首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monoculture croplands are a major source of global anthropogenic emissions of nitrous oxide (N2O), a potent greenhouse gas that contributes to ozone depletion. Agroforestry has the potential to reduce N2O emissions. Presently, there is no systematic comparison of soil N2O emissions between cropland agroforestry and monoculture systems in Central Europe. We investigated the effects of converting the monoculture cropland system into the alley cropping agroforestry system on soil N2O fluxes at three sites (each site has paired agroforestry and monoculture) in Germany, where agroforestry combined crop rows and poplar short-rotation coppice (SRC). We measured soil N2O fluxes monthly over 2 years (March 2018–January 2020) using static vented chambers. Annual soil N2O emissions from agroforestry ranged from 0.21 to 2.73 kg N ha−1 year−1, whereas monoculture N2O emissions ranged from 0.34 to 3.00 kg N ha−1 year−1. During the rotation of corn crop, with high fertilization rates, agroforestry reduced soil N2O emissions by 9% to 56% compared to monocultures. This was mainly caused by low soil N2O emissions from the unfertilized agroforestry tree rows. Soil N2O fluxes were predominantly controlled by soil mineral N in both agroforestry and monoculture systems. Our findings suggest that optimized fertilizer input will further enhance the potential of agroforestry for mitigating N2O emissions.  相似文献   

2.
Atmospheric nitrogen deposition is anticipated to increase over the next decades with possible implications for future forest-atmosphere interactions. Increased soil N2O emissions, depressed CH4 uptake and depressed soil respiration CO2 loss is considered a likely response to increased N deposition. This study examined fluxes of N2O, CH4 and CO2 over two growing seasons from soils in unmanaged forest and grassland communities on abandoned agricultural areas in Michigan. All sites were subject to simulated increased N-deposition in the range of 1–3 g N m−2 annually. Nitrous oxide fluxes and soil N concentrations in coniferous and grassland sites were on the whole unaffected by the increased N-inputs. It is noteworthy though that N2O emissions increased three-fold in the coniferous sites in the first growing season in response to the low N treatment, although the response was barely significant (p<0.06). In deciduous forests, we observed increased levels of soil mineral N during the second year of N fertilization, however N2O fluxes did not increase. Rates of methane oxidation were similar in all sites with no affect of field N application. Likewise, we did not observe any changes in soil CO2 efflux in response to N additions. The combination of tillage history and vegetation type was important for the trace gas fluxes, i.e. soil CO2 efflux was greater in successional grassland sites compared with the forested sites and CH4 uptake was reduced in post-tillage coniferous- and successional sites compared with the old-growth deciduous site. Our results indicate that short-term increased N availability influenced individual processes linked to trace gas turnover in the soil independently from the ecosystem N status. However, changes in whole system fluxes were not evident and were very likely mediated by competitive N uptake processes.  相似文献   

3.
Legumes have the potential to alter nitrous oxide (N2O) emissions in grass-legume mixtures via changes in soil N availability, but the influence of legume abundance on N2O fluxes in grazed multi-species grasslands has faced little attention to date. In this paper, a combination of 15N-labelled fertilizer application and automatic chamber measurements was used to investigate N2O fluxes and soil-plant N transfers for high- and low-density clover patches in an intensively-managed, upland pasture (Auvergne, France) over the course of one growing season. During the six-month study period, N2O fluxes were highly variable. Maximum daily N2O emission was 52 g N2O-N ha?1, and was associated with fertilizer application early in the growing season. Smaller peaks of N2O emission occured in response to cutting events and fertilizer application later in the growing season. Nitrous oxide fluxes derived from 15N-labelled fertilizer peaked at 40% shortly after fertilizer application, but the dominant source of N2O fluxes was the soil N pool. Contrary to expectations, clover density had no significant effects on N content or patterns of 15N recovery in plant or soil mineral N pools. Nevertheless, we found a tendency for increased N2O-N losses from the low clover treatment. Furthermore, 15N recovery in N2O was higher in the low- compared to the high-density clover treatment during favorable growing conditions, suggesting transient shifts in plant/soil competition for N depending on legume abundance. Multiple regression analysis revealed that water-filled pore space (WFPS) and clover dry mass were the main factors driving cumulative N2O emissions in the high clover treatment, whereas variation in cumulated N2O emissions in the low clover treatment was best explained by WFPS and grass mass. We hypothesize that clover density had indirect effects on the sensitivity of N2O emissions to abiotic and biotic factors possibly via changes in soil pH. Overall, our results suggest that spatial heterogeneity in clover abundance may have relatively little impact on field-scale N2O emissions in fertilized grasslands.  相似文献   

4.
Willow coppice, energy maize and Miscanthus were evaluated regarding their soil‐derived trace gas emission potential involving a nonfertilized and a crop‐adapted slow‐release nitrogen (N) fertilizer scheme. The N application rate was 80 kg N ha?1 yr?1 for the perennial crops and 240 kg N ha?1 yr?1 for the annual maize. A replicated field experiment was conducted with 1‐year measurements of soil fluxes of CH4, CO2 and N2O in weekly intervals using static chambers. The measurements revealed a clear seasonal trend in soil CO2 emissions, with highest emissions being found for the N‐fertilized Miscanthus plots (annual mean: 50 mg C m?² h?1). Significant differences between the cropping systems were found in soil N2O emissions due to their dependency on amount and timing of N fertilization. N‐fertilized maize plots had highest N2O emissions by far, which accumulated to 3.6 kg N2O ha?1 yr?1. The contribution of CH4 fluxes to the total soil greenhouse gas subsumption was very small compared with N2O and CO2. CH4 fluxes were mostly negative indicating that the investigated soils mainly acted as weak sinks for atmospheric CH4. To identify the system providing the best ratio of yield to soil N2O emissions, a subsumption relative to biomass yields was calculated. N‐fertilized maize caused the highest soil N2O emissions relative to dry matter yields. Moreover, unfertilized maize had higher relative soil N2O emissions than unfertilized Miscanthus and willow. These results favour perennial crops for bioenergy production, as they are able to provide high yields with low N2O emissions in the field.  相似文献   

5.
Understanding nitrous oxide (N2O) fluxes from grain–legume crops in semiarid and arid regions is necessary if we are to improve our knowledge of global terrestrial N2O losses resulting from biological N2 fixation. N2O fluxes were measured from a rain‐fed soil, cropped to a grain–legume in a semiarid region of southwestern Australia for 1 year on a subdaily basis. The site included plots planted to narrow‐leafed lupin (Lupinus angustifolius; ‘lupin’) and plots left bare (no lupin). Fluxes were measured using soil chambers connected to a fully automated system that measured N2O by gas chromatography. Daily N2O fluxes were low (?0.5 to 24 g N2O‐N ha?1 day?1) and not different between treatments, culminating in an annual loss of 127 g N2O‐N ha?1. Greatest daily N2O fluxes occurred from both treatments in the postharvest period, and following a series of summer and autumn rainfall events. At this time of the year, soil conditions were conducive to soil microbial N2O production: elevated soil water contents, increased inorganic nitrogen (N) and dissolved organic carbon concentrations, and soil temperatures generally > 25 °C; furthermore, there was no active plant growth to compete for mineralized N. N2O emissions from the decomposition of legume crop residue were low, and approximately half that predicted using the currently recommended IPCC methodology. Furthermore, the contribution of the biological N2 fixation process to N2O emissions appeared negligible in the present study, supporting its omission as a source of N2O from the IPCC methodology for preparing national greenhouse gas inventories.  相似文献   

6.
The aim of this study was to determine how roots and their ectomycorrhizal symbionts affect the fluxes of nitrous oxide (N2O) from nutrient-rich drained organic forest soils. Specifically, the relative impacts of roots and mycorrhizal mycelia on N2O fluxes were investigated using two different trenching treatments, excluding (a) roots or (b) roots and mycorrhizal mycelia, from the soil. N2O fluxes were measured at the soil surface, for 1 year before and 2.5 years after trenching, within the two trenching treatments and on untreated controls. While the exclusion of roots alone did not affect N2O emissions, the simultaneous exclusion of roots and mycorrhizal mycelia doubled N2O emissions, compared to the control plots. Two probable explanations for the increased fluxes were identified: (1) a decreased uptake of nitrogen (N) from the soil, through the mycorrhizal fungi, which increased N availability for the N2O-producing microorganisms, and (2) a decreased uptake of water from the soil, through the mycorrhiza, which increased the soil water content and thus the N2O emissions from denitrification. If the trenching reduced any potential stimulation of N cycling, through rhizodeposition, this mechanism did not outweigh the effects of a discontinued mycorrhizal N and/or water uptake on N2O fluxes. The results of the study emphasise the importance of ectomycorrhiza in regulating N2O emissions from forested organic soils.  相似文献   

7.
土壤冻融期间的温室气体排放量会显著增加,并在全年总排放量中占有重要的份额。但目前开展的土壤冻融循环模拟实验大多是在土壤冻结之前调节土壤水分含量,而忽视了雪被在整个土壤冻融过程中的作用,因此导致室内模拟研究的结果与野外原位观测的结果差异较大。为探索开展室内模拟土壤冻融实验的优化方案,采用人工浇水和覆雪两种方式调节土壤水分含量,研究了雪被和土壤水分对内蒙古典型半干旱草原土壤冻融过程中CO2和N2O排放的影响。结果表明,浇水和覆雪两种处理对冻融循环过程中土壤CO2排放影响的差异不显著,CO2排放量在消融期都会明显增加并随着冻融循环次数的增加而逐渐减小。当土壤孔隙含水率达50%左右时,浇水处理中的N2O排放量在第1次土壤冻融循环中最高并随冻融循环次数增加而降低,但在覆雪处理中,N2O在第1次冻融循环中的排放较小,而在后两次冻融循环中的排放量更为显著。造成两种处理N2O排放规律出现显著不同的原因可能是土壤剖面水分动态变化过程和微生物性状等方面的差异。土壤冻融过程中CO2和N2O排放量随土壤含水量升高而增加,但N2O在土壤含水量较低时排放不明显,这表明可能只有当土壤含水量达到一定阈值时,冻融作用才会对N2O的排放产生显著影响。这些结果显示,雪被和土壤水分显著影响土壤冻融过程中的CO2和N2O排放,室内模拟土壤冻融实验应进一步优化。  相似文献   

8.
京郊典型设施蔬菜地土壤N_2O排放特征   总被引:10,自引:0,他引:10  
张婧  李虎  王立刚  邱建军 《生态学报》2014,34(14):4088-4098
利用静态暗箱-气相色谱法对北京郊区设施蔬菜地典型种植模式(番茄-白菜-生菜)下土壤N2O排放特征进行了周年(2012年2月22日—2013年2月23日)观测,探讨了不同处理下(即不施氮肥处理(CK)、农民习惯施肥处理(FP)、减氮优化施肥处理(OPT)和减氮优化施肥+硝化抑制剂处理(OPT+DCD))N2O排放特征及土壤温度、土壤湿度、土壤无机氮含量对土壤N2O排放的影响。结果表明:每次施肥+灌溉之后设施蔬菜地会出现明显的N2O排放高峰,持续时间一般为3—5 d。不同处理N2O排放通量变化范围在-0.21—14.26 mg N2O m-2h-1,平均排放通量0.03—0.36 mg N2O m-2h-1。整个蔬菜生长季各处理N2O排放与土壤孔隙含水率(WFPS)均表现出极显著的正相关关系(P0.01);不施氮处理5 cm深度土壤温度与N2O排放通量呈现显著的正相关关系(P0.05);各处理N2O排放与土壤表层硝态氮含量具有较一致变化趋势。不同处理下N2O年度排放总量差异显著,依次顺序为FP((20.66±0.91)kg N/hm2)OPT((12.79±1.33)kg N/hm2)OPT+DCD((8.03±0.37)kg N/hm2)。与FP处理相比,OPT处理和OPT+DCD处理N2O年排放总量分别减少了38.09%和61.13%。各处理N2O排放系数介于0.36%—0.77%,低于IPCC 1.0%的推荐值。在目前的管理措施下,合理减少施氮量和添加硝化抑制剂是减少设施蔬菜地N2O排放量的有效途径。  相似文献   

9.
Arable soil continues to be the dominant anthropogenic source of nitrous oxide (N2O) emissions owing to application of nitrogen (N) fertilizers and manures across the world. Using laboratory and in situ studies to elucidate the key factors controlling soil N2O emissions remains challenging due to the potential importance of multiple complex processes. We examined soil surface N2O fluxes in an arable soil, combined with in situ high-frequency measurements of soil matrix oxygen (O2) and N2O concentrations, in situ 15N labeling, and N2O 15N site preference (SP). The in situ O2 concentration and further microcosm visualized spatiotemporal distribution of O2 both suggested that O2 dynamics were the proximal determining factor to matrix N2O concentration and fluxes due to quick O2 depletion after N fertilization. Further SP analysis and in situ 15N labeling experiment revealed that the main source for N2O emissions was bacterial denitrification during the hot-wet summer with lower soil O2 concentration, while nitrification or fungal denitrification contributed about 50.0% to total emissions during the cold-dry winter with higher soil O2 concentration. The robust positive correlation between O2 concentration and SP values underpinned that the O2 dynamics were the key factor to differentiate the composite processes of N2O production in in situ structured soil. Our findings deciphered the complexity of N2O production processes in real field conditions, and suggest that O2 dynamics rather than stimulation of functional gene abundances play a key role in controlling soil N2O production processes in undisturbed structure soils. Our results help to develop targeted N2O mitigation measures and to improve process models for constraining global N2O budget.  相似文献   

10.
Spatial variability in hydrological flowpaths and nitrate-removal processes complicates the overall assessment of riparian buffer zone functioning in terms of water quality improvement as well as enhancement of the greenhouse effect by N2O emissions. In this study, we evaluated denitrification and nitrous oxide emission in winter and summer along two groundwater flowpaths in a nitrate-loaded forested riparian buffer zone and related the variability in these processes to controlling soil factors. Denitrification and emissions of N2O were measured using flux chambers and incubation experiments. In winter, N2O emissions were significantly higher (12.4 mg N m−2 d−1) along the flowpath with high nitrate removal compared with the flowpath with low nitrate removal (2.58 mg N m−2 d−1). In summer a reverse pattern was observed, with higher N2O emissions (13.6 mg N m−2 d−1) from the flowpath with low nitrate-removal efficiencies. Distinct spatial patterns of denitrification and N2O emission were observed along the high nitrate-removal transect compared to no clear pattern along the low nitrate-removal transect, where denitrification activity was very low. Results from this study indicate that spots with high nitrate-removal efficiency also contribute significantly to an increased N2O emission from riparian zones. Furthermore, we conclude that high variability in N2O:N2 ratio and weak relationships with environmental conditions limit the value of this ratio as a proxy to evaluate the environmental consequences of riparian buffer zones.  相似文献   

11.
Understanding nitrous oxide (N2O) and methane (CH4) fluxes from agricultural soils in semi‐arid climates is necessary to fully assess greenhouse gas emissions from bioenergy cropping systems, and to improve our knowledge of global terrestrial gaseous exchange. Canola is grown globally as a feedstock for biodiesel production, however, resulting soil greenhouse gas fluxes are rarely reported for semi‐arid climates. We measured soil N2O and CH4 fluxes from a rain‐fed canola crop in a semi‐arid region of south‐western Australia for 1 year on a subdaily basis. The site included N fertilized (75 kg N ha?1 yr?1) and nonfertilized plots. Daily N2O fluxes were low (?1.5 to 4.7 g N2O‐N ha?1 day?1) and culminated in an annual loss of 128 g N2O‐N ha?1 (standard error, 12 g N2O‐N ha?1) from N fertilized soil and 80 g N2O‐N ha?1 (standard error, 11 g N2O‐N ha?1) from nonfertilized soil. Daily CH4 fluxes were also low (?10.3 to 11.9 g CH4‐C ha?1 day?1), and did not differ with treatments, with an average annual net emission of 6.7 g CH4–C ha?1 (standard error, 20 g CH4–C ha?1). Greatest daily N2O fluxes occurred when the soil was fallow, and following a series of summer rainfall events. Summer rainfall increased soil water contents and available N, and occurred when soil temperatures were >25 °C, and when there was no active plant growth to compete with soil microorganisms for mineralized N; conditions known to promote N2O production. The proportion of N fertilizer emitted as N2O, after correction for emissions from the no N fertilizer treatment, was 0.06%; 17 times lower than IPCC default value for the application of synthetic N fertilizers to land (1.0%). Soil greenhouse gas fluxes from bioenergy crop production in semi‐arid regions are likely to have less influence on the net global warming potential of biofuel production than in temperate climates.  相似文献   

12.
A 15N labelling technique was used to measure N2O and N2 emissions from an undisturbed grassland soil treated with cow urine and held at 30 cm water tension and 20°C in a laboratory. Large emissions of dinitrogen were detected immediately following urine application to pasture. These coincided with a rapid and large increase in soil water-soluble carbon levels, some of this increase being attributed to solubilization of soil organic matter by high pH and ammonia concentrations. Emissions of nitrous oxide generally increased with time in contrast to dinitrogen fluxes which decreased as time progressed. Estimated losses of N2O and N2 over a 30 day period were between 1 to 5% and 30 to 65% of the urine N applied plus N mineralized from soil organic matter, respectively. Most of the N2 and N2O originated from denitrification with nitrification-denitrification being of minor significance as a source of N2O. Comparisons of the 15N enrichments in the soil mineral N pools and the evolved N2O suggested that much of the N2O was produced in the 5–8 cm zone of the soil. It is concluded that established grassland soils contain large amounts of readily-oxidizable organic carbon which may be used by soil denitrifying organisms when nitrate is non-limiting and soil redox potential is lowered due to high rates of biological activity and high soil moisture contents. ei]{gnR}{fnMerckx}  相似文献   

13.
Differences in soil nitrous oxide (N2O) fluxes among ecosystems are often difficult to evaluate and predict due to high spatial and temporal variabilities and few direct experimental comparisons. For 20 years, we measured N2O fluxes in 11 ecosystems in southwest Michigan USA: four annual grain crops (corn–soybean–wheat rotations) managed with conventional, no‐till, reduced input, or biologically based/organic inputs; three perennial crops (alfalfa, poplar, and conifers); and four unmanaged ecosystems of different successional age including mature forest. Average N2O emissions were higher from annual grain and N‐fixing cropping systems than from nonleguminous perennial cropping systems and were low across unmanaged ecosystems. Among annual cropping systems full‐rotation fluxes were indistinguishable from one another but rotation phase mattered. For example, those systems with cover crops and reduced fertilizer N emitted more N2O during the corn and soybean phases, but during the wheat phase fluxes were ~40% lower. Likewise, no‐till did not differ from conventional tillage over the entire rotation but reduced emissions ~20% in the wheat phase and increased emissions 30–80% in the corn and soybean phases. Greenhouse gas intensity for the annual crops (flux per unit yield) was lowest for soybeans produced under conventional management, while for the 11 other crop × management combinations intensities were similar to one another. Among the fertilized systems, emissions ranged from 0.30 to 1.33 kg N2O‐N ha?1 yr?1 and were best predicted by IPCC Tier 1 and ΔEF emission factor approaches. Annual cumulative fluxes from perennial systems were best explained by soil pools (r2 = 0.72) but not so for annual crops, where management differences overrode simple correlations. Daily soil N2O emissions were poorly predicted by any measured variables. Overall, long‐term measurements reveal lower fluxes in nonlegume perennial vegetation and, for conservatively fertilized annual crops, the overriding influence of rotation phase on annual fluxes.  相似文献   

14.
Abstract: The fluxes of the greenhouse gases methane (CH4) and nitrous oxide (N2O) were measured in mangrove wetlands in Queensland, Australia, using the closed chamber technique. Large differences in the fluxes of both gases from different study sites were observed, which presumably depended on differences in substrate availability. CH4 emission rates were in the range of 20 to 350 μg m‐2 h‐1, whereas N2O fluxes were lower, amounting to ‐ 2 to 14 μg m‐2 h‐1. In general, the field sites with high substrate availability showed higher emissions than sites with poor nutrient supply. This assumption is supported by the observation of dramatically increased N2O emissions (150 ‐ 400 μg m‐2 h‐1) if study sites were artificially fertilised with additional N. As expected, N fertilisation did not alter CH4 fluxes during the period of investigation. In the present study, it was confirmed that the mangrove vegetation may play a role as a transport path for CH4 and N2O by facilitating diffusion out of the soil. Prop roots from Rhizophora stylosa emitted CH4 and N2O at rates of 2.6 and 3.3 μg m‐2 root surface h‐1, respectively, whereas the soil of this stand acted as a sink for CH4. As a consequence, the ecosystem as a whole could constitute a CH4 source despite CH4 uptake by the soil. In contrast to prop roots, the presence of pneumatophores in Avicennia marina led to a significant increase in CH4 emissions from mangrove soils, but did not enhance N2O emissions. These findings indicate that mangrove ecosystems may be considered a significant source of N2O and that anthropogenic nutrient input into these ecosystems will lead to enhanced source strengths. For an up‐scaling of greenhouse gas emissions from mangrove forests to a global scale, more information is needed, particularly on the significance of vegetation.  相似文献   

15.
Rates and patterns of nitrogen transformation differ in divergently managed pasture soils. In pastures with low nutrient inputs, N is utilized efficiently and it is assimilated by plants and soil microorganisms for synthesis of biomass. In more intensive pastures, characterized with higher N inputs, significant amounts of N can be lost from the ecosystem in various forms. Two soils of a cattle overwintering area with different levels of cattle disturbance were supplied with a solution of KNO3 in various levels corresponding in range to 0–500 kg N ha?1. Emissions of N2O were measured during 24 h after a NO3 ?-N application. We hypothesized that under a low disturbance small additions of up to 5 kg NO3 ?-N are used by plants and soil microbes without an increase in N2O emissions, while a pasture adapted to a moderate disturbance will increase N2O emissions. Results showed that in both soils, the addition of N always increased N2O emissions, while emissions were more pronounced in soil at the location with a higher intensity of cattle traffic. Contrary to our hypothesis, however, NO3 –N was not fully metabolized in the soil with low disturbance by the cattle. Probable explanations of such a result were lower intensity of N transformations in this soil and low utilisation of N by grass. Our results suggest that under certain conditions relatively low nitrate-N inputs can also stimulate N2O fluxes from soils.  相似文献   

16.
Pristine peatlands have generally low nitrous oxide (N2O) emissions but drainage and management practices enhance the microbial processes and associated N2O emissions. It is assumed that leaving peat soils from intensive management, such as agriculture, will decrease their N2O emissions. In this paper we report how the annual N2O emission rates will change when agricultural peat soil is either left abandoned or afforested and also N2O emissions from afforested peat extraction sites. In addition, we evaluated a biogeochemical model (DNDC) with a view to explaining GHG emissions from peat soils under different land uses. The abandoned agricultural peat soils had lower mean annual N2O emissions (5.5?±?5.4?kg?N?ha?1) than the peat soils in active agricultural use in Finland. Surprisingly, N2O emissions from afforested organic agricultural soils (12.8?±?9.4?kg?N?ha?1) were similar to those from organic agricultural soils in active use. These emissions were much higher than those from the forests on nutrient rich peat soils. Abandoned and afforested peat extraction sites emitted more N2O, (2.4?±?2.1?kg?N?ha?1), than the areas under active peat extraction (0.7?±?0.5?kg?N?ha?1). Emissions outside the growing season contributed significantly, 40% on an average, to the annual emissions. The DNDC model overestimated N2O emission rates during the growing season and indicated no emissions during winter. The differences in the N2O emission rates were not associated with the age of the land use change, vegetation characteristics, peat depth or peat bulk density. The highest N2O emissions occurred when the soil C:N ratio was below 20 with a significant variability within the measured C:N range (13–27). Low soil pH, high nitrate availability and water table depth (50–70?cm) were also associated with high N2O emissions. Mineral soil has been added to most of the soils studied here to improve the fertility and this may have an impact on the N2O emissions. We infer from the multi-site dataset presented in this paper that afforestation is not necessarily an efficient way to reduce N2O emissions from drained boreal organic fields.  相似文献   

17.
Grazing ruminants urinate and deposit N onto pastoral soils at rates up to 1,000 kg ha?1, with most of this deposited N present as urea. In urine patches, nitrous oxide (N2O) emissions can increase markedly. Soil derived CO2 fluxes can also increase due to priming effects.While N2O fluxes are affected by temperature, no studies have examined the interaction of pasture plants, urine and temperature on N2O fluxes and the associated CO2 fluxes. We postulated the response of N2O emissions to bovine urine application would be affected by plants and temperature. Dairy cattle urine was collected, labelled with 15N, and applied at 590 kg N ha?1 to a sub-tropical soil,with and without pasture plants at 11°, 19°, and 23°C. Over the experimental period (28 days), 0.2% (11°C with plants) to 2.2% (23°C with plants) of the applied N was emitted as N2O. At 11°C, plants had no effect on cumulative N2O-N fluxes, whereas at 23°C, the presence of plants significantly increased the flux, suggesting plant-derived C supply affected the N2O producing microbes. In contrast, a significant urine application effect on the cumulative CO2 flux was not affected by varying temperature from 11?C23°C or by growing plants in the soil. This study has shown that plants and their responses to temperature affect N2O emissions from ruminant urine deposition. The results have significant implications for forecasting and understanding the effect of elevated soil temperatures on N2O emissions and CO2 fluxes from grazed pasture systems.  相似文献   

18.
Nitrous oxide (N2O) emissions can be significantly affected by the amounts and forms of nitrogen (N) available in soils, but the effect is highly dependent on local climate and soil conditions in specific ecosystem. To improve our understanding of the response of N2O emissions to different N sources of fertilizer in a typical semiarid temperate steppe in Inner Mongolia, a 2-year field experiment was conducted to investigate the effects of high, medium and low N fertilizer levels (HN: 200 kg N?ha-1y-1, MN: 100 kg N ha-1y-1, and LN: 50 kg N ha-1y-1) respectively and N fertilizer forms (CAN: calcium ammonium nitrate, AS: ammonium sulphate and NS: sodium nitrate) on N2O emissions using static closed chamber method. Our data showed that peak N2O fluxes induced by N treatments were concentrated in short periods (2 to 3 weeks) after fertilization in summer and in soil thawing periods in early spring; there were similarly low N2O fluxes from all treatments in the remaining seasons of the year. The three N levels increased annual N2O emissions significantly (P?<?0.05) in the order of MN > HN > LN compared with the CK (control) treatment in year 1; in year 2, the elevation of annual N2O emissions was significant (P?<?0.05) by HN and MN treatments but was insignificant by LN treatments (P?>?0.05). The three N forms also had strong effects on N2O emissions. Significantly (P?<?0.05) higher annual N2O emissions were observed in the soils of CAN and AS fertilizer treatments than in the soils of NS fertilizer treatments in both measured years, but the difference between CAN and AS was not significant (P?>?0.05). Annual N2O emission factors (EF) ranged from 0.060 to 0.298% for different N fertilizer treatments in the two observed years, with an overall EF value of 0.125%. The EF values were by far less than the mean default EF proposed by the Intergovernmental Panel on Climate Change (IPCC).  相似文献   

19.
Intensive vegetable production exhibits contrasting characteristics of high nitrous oxide (N2O) emissions and low nitrogen use efficiency (NUE). In an effort to mitigate N2O emissions and improve NUE, a field experiment with nine consecutive vegetable crops was designed to study the combined effects of nitrogen (N) and biochar amendment and their interaction on soil properties, N2O emission and NUE in an intensified vegetable field in southeastern China. We found that N application significantly increased N2O emissions, N2O–N emission factors and yield‐scaled N2O emissions by 51–159%, 9–125% and 14–131%, respectively. Moreover, high N input significantly decreased N partial factor productivity (PFPN) and even yield during the seventh to ninth vegetable crops along with obvious soil degradation and mineral N accumulation. To the contrary, biochar amendment resulted in significant decreases in cumulative N2O emissions, N2O–N emission factor and yield‐scaled N2O emissions by 5–39%, 16–67% and 14–53%, respectively. In addition, biochar significantly increased yield, PFPN and apparent recovery of N (ARN). Although without obvious influence during the first to fourth vegetable crops, biochar amendment mitigated N2O emissions during the fifth to ninth vegetable crops. The relative effects of biochar amendments were reduced with increasing N application rate. Hence, while high N input produced adverse consequences such as mineral N accumulation and soil degradation in the vegetable field, biochar amendment can be a beneficial agricultural strategy to mitigate N2O emissions and improve NUE and soil quality in vegetable field.  相似文献   

20.
Topographic factors affect nitrogen cycling in forest soils, including nitrous oxide (N2O) emissions, which contribute to the greenhouse effect. We measured the N2O flux at 14 chambers placed along a 65-m transect on a slope for 1 year at 2- to 3-week intervals. We applied a hierarchical Bayesian model with a conditional autoregressive (CAR) model to assess the spatiotemporal N2O flux along a slope and quantify the effects of environmental factors on N2O emissions. N2O fluxes at chambers located at lower positions along the slope were relatively greater than those at higher positions. During the non-soil-freezing period, N2O fluxes fluctuated seasonally depending on soil temperature. The soil temperature dependency of N2O fluxes at each chamber increased with descending slope position (the median of the Q10 equivalent simulated from posterior distribution ranged from 1.18 to 3.64). According to the Bayesian hierarchical model, this trend could be partially explained by the C/N ratio at each chamber position. During the soil-freezing period, relatively high N2O fluxes were observed at lower positions along the slope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号