首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To quantify the effects of soil temperature (Tsoil), and relative soil water content (RSWC) on soil N2O emission we measured N2O soil efflux with a closed dynamic chamber in situ in the field and from soil cores in a controlled climate chamber experiment. Additionally we analysed the effect of soil acidity, ammonium, and nitrate concentration in the field. The analysis was performed on three meadows, two bare soils and in one forest. We identified soil water content, soil temperature, soil nitrogen content, and pH as the main parameters influencing soil N2O emission. The response of N2O emission to soil temperature and relative soil water content was analysed for the field and climate chamber measurements. A non-linear regression model (DenNit) was developed for the field data to describe soil N2O efflux as a function of soil temperature, soil moisture, pH value, and ammonium and nitrate concentration. The model could explain 81% of the variability in soil N2O emission of all individual field measurements, except for data with short-term soil water changes, namely during and up to 2 h after rain stopped. We validated the model with an independent dataset. For this additional meadow site 73% of the flux variation could be explained with the model.  相似文献   

2.
Liu M Q  Chen X Y  Chen S  Li H X  Hu F 《农业工程》2011,31(6):347-352
The interface between decaying plant residues and soil is a focus for soil ecological processes because of resources from the residues diffusing into the soil, and microfauna that proliferate in the adjacent soil. Given that the recovery of soil function following disturbance depends on immigration, colonization and establishment of exotic organisms from adjacent un-disturbed habitats, and the availability of bio-available resources, we hypothesized that the soil–litter interface could contribute to soil functional stability. In laboratory pot trials, soil was separated into two parts by a mesh bag with the inner section amended, or not amended, with rice straw; an outer layer of unamended soil, adjacent to the litter (1.5 cm thick, either heated or not), provided a soil–litter interface. This enabled us to examine the dynamics of dissolved organic carbon (DOC), mineral nitrogen, microbial biomass carbon (MBC), nematode assemblages and functional stability during 35 days incubation. Either 1 mm or 5 μm meshes were used, which allowed nematodes to migrate (SR1) or not (SR5) through the mesh to the soil–litter interface; thus also enabling us to evaluate the role of nematodes in soil functional stability. Higher DOC and MBC but lower mineral nitrogen concentrations were found at the soil–litter interface. Heating increased the availability of soil resources such as mineral nitrogen and DOC, but decreased the MBC and total nematode abundance in the soil. The soil–litter interface was characterized by a higher abundance of nematodes, particularly microbivores, regardless of mesh aperture or disturbance. The difference in nematode abundance between SR1 and SR5 indicated that nematode propagation, due to resource diffusion and nematode migration through the mesh, contributed to the changing numbers of microbivorous nematodes depending on incubation time. The soil functional stability was calculated as a relative change in the functioning of short-term barley decomposition. Soil functional resistance, defined as the instantaneous effect of disturbance on decomposition measured on the first day, was highest in the SR5 treatment. However, soil functional resilience, defined as the recovery of soil function over the whole incubation period (35d), was highest in the SR1 treatment, which is most probably attributed to the functioning of microbivorous nematodes. Our results suggest that small-scale spatial heterogeneity, due to organic residue decomposition, can help maintain soil functions following disturbance.  相似文献   

3.
The interface between decaying plant residues and soil is a focus for soil ecological processes because of resources from the residues diffusing into the soil, and microfauna that proliferate in the adjacent soil. Given that the recovery of soil function following disturbance depends on immigration, colonization and establishment of exotic organisms from adjacent un-disturbed habitats, and the availability of bio-available resources, we hypothesized that the soil–litter interface could contribute to soil functional stability. In laboratory pot trials, soil was separated into two parts by a mesh bag with the inner section amended, or not amended, with rice straw; an outer layer of unamended soil, adjacent to the litter (1.5 cm thick, either heated or not), provided a soil–litter interface. This enabled us to examine the dynamics of dissolved organic carbon (DOC), mineral nitrogen, microbial biomass carbon (MBC), nematode assemblages and functional stability during 35 days incubation. Either 1 mm or 5 μm meshes were used, which allowed nematodes to migrate (SR1) or not (SR5) through the mesh to the soil–litter interface; thus also enabling us to evaluate the role of nematodes in soil functional stability. Higher DOC and MBC but lower mineral nitrogen concentrations were found at the soil–litter interface. Heating increased the availability of soil resources such as mineral nitrogen and DOC, but decreased the MBC and total nematode abundance in the soil. The soil–litter interface was characterized by a higher abundance of nematodes, particularly microbivores, regardless of mesh aperture or disturbance. The difference in nematode abundance between SR1 and SR5 indicated that nematode propagation, due to resource diffusion and nematode migration through the mesh, contributed to the changing numbers of microbivorous nematodes depending on incubation time. The soil functional stability was calculated as a relative change in the functioning of short-term barley decomposition. Soil functional resistance, defined as the instantaneous effect of disturbance on decomposition measured on the first day, was highest in the SR5 treatment. However, soil functional resilience, defined as the recovery of soil function over the whole incubation period (35d), was highest in the SR1 treatment, which is most probably attributed to the functioning of microbivorous nematodes. Our results suggest that small-scale spatial heterogeneity, due to organic residue decomposition, can help maintain soil functions following disturbance.  相似文献   

4.
Soil water repellency (SWR) has a drastic impact on soil quality resulting in reduced infiltration, increased runoff, increased leaching, reduced plant growth, and increased soil erosion. One of the causes of SWR is hydrophobic fungal structures and exudates that change the soil–water relationship. The objective of this study was to determine whether SWR and infiltration could be manipulated through inoculation with fungi. The effect of fungi on SWR was investigated through inoculation of three fungal strains (hydrophilic – Fusarium proliferatum, chrono-amphiphilic – Trichoderma harzianum, and hydrophobic – Alternaria sp.) on a water repellent soil (WR-soil) and a wettable soil (W-soil). The change in SWR and infiltration was assessed by the water repellency index and cumulative infiltration respectively. F. proliferatum decreased the SWR on WR-soil and slightly increased SWR in W-soil, while Alternaria sp. increased SWR in both the W-soil and the WR-soil. Conversely T. harzianum increased the SWR in the W-soil and decreased the SWR in the WR-soil. All strains showed a decrease in infiltration in W-soil, while only the F. proliferatum and T. harzianum strain showed improvement in infiltration in the WR-soil. The ability of fungi to alter the SWR and enmesh soil particles results in changes to the infiltration dynamics in soil.  相似文献   

5.
Does biochar influence soil physical properties and soil water availability?   总被引:10,自引:0,他引:10  

Aims

This study aims to (i) determine the effects of incorporating 47 Mg ha?1 acacia green waste biochar on soil physical properties and water relations, and (ii) to explore the different mechanisms by which biochar influences soil porosity.

Methods

The pore size distribution of the biochar was determined by scanning electron microscope and mercury porosimetry. Soil physical properties and water relations were determined by in situ tension infiltrometers, desorption and evaporative flux on intact cores, pressure chamber analysis at ?1,500 kPa, and wet aggregate sieving.

Results

Thirty months after incorporation, biochar application had no significant effect on soil moisture content, drainable porosity between –1.0 and ?10 kPa, field capacity, plant available water capacity, the van Genuchten soil water retention parameters, aggregate stability, nor the permanent wilting point. However, the biochar-amended soil had significantly higher near-saturated hydraulic conductivity, soil water content at ?0.1 kPa, and significantly lower bulk density than the unamended control. Differences were attributed to the formation of large macropores (>1,200 μm) resulting from greater earthworm burrowing in the biochar-amended soil.

Conclusion

We found no evidence to suggest application of biochar influenced soil porosity by either direct pore contribution, creation of accommodation pores, or improved aggregate stability.  相似文献   

6.
The potential ecotoxicologial risks of methamidophos, copper, and their combinations on microbial community of black soil ecosystem in the Northeast China were assessed in species richness and structures by using 16S rDNA-PCR-DGGE analysis approach, and functional characteristics at community levels by using BIOLOGGN system analysis method as well as two conventional methods(DHA and SIR). All results of DGGE banding fingerprint pat-terns(amplified by bacterial specific 16S rDNA V3 high variable region universal primer) indicated that the species richness of bacterial community in tested soil was significantly decreased to different extents by using different concentrations of single methamidophos, copper, especially some of their combinations had worse effects than their corresponding single factors. In addition, the structures of soil bacterial community had been disturbed under all stresses applied in this study because of the enrichment of some species and the disappearance of other species from the b  相似文献   

7.
Tree root-associated microbiomes are shaped by geographic, soil physico-chemical, and host tree parameters. However, their respective impacts on microbiome variations in soils across larger spatial scales remain weakly studied. We out-planted saplings of oak clone DF159 (Quercus robur L.) as phytometer in four grassland field sites along a European North–South transect. After four years, we first compared the soil microbiomes of the tree root zone (RZ) and the tree root-free zone (RFZ). Then, we separately considered the total microbiomes of both zones, besides the microbiome with significant affinity to the RZ and compared their variability along the transect. Variations within the microbiome of the tree RFZ were shaped by geographic and soil physico-chemical changes, whereby bacteria responded more than fungi. Variations within both microbiomes of the tree RZ depended on the host tree and abiotic parameters. Based on perMANOVA and Mantel correlation tests, impacts of site specificities and geographic distance strongly decreased for the tree RZ affine microbiome. This pattern was more pronounced for fungi than bacteria. Shaping the microbiome of the soil zones in root proximity might be a mechanism mediating the acclimation of oaks to a wide range of environmental conditions across geographic regions.  相似文献   

8.
Resource availability and disturbance are important factors that shape the composition, structure, and functioning of ecosystems. We investigated the effects of soil fertility and disturbance on plant–soil interactions and nutrient cycling in a diverse tropical rainforest. Our goal was to determine how common soil specialisation is among species and how plant–soil interactions affect ecosystem functioning in the presence of disturbance. Most species (59%) showed significant fidelity to either fertile (basalt) or infertile (schist) soils. Obligate schist specialists (six species) contributed 39 and 37% to total stand-level basal area and aboveground net primary productivity, respectively. High nutrient use efficiency of schist specialists reduced the rates of within-stand nutrient cycling through the production of nutrient-poor plant tissues and litter. Although forests on schist soils had higher basal area and similar rates of productivity to forests on basalt, uptake of Mg, K, P, and N were markedly less on schist than on basalt, particularly after a cyclone disturbance. Stands on schist soils were also less affected by the cyclone and, as a result, contributed less (ca. 50%) Mg, K, P, and N inputs to the forest floor (via litterfall) than stands on basalt soils. System “openness” (i.e. the risk of nutrient loss) from cyclone-affected basalt forests was minimised by high rates of uptake following disturbance and large effective cation exchange capacities of soils. Soil–plant-disturbance interactions are likely to engender different fitness-enhancing strategies on fertile and infertile soils, possibly leading to the development and/or maintenance of diversity in rainforests.  相似文献   

9.
The dynamics and performance of soil biota during forest rotation were studied in monoculture beech stands forming a chronosequence of four different age-classes(30,62,111,153 yr).Biomass was monitored in major groups of microflora,microfauna,mesofauna,and macrofauna.Resource availability(litter layer,soil organic mater),biomass of the two dominant decomposer groups(microflora,earthworms)as well as the biomass of mesofauna and microfauna were found to remain quite stable during forest succession.Nevertheles...  相似文献   

10.
Coastal barrens support rare plant species but may be threatened by forest encroachment. We determined whether trees spread into coastal barren habitat from forest patches and assessed plant species composition and soil properties across the forest–barren ecotone. We quantified tree age and height, soil properties, and vascular plant, bryophyte and lichen species composition along transects perpendicular to the edges of tree patches within the forest–barren ecotone in coastal Nova Scotia. Randomization tests assessed whether the vegetation and environmental characteristics were significantly different in the transition zone compared to one or both adjoining ecosystems. We used ordination to examine trends in species composition across the ecotone and the relationship to environmental variables. Tree age and height decreased continuously from the forest towards the edge of the forest patches. There were also trends in vegetation composition and structure from the forest into the open barrens. Many species were most abundant within the transition zone, although not always significantly. Soil properties were relatively uniform across the ecotone. The structure and vegetation of the forest–barren ecotone suggests that forest patches act as nuclei for forest expansion on barrens with a typical successional pathway where coastal barren vegetation is gradually replaced by forest species. This encroachment may pose a threat to rare barrens communities. While landscape factors such as salt spray and wind exposure may determine the general locations where forest can establish, biotic processes of growth and dispersal appear to govern the fine-scale expansion of tree patches.  相似文献   

11.
Understanding how biodiversity and ecosystem functioning respond to changes in the environment is fundamental to the maintenance of ecosystem function. In realistic scenarios, the biodiversity-ecosystem functioning path may account for only a small share of all factors determining ecosystem function. Here, we investigated the strength to which variations in environmental characteristics in a Neotropical savanna affected functional diversity and decomposition. We sought an integrative approach, testing a number of pairwise hypotheses about how the environment, biodiversity, and functioning were linked. We used structural equation modelling to connect fire frequency, soil fertility, exchangeable Al, water availability, functional diversity of woody plants, tree density, tree height, and litter decomposition rates in a causal chain. We found significant effects of soil nutrients, water availability, and Al on functional diversity and litter decomposition. Fire did not have a significant direct effect on functional diversity or litter decomposition. However, fire was connected to both variables through soil fertility. Functional diversity did not influence rates of litter decomposition. The mediated effects that emerged from pairwise interactions are encouraging not only for predicting the functional consequences of changes in environmental variables and biodiversity, but also to caution against predictions based on only environmental or only biodiversity change.  相似文献   

12.
Vetterlein  Doris  Jahn  Reinhold 《Plant and Soil》2004,258(1):307-327
Soil solution composition changes with time and distance from the root surface as a result of mass flow, diffusion, plant nutrient uptake and root exudation. A model system was designed, consisting of a root compartment separated from the bulk soil compartment by a nylon net (30 m mesh size), which enabled independent measurements of the change of soil solution composition and soil water content with increasing distance from the root surface (nylon net). K+ concentration in the rhizosphere soil solution decreased during the initial growth stage (12 days after planting, DAP). Thereafter K+ accumulated with time, due to mass flow as the dominating process. The extend of K+ accumulation depended on the initial fertiliser application. As K+ concentrations in soil solution increase, not only as a result of transport exceeding uptake, but also as a result of decreasing soil water content, it is hypothesised that K concentration in soil solution is not the only trigger for the activity of K transporters in membranes, but ABA accumulation in roots induced by decreasing soil matric potentials may add to the regulation. A strong decrease of rhizosphere pH with time is observed as a result of H+ efflux from the roots in order to maintain cation-anion balance. In addition the K+ to Ca2+ ratio was altered continuously during the growing period, which has an impact on Ca2+ uptake and thus firmness of cell walls, apoplast pH, membrane integrity and activity of membrane transporters. The value of osmotic potential in the rhizosphere soil solution increased with time indicating decreasing soil water availability. Modelling approaches based on the data obtained with the system might help to fill in the time gaps caused by the low temporal resolution of soil solution sampling method.  相似文献   

13.
M. A. S. Graça  J. M. Poquet 《Oecologia》2014,174(3):1021-1032
We tested the hypothesis that water stress and soil nutrient availability drive leaf-litter quality for decomposers and detritivores by relating chemical and physical leaf-litter properties and decomposability of Alnus glutinosa and Quercus robur, sampled together with edaphic parameters, across wide European climatic gradients. By regressing principal components analysis of leaf traits [N, P, condensed tannins, lignin, specific leaf area (SLA)] against environmental and soil parameters, we found that: (1) In Q. robur the condensed tannin and lignin contents increased and SLA decreased with precipitation, annual range of temperature, and soil N content, whereas leaf P increased with soil P and temperature; (2) In A. glutinosa leaves N, P, and SLA decreased and condensed tannins increased with temperature, annual range of temperature, and decreasing soil P. On the other hand, leaf P and condensed tannins increased and SLA decreased with minimum annual precipitation and towards sites with low temperature. We selected contrasting leaves in terms of quality to test decomposition and invertebrate consumption. There were intraspecific differences in microbial decomposition rates (field, Q. robur) and consumption by shredders (laboratory, A. glutinosa). We conclude that decomposition rates across ecosystems could be partially governed by climate and soil properties, affecting litter quality and therefore decomposers and detritivores. Under scenarios of global warming and increased nutrients, these results suggest we can expect species-specific changes in leaf-litter properties most likely resulting in slow decomposition with increased variance in temperatures and accelerated decomposition with P increase.  相似文献   

14.
Soil solution chemistry, soil acidity andcomposition of adsorbed cations were determinedin two soil profiles developed under a mixedspruce (Picea abies and Piceasitchensis) stand and in one soil profiledeveloped under an oak (Quercus robur)stand. Soils under spruce were classified asSpodosols and soils under oak were classifiedas Inceptisols. All profiles were developed inthe same parent material; a Saahlian sandy tillcontaining less than 2% clay. In the mineralsoil, the contribution from mineral surfaces tothe total cation-exchange capacity (CECt)was estimated to be less than 3%. Soilsolution pH and the percent base saturation ofCECt [%BS = 100 (2Ca + 2Mg + Na + K)CECt –1] were substantially lower inthe upper 35–40 cm of the two Spodosols, ascompared to the Inceptisol. The total amount ofsoil adsorbed base cations (BC) did not differamong the three profiles on an area basis downto 1 m soil depth. Thus, soil acidification ofCECt due to net losses of BC could notexplain differences in soil pH and %BS amongthe soil profiles. A weak acid analogue, takingthe pH-effect of metal complexation intoconsideration, combined with soil solutionionic strength as a covariate, could describeboth the pH variation by depth within soilprofiles and pH differences between theInceptisol and the two Spodosol profiles. Ourresults confirm and extend earlier findingsfrom O and E horizons of Spodosols that theextent to which organic acid groups react withAl minerals to form Al-SOM complexes is a majorpH-buffering process in acidic forest soils. Wesuggest that an increasing Al-saturation of SOMis the major reason for the widely observed pHincrease by depth in acidic forest soils with apH less than approximately 4.5. Our resultsstrongly imply that changes in mass of SOM, theionic strength in soil solution and therelative composition of soil adsorbed Al and Hneed to be considered when the causality behindchanges in pH and base saturation isinvestigated.  相似文献   

15.

Background and aims

SOC inventory and soil δ13C were widely used to access the size of soil C pool and to indicate the dynamics of C input and output. The effects of climatic factors and soil physical characteristics and plant litter input on SOC inventory and soil δ13C were analyzed to better understand the dynamics of carbon cycling across ecosystems on the Qinghai-Tibetan Plateau.

Methods

Field investigation was carried out along the two transects with a total of 1,875 km in length and 200 km in width. Sixty-two soil profiles, distributed in forest, meadow, steppe, and cropland, were stratified sampled every 10 cm from 0 to 40 cm.

Results

Our result showed that SOC density in forest and meadows were much higher than in steppe and highland barley. In contrast, δ13C in forest and meadow were lower than in steppe and highland barley. Soil δ13C tended to enrich with increasing soil depth but SOC decline. SOC and δ13C (0–40 cm) were correlated with different climatic factors in different ecosystems, such that SOC correlated negatively with MAT in meadow and positively with MAP in steppe; δ13C correlated positively with MAT in meadow and steppe; and δ13C also tended to increase with increasing MAT in forest. Of the variation of SOC, 55.15 % was explained by MAP, pH and silt content and 4.63 % was explained by the interaction between MAT and pH across all the ecosystems except for the cropland. Meanwhile, SOC density explained 27.40 % of variation of soil δ13C.

Conclusions

It is suggested that different climatic factors controlled the size of the soil C pool in different ecosystems on the Tibetan Plateau. SOC density is a key contributor to the variation of soil δ13C.  相似文献   

16.
Fungi are capable of accumulating metals and, in soil, such accumulation may influence metal speciation and transport. The interactions between a common soil fungus, Trichoderma harzianum, and IIb elements were studied in the present investigation. The accumulation of the metals zinc, cadmium and mercury by starved and non-starved mycelium at different pH was determined by a batch technique using radioactive tracers; uptake of the metals was found to be large, with respective distribution coefficients of about 103.5, 102.5 and 104.0 for zinc, cadmium and mercury, respectively. Metal accumulation by a starved system was largely independent of pH in the range 3–9, where in a non-starved system an increased accumulation of zinc (at 10 m) was observed at low pH (3–5). Potentiometric titrations performed on the two systems revealed significant differences in acid capacities, i.e. values close to zero for the starved system and 500–800 meq kg for the non-starved system. The maximum metal uptake was at least 50 mmol kg at pH 6.5 (calculated from adsorption isotherms). The present findings suggests that in the non-starved system a metabolite is produced and then released when the pH is within a certain range.  相似文献   

17.
18.
Mesocosms, enclosed outdoor experimental systems, are commonly used in terrestrial ecology. They are frequently used to study the effects of elevated CO2 and temperature on terrestrial ecosystem processes. Despite their advantages and frequent use it is important to verify, through explicit measures, that mesocosms reliably model the larger system. In this study, fully-coupled, soil–litter–plant mesocosms were constructed in Corvallis using native soil and litter, and planted with Douglas-fir (Pseudotsuga menziesii Mirb. Franco) seedlings. Needle photosynthesis and soil respiration were measured repeatedly over a 21-month period in mesocosms and compared to measurements made at two field sites (Toad Creek and Falls Creek) planted at the same density as the mesocosms. Under the temperature and soil moisture conditions, photosynthetic and soil respiration rates in the mesocosms were not significantly different than the rates at Toad Creek, where the soil and litter in the mesocosms were collected. In contrast, the soil at Falls Creek was different than the soil in the mesocosms and at Toad Creek and photosynthetic and soil respiration rates at Falls Creek were significantly different than at the other two sites. The lack of significant differences between rates measured in the mesocosms in Corvallis and at the Toad Creek field site indicate that the mesocosms did not cause significant artifacts in the data and that the results for these rates in the mesocosms can be extrapolated to field settings with comparable edaphic conditions.  相似文献   

19.
Summary Data obtained from uncontrolled experiments are often fitted to regression models, in which the dependent variable is assumed to be affected by a number of independent factors. The regression coefficient then gives the rate of a change of an effect caused by unit change in the independent variable on the assumption that this change in the causal factor does not result in a change in another independent factor (partial regression coefficient). In many cases however, this assumption is not valid; this is particularly the case with investigations into the quantitative relationships of plants.The principle of path coefficients introduced by Wright and used up till now mainly in genetics, allows among other things for the possibility of making allowance for these indirect influences. For this purpose the investigator has to formulate a closed causal linear system withm primary causes (x) andn effects (y). By a closed linear system is understood a network in which each variable is a linear combination of one or more other variables of this system or is one of the variables that is determined by none of the variables in this system; the latter are the primary causes,x. The parameters which give the extents of the influences are called path coefficients. The derivation of path coefficients is demonstrated by the equations 1–5 of the example of the simple system in Figure 2.The potentialities of the method of path coefficients are illustrated by its application to an investigation into the effects of soil and other factors on the MgO and K2O content of herbage. The conventional regression model is given in Figure 1. Figure 3 presents a more realistic model which has been constructed that the variables, proportion of weeds and crude-protein content, are treated as cause as well as effect. The path coefficients of this model are soluble and are given in Table 2. For comparison, the regression coefficients estimated according to the model in Figure 1 are given in Table 3. In the model in Figure 4 the influence of the K2O content of the soil on the MgO content of the herbage is shown to be of a plant-physiological and not of a soil-chemical nature.The method of path coefficients has greater potentialities than the regression merhod for the solution of certain problems. In the model of Figure 5 a synthesis between soil factors, chemical and botanical composition of the herbage, and Mg content of the blood is demonstrated; this model is soluble.
Kausale Boden—Pflanze-Zusammenhänge und Pfad-Koeffizienten
Zusammenfassung Die in einem Experiment ohne Eingriff erzielten Ergebnisse werden oft mit einer Regressionsgleichung ausgewertet. Im Model dieser Gleichung wird eine Variabele durch die sonstigen sog. unabhängigen Variabelen erklärt. Die Regressionskoeffizienten geben dann die Zunahme des Effektes an wenn eine Ursache um 1 wächst, unter Annahme dass die sonstigen erklärenden Variabelen durch die Änderung dieser Ursache selbst nicht geändert werden (partielle oder Teilregression). In vielen Fällen entspricht diese Annahme nicht der Wirklichkeit. Die von Wright entwickelte Methode mit den Pfad-Koeffizienten gibt die Möglichkeit diese Schwierigkeiten bisweilen zu beseitigen. Hierzu muss der Forscher ein geschlossen kausales, lineares System mitm primären Ursachenx undn Effekteny aufsetzen. Unter einem geschlossen kausalen System wird ein Netzwerk verstanden in dem jede Variabele entweder eine lineare Kombination einer oder mehrerer Variabelen dieses Systems oder eine der Variabelen ist, welche durch keine der Variabelen des Systems bestimmt ist. Die letzten Variabelen sind darin die primären Ursachenx. Die Grösse eines Einflusses wird durch den Pfad-Koeffizient gegeben. Ein Beispiel der Auswertung der Pfad-Koeffizienten des einfachen Systems aus Figur 2 wird durch die Gleichungen 1–5 gegeben.Die Möglichkeiten der Methode mit den Pfad-Koeffizienten werden vorgeführt an Hande einer Untersuchung nach den Einflüssen von Boden- und anderen Faktoren auf den MgO- und K2O-Gehalt des Weidegrases in Bezug auf die Wichtigkeit dieser Zusammensetzung für das Auftreten von Hypomagnesaemie. Das Regressionsmodell dieser Untersuchung wird in Figur 1 gegeben. Figur 3 gibt ein mehr reelles Modell, worin die Variabelen Prozentsatz an Kräutern und Roheiweissgehalt des Grasses Ursache sowohl wie Effekt sind. Die Pfad-Koeffizienten dieses Modelles sind lösbar und werden in Tabelle 2 gegeben. Zur Vergleich werden in Tabelle 3 die Regressionskoeffizienten des Modelles aus Figur 1 gegeben. Im Modell von Figur 4 wird der Einfluss von Kali im Boden mit Hilfe des Kaligehaltes vom Gras physiologisch gedeutet.Die Methode mit den Pfad-Koeffizienten hat viele Vorzüge vor dem Regressionsmodell. Die Methode gibt weiter grosse Möglichkeiten für eine synthetische Auswertung der Ergebnisse. Im Modell von Figur 5 wird eine Synthese zwischen Bodenfaktoren, Zusammensetzung des Weidegrases und Mg-Gehalt des Blutes gegeben. Die Pfad-Koeffizienten dieses Modelles sind lösbar.

Relations causales sol—plante et coefficients path
Résumé Les résultats d'un essai sans intervention sont souvent analysés par une équation de régression. Dans le modèle de cette équation une des variables est expliquée par les autres, nommées variables independantes. Les coëfficients de régression formulent alors l'accroissement de l'effet pour chaque augmentation de la cause d'une unité en admettant que les autres variables explicatives ne sont pas influencées par ce changement de la cause (régression partielle). Dans beaucoup de cas cependant cette admission est inexacte.La méthode des coëfficients path développée par Wright fournit la possibilité de surmonter ces difficultés. À cet effet le chercheur doit ébraucher un système causal linéair fermé avecm causes primairesx etn effetsy. Un système causal fermé est un réseau, dans lequel chaque variable est, soit une combination linéaire d'une ou plusieurs variables de ce système, soit une variable, qui est indépendante des variables de ce système. Ces dernières sont là-dedans les causes primairesx. L'intensité des influences est exprimée par les coefficients paths. Un exemple des calculs des coefficients path du système simple de la figure 2 est donné par les équations 1–5.Les possibilités de la méthode avec les coefficients path sont démontrées à l'aide des résultats d'une recherche sur les influences des facteurs pédologiques et autres sur la teneur en MgO et K2O dans l'herbe de pâturage, vue l'importance de ces teneurs sur l'apparation de l'hypomagnesaemie. Le modèle de regression de cette recherche est donné dans la figure 1. La figure 3 présente un modèle plus réel, dans lequel les variables: teneur en mauvaises herbes et teneur en proteïne brute de l'herbe sont aussi bien cause qu'effet. Les coefficients path ce de modèle sont résolubles et mentionnés dans la tabelle 2. Pour comparaison la tabelle 3 mentionne les coefficients de régression du modèle de la figure 1. Le modèle de la figure 4 exprime par voie physiologique l'influence de la potasse du sol au moyen de la teneur en potasse de l'herbe.La méthode des coefficients path a plus de possibilités que le modèle de régression. Elle présente de grosses possibilités pour une analyse synthétique des résultats. Le modèle de la figure 5 donne la synthèse entre les facteurs pédologiques, composition de l'herbe et teneur en Mg du sang. Les coefficients path de ce modèle sont résolubles.
  相似文献   

20.
Applied Microbiology and Biotechnology - MeBglD2, a β-glycosidase that is highly activated in the presence of various monosaccharides and disaccharides, was isolated from a soil metagenomic...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号