazed plants. Mineral N
fluxes were affected more by grazing than topography. Net N mineralization rates were highest in grazed grassland and increased
from dry, unproductive to mesic, highly productive communities. Overall, our results indicate that topography mainly influences
microbial biomass size, while mineral N fluxes (microbial activity) are affected more by grazing in this grassland ecosystem.
Received: 4 June 1997 / Accepted: 16 December 1997 相似文献
10.
Summary Inputs and outputs to the N balance of a clay soil catchment (Evesham and Kingston series) under grassland and cereals at Wytham near Oxford were measured over 2 years. Soil mineral N (NH4+NO3) was measured to 1 m depth at intervals of 2 to 8 weeks. The frequency distribution of these values was approximately log-normal and the geometric mean was used as an estimate of central tendency. Overall, soil mineral N tended to decrease during the study period, but marked fluctuations were observed in autumn (October–November) and early spring (February–March) in the grassland due to mineralization of soil organic N, and in the arable soil in April–May following the application of N fertilizer to the spring barley and winter wheat.N lost by leaching, including a little surface runoff, was calculated from the NO3 concentration of the catchment drainage and the volume of drainage. The estimate of N leached using concentrations unweighted for flow rate was only 14 per cent less than that based on flow-weighted concentrations. The differences in the uptake of N by cereals and grass between fields were explicable partly in terms of soil type and partly in terms of the timing and amounts of fertilizer added. The results are discussed in the context of steady-state equilibrium of N in the soil-plant system. However, an N balance could not be struck because N input due to mineralization, and N outputs due to gaseous losses and immobilization of N in the soil and root biomasses, were not measured and could not be accurately estimated. 相似文献
11.
温度和湿度对我国内蒙古羊草草原土壤净氮矿化的影响 总被引:26,自引:2,他引:26
土壤氮素的矿化是反映土壤供氮能力的重要因素之一 ,也是目前国内外研究的热点。通过测定内蒙古典型羊草草原自由放牧地土壤净氮矿化量和净氮矿化速率 ,揭示影响草地生态系统土壤氮循环过程的有关机理 ,为草地生态系统建模提供理论依据。在实验室条件下 ,运用恒温恒湿培养箱控制土壤的温度与湿度 ,测定羊草草原长期自由放牧地土壤氮素矿化量的积累。将不同水分含量的土柱分别放在温度为 - 10℃、0℃、5℃、15℃、2 5℃和 35℃的恒温恒湿培养箱中培养 ,培养 1、2、3、5周后取出 ,分析培养前后的 NH 4- N和 NO- 3- N含量 ,以确定土壤净氮矿化 (NH 4- N NO- 3- N)的累积和不同时间段内的矿化速率。结果表明 :不同处理温度和水分之间的差异均达到显著水平 (p<0 .0 0 0 1)。温度和水分之间具有显著的交互作用 (p<0 .0 0 0 1)。随着培养时间的延长 ,矿化氮累积量增加 ,但是矿化速率下降 相似文献
12.
Ungulate and topographic control of nitrogen: phosphorus stoichiometry in a temperate grassland; soils, plants and mineralization rates 总被引:1,自引:0,他引:1
Douglas A. Frank 《Oikos》2008,117(4):591-601
Although the link between the nitrogen (N): phosphorus (P) stoichiometry of biota and availability has received considerable attention in aquatic systems, there has been relatively little effort to compare the elemental composition of biota and supply in terrestrial habitats. In this study, I explored the effects of a prominent topo-edaphic gradient, from dry hilltop to wet slope-base, and native ungulates on N and P of soils, plants, and rates of in situ net mineralization in grasslands of Yellowstone National Park. Nitrogen and P measurements were made May–September, 2000, in paired, grazed and 38–42 year fenced, ungrazed grassland at five topographically variable sites. Similar to findings from other grassland ecosystems, several site factors associated with organic activity, including soil moisture, C, and plant biomass, covaried with soil N concentration and/or net N mineralization. Soil P concentration and net P mineralization, however, were unrelated to those factors. Instead, net P mineralization was negatively related to soil pH, which is known to control the form of inorganic P and its availability, and soil P was uncorrelated with any soil or plant variable measured in the study. Because of being influenced by different soil properties, N and P net mineralization were unrelated among grasslands. Furthermore, supply and plant N:P ratios were uncorrelated in this grassland system. Based on critical N:P ratios reflecting nutritional limitation of plants, Yellowstone grassland vegetation ranged from being N limited to N-P co-limited. Grazers increased N-P co-limitation by enhancing plant N concentrations and the soil pH gradient across grassland sites regulated plant nutritional limitation by affecting plant-available P. These findings showed how ungulates and a landscape factor, i.e. soil pH, determined plant nutrient status among YNP grasslands differently by influencing plant N concentration versus plant P concentration, respectively. 相似文献
13.
Aims
Our goal was to assess how management and sward functional diversity affect nitrogen response efficiency (NRE), the ratio of plant biomass production to supply of available nitrogen (N) in temperate grassland.Methods
A three-factorial design was employed: three sward compositions, two mowing frequencies, and two fertilization treatments.Results
NRE was largely influenced by fertilization followed by mowing frequency and sward composition. NRE was larger in unfertilized than fertilized plots, in plots cut thrice than plots cut once per year, and in control swards than in monocot- or dicot-enhanced swards. Fertilization decreased NRE through decreases in both N uptake efficiency (plant N uptake per supply of available N) and N use efficiency (NUE, biomass produced per plant N uptake) whereas mowing frequency and sward composition affected NRE through N uptake efficiency rather than NUE. The largest NRE in the control sward with 70 % monocots and 30 % dicots attests that these proportions of functional groups were best adapted in this grassland ecosystem.Conclusions
Optimum NRE may not be a target of most farmers, but it is an appropriate tool to evaluate the consequences of grassland management practices, which farmers may employ to maximize profit, on environmental quality. 相似文献14.
A model of nitrogen flows in grassland 总被引:4,自引:3,他引:4
Abstract. The model comprises three submodels, which together give an integrated picture of nitrogen pools and fluxes in grassland under grazing or cutting. The first submodel represents the interaction of the grazing animal with the sward through intake and the production of excreta: the second is concerned with the growth of the vegetative grass crop and its response to light, temperature and nitrogen; these two submodels are interfaced with a submodel of soil carbon and nitrogen pools and processes, including dead shoot and root material, dead and live soil organic matter, and three pools representing mineral nitrogen. No account is taken of water, which is assumed to be non-limiting, or the possible effects of soil pH and soil aeration. The model is used to simulate a range of management strategies as applied to stocking density and fertilizer application, examining both steady-state and non-steady-state conditions. The model highlights the long time scales associated with grassland systems, the role of the grazing animal in modifying carbon and nitrogen flows, and the importance of soil conditions to grassland productivity and fertilizer response. The productivity of grazed swards may be greater or less than that of cut swards depending on stocking density and fertilizer application, although nitrogen recovery (as calculated here) is always lower in grazed swards. The model is able to stimulate mineralization and immobilization, and place these in the context of plant processes and the grazing animal. 相似文献
15.
添加氮素对沙质草地土壤氮素有效性的影响 总被引:3,自引:1,他引:3
通过氮素添加(20g.m-2.a-1)试验,研究了科尔沁沙地东南部沙质草地生态系统土壤氮矿化及有效氮的季节变化。对2006年生长季的观测发现,添加氮素显著提高了沙质草地生长季土壤铵态氮、硝态氮、矿质氮的含量以及9月1日至10月15日的净氮矿化速率与硝化速率;添加氮素导致土壤有效氮的季节变异增大,净氮矿化(1.29~11.60mg.kg-1.30d-1)与硝化(-4.15~11.20mg.kg-1.30d-1)速率随时间呈上升趋势,铵态氮含量逐渐降低,硝态氮与矿质氮(6.49~20.66mg.kg-1)含量的变化呈"V"型,最小值出现在生物量生长高峰期的7月中旬。该沙质草地土壤氮的有效性较低,施氮肥可明显提高土壤供氮能力。 相似文献
16.
Tests were made of the ability of a leaching/mineralization model to predict the amounts of mineral N in the soil in spring as a step towards estimating the nitrogen fertilizer requirement of sugar-beet crops. There was good agreement between predicted and measured values, both under conditions of natural winter rainfall and when the soil was covered to prevent leaching. The model also successfully predicted leaching losses of soil mineral N soon after drilling in a year in which early season irrigation and heavy rain induced considerable leaching. 相似文献
17.
Effect of mild drying on the mineralization of soil nitrogen 总被引:6,自引:0,他引:6
Summary Drying soil to –100 kPa increased the subsequent mineralization of nitrogen under optimal moisture conditions. The effect was greater when the soils were dried to –1500 Pa. Mineralization was greater after four cycles of wetting and drying than after one. Depending on the drying conditions, the amount of nitrogen mineralized after drying to –1500 Pa was between 6.8 and 18.2% of that mineralized after chloroform fumigation. After drying the soils the average ratio of CO2-C respired to min N was 21.1–22.3 depending on the drying conditions, whereas after chloroform treatment and autoclaving the ratio was 6.0 and 9.9 respectively. The effect of drying on nitrogen mineralization is attributed to two causes: the death and subsequent lysis of a small proportion of the soil organisms, and to the desorption of organic substances with a wide C/N ratio.Because of the stimulation of even mild drying conditions, marked differences in mineralization rates of soil nitrogen between cropping seasons must be expected. 相似文献
18.
D. S. Powlson 《Plant and Soil》1980,57(1):151-153
Summary The effect of cultivation (ploughing followed by rotavation) on the mineralization of soil nitrogen was measured at 2 sites on a silt loam soil. Both sites had a predominantly arable cropping history but one had been under grass for the previous 2 years and the other had carried wheat. Mineralization of N was slightly faster in cultivated soil but the difference was only significant at the site previously under grass. At this site cultivated soil contained 7 kg ha–1 more mineral N than uncultivated soil 2 weeks after treatment, and 9 kg ha–1 after 6 weeks. The corresponding figures for the site that had grown wheat were 4 and 6 kg N ha–1. 相似文献
19.
The nitrite formed from nitrogen dioxide (NO2) was oxidized more readily in soil that had been treated previously with the gas than in soil not so pre-exposed. The reaction was inhibited by 1.0 but not by 0.01 mM chlorate. The population of nitrite-oxidizing autotrophs estimated by the most-probable-number procedure was too small and often grew too late to account for oxidation of the nitrite generated from NO2. The reaction also proceeded in soil heated to 42° to 45°C or treated with 0.16 mM chlorate, although the countable autotrophs did not increase during the transformation or grew only late in the active period of nitrite oxidation. The data suggest that unknown populations are responsible for metabolism of the nitrite produced from NO2 entering soil. 相似文献
20.
Summary The effects of anthraquinones and some other quinonoid and phenolic compounds on mineralization of urea N in soils were studied by estimating the influence on urease activity and nitrification. Anthraquinones did not affect the mineralization of urea N but 1,4-naphthoquinone; 2-methyl-1,4-naphthoquinone; 2–3-dichlorohydroquinone; 4,6-di-tert.butyl-o-benzoquinone; 4-tert.butylpyrocatechol and 4,6-di-tert.butylpyrocatechol inhibited urease activity and nitrification. The hydrolysis of urea (100 ppm) was not prevented by partial reduction in urease activity. The effective substances also inhibited dehydrogenase activity. 相似文献