首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Nickel (Ni) phytoextraction using hyperaccumulator plant species to accumulate Ni from mineralized and contaminated soils rich in Ni is undergoing commercial development. Serpentinite derived soils have a very low ratio of Ca/Mg among soils due the nature of the parent rock. In crop plants, soil Ca reduces Ni uptake and phytotoxicity, so it is possible that the low Ca of serpentine soils could limit hyperaccumulator plant tolerance of serpentine soils used for commercial phytomining. In this study, we investigated the effects of varied Ca concentration in the presence of high Mg characteristic of serpentine soils on Ni uptake and tolerance by serpentine-endemic species Alyssum murale Waldst. et Kit. and A. pintodasilvae T.R. Dudley in comparison with cabbage (Brassica oleracea L. var. capita) in a nutrient solution study. The levels of Ca and Mg used were based on serpentine and normal soils, and Ni was based on achieving over 1% Ni in Alyssum shoots in preliminary tests. Varied solution concentrations of Ni (31.6–1,000 μM for Alyssum, 1.0–10 μM for cabbage) and Ca (0.128–5 mM) were used in a factorial experimental design; 2 mM Mg was used to mimic serpentine soils. Alyssum spp. showed much greater tolerance to high Ni, high Mg, and low Ca solution concentrations than cabbage. For Alyssum spp., Ni induced phytotoxicity was only apparent at 1,000 μM Ni with relatively low and high Ca/Mg quotient. In the 1,000 μM Ni treatment, shoot Ni concentrations ranged from 8.18 to 22.8 g kg?1 for A. murale and 7.60 to 16.0 g kg?1 for A. pintodasilvae. Normal solution Ca concentrations (0.8–2 mM) gave the best yield across all Ni treatments for the Alyssum species tested. It was clear that solution Ca levels affected shoot Ni concentration, shoot yield and Ni translocation from root to shoot, but the relation was non-linear, increasing with increasing Ca up to 2 mM Ca, then declining at the highest Ca. Our results indicate that Ca addition to high Mg serpentine soils with very low Ca/Mg ratio may reduce Ni phytotoxicity and improve annual Ni phytoextraction by Alyssum hyperaccumulator species. Removal of shoot biomass in phytomining will require Ca application to maintain full yield potential.  相似文献   

2.
Developing and deploying cotton cultivars with high nutrient uptake, use efficiency and tolerance to nutrient related soil stresses is desirable to assist sustainable soil management. Genetic variation, heritability, selection response and quantitative trait loci (QTLs) were investigated for five macronutrients (P, K, Ca, Mg, S) and five micronutrients (Fe, Mn, B, Zn, and Cu) in a recombinant inbred line (RIL) population from an inter-specific cross between Gossypium hirsutum cv. Guazuncho 2, and G. barbadense accession VH8-4602. Na and K/Na ratio were also studied as the imbalance between Na and other nutrients is detrimental to cotton growth and development. The concentrations of nutrients were measured for different plant parts of the two parents and for leaf samples of the whole population collected at early to peak flowering in field experiments over two years in a sodic Vertosol soil. Parental contrast was large for most nutrient concentrations in leaves when compared with other plant parts. Segregation for leaf nutrient concentration was observed within the population with transgression for P, K, K/Na ratio and all micronutrients. Genotypic difference was the major factor behind within-population variation for most nutrients, while narrow sense heritability was moderate (0.27 for Mn and Cu, and 0.43 for B). At least one significant QTL was identified for each nutrient except K and more than half of those QTLs were clustered on chromosomes 14, 18 and 22. Selection response was predicted to be low for P and all micronutrients except B, high for K, Na and B, and very high for K/Na ratio. Correlations were more common between macronutrients, Na and K/Na ratio where the nature and strength of the relations varied (r=-0.69 to 0.76). We conclude that there is sufficient genetic diversity between these two tetraploid cotton species that could be exploited to improve cotton nutrient status by introgressing species-unique favourable alleles.  相似文献   

3.
A beneficial effect of B and Ca application on symbiotic interaction between legume and rhizobia under saline conditions has recently been shown, suggesting conventional agricultural practices to increase crop salt tolerance. However, nothing is known about application of both nutrients on early events of legume development under salt stress, prior to the establishment of a symbiotic interaction. Therefore, the effects of different levels of B (from 9.3 to 93μM B) and Ca (from 0.68 to 5.44 mM Ca) on seed germination, root elongation, plant development, and mineral composition of pea (Pisum sativum L. cv. Argona) grown under 0 to 150 mM NaCl, were analysed. Development of plants previously germinated in the presence of salt was more impaired than that of plants put under salt stress once seeds were germinated. A NaCl concentration of 75 mM and 150 mM inhibited pea seed germination and seedling growth. The addition of either extra B or extra Ca to the germination solution prevented the reduction caused by 75 mM NaCl but not that of 150 mM NaCl. However, root elongation and plant development under salt stress (75 mM NaCl) was enhanced only by addition of both B and Ca. When plants were cultivated in the absence of external N, N content in roots and shoots originating from seeds was diminished by salt and enhanced by B and Ca, suggesting a role of these nutrients in remobilisation of seed nutrient stores. Salinity also led to an extremely high concentration of Na+ ions, and to a decrease of B and Ca concentrations. This can be overcome by addition of both nutrients, increasing salt tolerance of developing pea plants. The necessity of nutritional studies to increase crop production in saline soils is discussed and proposed.  相似文献   

4.
Interactions between Se (as selenate) and I (as iodate) uptake by spinach plants (Spinacia oleracea L.) were studied under controlled conditions using solution culture. Spinach readily accumulated both Se and I in the edible parts, the leaves, with solution-to-leaf transfer factors ranging from 3.5 to 13.4. The distribution coefficients between leaves and roots ranged from 4.07 to 5.66 for I and 4.51 to 8.59 for Se. Selenium concentrations in plant tissues were unaffected by addition of I to the nutrient solution. Similarly, plant I concentrations were unaffected by addition of Se to the nutrient solution, except in nutrient solution with I at a concentration of 50 μM, in which addition of Se lowered shoot I concentrations significantly, but the effect was of low magnitude. These results indicate the possible feasibility of dual supplementation of plant growth substrates with Se and I to improve human nutrition where these two elements are deficient in the diet. The data also indicate the involvement of a positive feedback mechanism in the uptake of Se by spinach plants, since Se concentrations in leaves increased disproportionately with increasing Se concentration in the nutrient solution.  相似文献   

5.
Abstract Growth of barley (Hordeum vulgare L., cv. Georgie) was insensitive to soil K content above about 150 mg kg?1, but at lower levels it declined. The reduction in yield was greater in soils containing approximately 10 mg Na kg?1 than in soils with about 90 mg kg?1 of Na. Growth was unaffected by changes in shoot K concentration above 75 mol m?3, but declined at lower concentrations, and the decrease was less in plants grown in soils with high Na. Growth responses were not simply related to tissue K concentrations because plants grown in soils with extra Na had higher yields but lower K concentrations. When soil Na was low, plants accumulated Ca as tissue K declined, but when Na was provided this ion was accumulated. Plant Mg concentrations were generally low but increased as K decreased. The Ca and Mg were osmotically active. There were highly significant inverse linear relationships between yield and either the Ca or Mg concentrations in the shoots. X-ray microanalysis was used to examine the compartmentation of cations in leaves from barley plants (cv. Clipper) grown in nutrient solutions with high and low K concentrations. In plants grown with 2.5 mol m?3 K, this was the major cation in both the cytoplasm and vacuole of mesophyll cells. However, in plants grown with 0.02 mol m?3 K it declined to undetectable levels in the vacuole, although it was still detectable in the cytoplasm. In all plants, Ca was mainly located in epidermal cells. The implication of the results for explaining responses to K. in terms of compartmentation of solutes is discussed.  相似文献   

6.
The present study was carried out in natural stands of Typha domingensis in Lake Burullus, Egypt, to investigate (1) nutrient dynamics and heavy metals accumulation in its organs, (2) the phytoextractive potential of its organs and (3) the amount of nutrients and heavy metals released back into the water after decomposition of the dead tissues. Nitrogen concentrations were higher in the shoot than in the root and rhizome, while P, Ca, Cu, Fe, Zn and ash concentrations were higher in the root than in the rhizome and shoot. Significant differences in the concentrations of Mg, Cd, Cu and ash were assessed during the growing season of T. domingensis. The content of most nutrients and heavy metals in the shoot increased rapidly during the early growing season in February, reached maximal values in July and then decreased again. The nutrient and heavy metal contents in the below-ground portion of the plant showed an opposite trend compared to the shoot; they decreased sharply during the spring, when they were translocated, supporting the heterotrophic phase of shoot growth. However, they increased slightly from July to September and then decreased again. The transfer factors of all nutrients and heavy metals from the sediment to the below-ground organs were greater than unity. The higher translocation ratio of N in T. domingensis shoots makes it suitable for N phytoextraction from water and sediment, while the lower translocation ratios for Cd, Cu, Fe, Pb and Zn make it suitable for metal ion phytostabilisation. The dead shoot biomass of the stands at the end of 2010 amounted to 1950 g DM m−2, when the seasonal decomposition process began. With a decay rate of 0.0049 day−1, 1624 g DM m−2 is decomposed in the lake in a year. This is equivalent to releasing the following nutrient and heavy metals into the surrounding water (in g m−2): 23.4 N, 0.8 P, 19.2 Ca, 1.8 Mg, 5.6 Na, 32.8 K, 0.01 Cd, 0.01 Cu, 0.84 Fe, 0.12 Pb and 0.03 Zn.  相似文献   

7.
Summary Triticum aestivum cv. Chinese Spring wheat,Elytrigia elongatum (tall wheatgrass), and theTriticum-Elytrigia amphiploid were grown in complete nutrient culture containing, in addition, 0, 40, 80 and 120 mM NaCl. The 3 genotypes responded quite differently to increasing salinity; the Na concentration of wheat shoots increased in direct proportion to the increase in salinity of the external medium whereas the Elytrigia response was interpreted as showing high affinity for Na at low external Na (40 mM) but comparative exclusion of Na at high salinities (120 mM). In contrast, Na levels of the amphiploid were less than those of either wheat or Elytrigia under both low and high salinities. Thus the amphiploid behaved like wheat at 40 mM NaCl but more like Elytrigia at 120 mM NaCl because Na transport to the amphiploid shoot was restricted over the whole salinity range. The K concentration of the amphiploid shoot at high salinities was significantly greater than the K concentrations of either wheat or Elytrigia.  相似文献   

8.
Two-year-old Navel orange scions (Citrus sinensis (L.) Osbeck) budded to either Cleopatra mandarin (C. reticulata) and Troyer citrange (C. sinensis × P. trifoliata) rootstocks were used in this experiment. Cleopatra manda in rootstock was considered more tolerant to salinity than Troyer citrange, and this property was attributed to a greater capacity to exclude chloride ions.Plants were grown under glasshouse conditions and supplied with nutrient solution containing either no or 45 mM NaCl. Calcium concentration was increased from 3 to 30 mM. Sodium, potassium, calcium and chloride concentrations in plant organs were analyzed after 90 days of treatment.Supplemental Ca was found to mitigate the adverse effects of salinity on plant growth, defoliation or leaf injury.Chemical analysis indicated that in plants grafted on Troyer citrange Ca restricted uptake and subsequent translocation of Na to the leaves and increased K concentration in both roots and leaves. However, in Cleopatra mandarin-grafted plants increasing Ca levels seemed to reduce transport of Na from roots to leaves, and Na accumulation in roots was associated with reduced concentration of K in this rootstock.Organ chloride analysis showed that Cl accumulation in leaves of plants grafted on both rootstocks was reduced when external Ca concentration increased, whereas Cl concentration in roots remained constant or increased. The data of distribution of Cl in plants showed that a high external Ca level increased Cl accumulation in the basal stem and roots, and reduced the transport of Cl from roots to leaves.  相似文献   

9.
El-Hamdaoui  A.  Redondo-Nieto  M.  Torralba  B.  Rivilla  R.  Bonilla  I.  Bolaños  L. 《Plant and Soil》2003,251(1):93-103
The effects of different levels of B (from 9.3 to 93 M B) and Ca (from 0.68 to 5.44 mM Ca) on plant development, nitrogen fixation, and mineral composition of pea (Pisum sativum L. cv. Argona) grown in symbiosis with Rhizobium leguminosarum bv. viciae 3841 and under salt stress, were analysed. The addition of extra B and extra Ca to the nutrient solution prevented the reduction caused by 75 mM NaCl of plant growth and the inhibition of nodulation and nitrogen fixation. The number of nodules recovered by the increase of Ca concentration at any B level, but only nodules developed at high B and high Ca concentrations could fix nitrogen. Addition of extra B and Ca during plant growth restored nodule organogenesis and structure, which was absolutely damaged by high salt. The increase in salt tolerance of symbiotic plants mediated by B and Ca can be co-related with the recovery of the contents of some nutrients. Salinity produced a decrease of B and Ca contents both in shoots and in nodulated roots, being increased by the supplement of both elements in the nutrient solution. Salinity also reduced the content in plants of other nutrients important for plant development and particularly for symbiotic nitrogen fixation, as K and Fe. A balanced nutrition of B and Ca (55.8 M B, 2.72 mM Ca) was able to counter-act the deficiency of these nutrients in salt-stressed plants, leading to a huge increase in salinity tolerance of symbiotic pea plants. The necessity of nutritional studies to successfully cultivate legumes in saline soils is discussed and proposed.  相似文献   

10.
The effects of varying CaSO4 and NaCl levels on the nutrient content ofLeucaena leucocephala were established by examining the concentrations of Na, Ca, Cl, K and Mg in leucaena roots, stems and leaves. Leucaena was grown in nutrient solution at four levels of CaSO4 (0.5, 1.0, 2.5 and 5.0 mM) and NaCl (1, 25, 50 and 100 mM), in randomized blocks with five replications. Leucaena excluded sodium from stems and leaves when NaCl concentration was 50 mM or less. Sodium uptake decreased as CaSO4 concentration increased. Calcium uptake was affected by NaCl concentration when substrate CaSO4 concentration was 0.5 mM. At this level, 100 mM NaCl caused a marked decrease in leaf calcium and a marked increase in leaf Cl. In all other treatments, Cl uptake was not affected by CaSO4 concentration. Potassium uptake was strongly depressed as NaCl concentration increased at low Ca concentration, but this effect was offset at high Ca. Magnesium uptake decreased as CaSO4 levels increased.  相似文献   

11.
Boron (B) affects plant growth in soil at B doses (mg added B kg-1 soil) that appear in the range of natural background B concentrations. A study was set up to determine B bioavailability by testing B toxicity to plant as affected by soil properties and ageing after soil dosing. Nineteen soils (pH 4.4?C7.8) and 3 synthetic soils (sand-peat mixtures) were amended with 7 doses of H3BO3. Barley root elongation was determined immediately after B amendment and after 1 and 5 months ageing. Soil solution B concentrations increased linearly with added B concentrations with almost no detectable adsorption. In contrast, the ratio of aqua regia soluble B/soil solution B in unamended soils (no B added) was 10?C25 times higher than in B amended soils at similar aqua regia soluble B concentrations illustrating a much lower B availability in unamended soils. Soil solution B concentrations did not decrease by ageing. The toxic B doses or soil B concentrations that decreased barley root growth by 10% (EC10 values) varied about tenfold (respectively 3?C27 mg added B kg-1 and 5?C52 mg B kg-1) among soils. Corresponding thresholds in soil solution varied less than fourfold (16?C59 mg B l-1). Soil ageing for 5 months did not significantly change EC10 and EC50 values, expressed either as total soil B or as soil solution B, unless in 1 soil. Variability in EC10 and EC50 values was explained by various soil properties (soil moisture content, background B, %clay, cation exchange capacity), but covariance of these properties with the soil moisture content suggest that B dilution is the critical factor explaining B toxicity. It is concluded that effects of B amendments do not decrease by ageing and that soil solution B or B doses corrected for soil moisture content may be used as an index for B toxicity across different soils.  相似文献   

12.
This work was aimed to investigate whether shoot Sr concentrations of plant species are related to respective Ca concentrations and to soil properties and to compare the Sr-Ca observed ratios (OR), defined as the quotient of the ratios Sr/Ca in shoots and in the soil solution or in the extractable form, among species and soils. Ten pasture plant species were grown in pots (1-L volume) filled with eight soils differing in the various physicochemical characteristics. Each pot received 50 mg Sr except those of the soil with the highest cation exchange capacity (C.E.C.) that received 100 mg Sr per pot. For each soil, shoot Sr concentrations of species were linearly and positively related with the respective Ca concentrations. C.E.C, organic matter content and Ca in the soil solution or in the extractable form were the only soil properties that were related, all negatively, with shoot Sr concentrations. The ratio of extractable Sr and Ca was positively and linearly related with the ratio of Sr and Ca. in the soil solution. OR was affected by both species and soils. Most of OR values of all species in all soils ranged between 0.8 and 1.5, except for the grass Agrostis capillaris which had the highest values for most of soils. This indicates that Agrostis capillaris compared to other species, takes up proportionally more Sr than Ca.  相似文献   

13.
Sodium (Na) is ubiquitous in soils, and is transported to plant shoots via transpiration through xylem elements in the vascular tissue. However, excess Na is damaging. Accordingly, control of xylem-sap Na concentration is important for maintenance of shoot Na homeostasis, especially under Na stress conditions. Here we report that shoot Na homeostasis of Arabidopsis thaliana plants grown in saline soils is conferred by reactive oxygen species (ROS) regulation of xylem-sap Na concentrations. We show that lack of A. thaliana respiratory burst oxidase protein F (AtrbohF; an NADPH oxidase catalysing ROS production) causes hypersensitivity of shoots to soil salinity. Lack of AtrbohF-dependent salinity-induced vascular ROS accumulation leads to increased Na concentrations in root vasculature cells and in xylem sap, thus causing delivery of damaging amounts of Na to the shoot. We also show that the excess shoot Na delivery caused by lack of AtrbohF is dependent upon transpiration. We conclude that AtrbohF increases ROS levels in wild-type root vasculature in response to raised soil salinity, thereby limiting Na concentrations in xylem sap, and in turn protecting shoot cells from transpiration-dependent delivery of excess Na.  相似文献   

14.
A greenhouse experiment, growing maize for six weeks, was conducted to evaluate the ameliorative role of Zn (0 and 10 ppm Zn) under saline (ECe4, 8 and 12 mmhos/cm), Sodic (ESP 10, 20 and 30) and saline-sodic (all possible combinations of above salinity and sodicity levels), and normal soil conditions using a sandy loam (Typic Ustochrepts) soil sample.Zinc ameliorated plant growth under salt-affected soil conditions. Ameliorative effect was more under sodic than under saline or saline-sodic soil conditions. Shoot yield decreased with Salinity level of 12 mmhos/cm, and ESP 30 and adverse effects were accentuated with increasing level of ESP and Salinity, respectively.Shoot Zn increased with applied Zn. Increasing sodicity in soil under Zn deficient or low salinity conditions generally decreased shoot Zn, whereas the low level of soil salinization counteracted the adverse effect of high sodicity. Shoot Na increased but K decreased with increasing sodicity and salinity in soil. Shoot Na decreased but K increased with applied Zn. Shoot Ca increased with salinity levels of 4 and 8 mmhos/cm, but decreased with 12 mmhos/cm at 0 Zn level. Sodicity decreased shoot Ca, whereas Zn counteracted adverse effect of high sodicity. Shoot Mg generally increased with increasing salinity, but decreased with increasing sodicity. Zinc had no definite effect. Shoot Ca/Na and K/Na ratios were widened with Zn and narrowed down with high ESP.The effects of salinity, sodicity, and Zn on plant growth and its composition were generally associated with their respective roles in dry matter production, and inter-ionic relationships among Ca, Mg, K, Na and Zn in soils and plants.Contribution from the Department of Soils, Haryana Agricultural University, Hissar, 125004, Indiaformer Research Fellow, respectively.  相似文献   

15.
Summary Two barley cultivars differing in Al tolerance, Kearney (Al-sensitive) and Dayton (Al-tolerant) were exposed to Al stress with varied Ca and Mg concentrations in the nutrient solution. Increase in calcium and magnesium supply protected root meristems and root growth from Al toxicity more effectively in the Al-tolerant cultivar than in the Al-sensitive one. Lateral roots were much more sensitive to Al than adventitious roots. Exposure to 0.33 mM Al with low concentrations of Ca (1.3 mM) and Mg (0.3 mM) caused damage to root tips in both cultivars. Increasing the Ca concentration to 4.3 and 6.3 mM prevented root tip damage in Dayton but not in Kearney. In the Al-tolerant cultivar Dayton, however, the root tips regenerated even at the low Ca concentration of 1.3 mM, whereas 6.3 mM Ca was necessary for this to occur in Kearney. This difference was due to the fact that Dayton's root meristem cells were more resistant to damage. Magnesium responses also varied between the two cultivars. At the lowest Ca concentration an increase in Mg to 6.3 mM permitted regeneration of damaged Kearney root tips and completely prevented any damage in Dayton. It is to be assumed that the different responses of the two cultivars are due to differences in plasma membrane properties.  相似文献   

16.
Termites through mound construction and foraging activities contribute significantly to carbon and nutrient fluxes in nutrient-poor savannas. Despite this recognition, studies on the influence of termite mounds on carbon and nitrogen dynamics in sub-tropical savannas are limited. In this regard, we examined soil nutrient concentrations, organic carbon and nitrogen mineralization in incubation experiments in mounds of Macrotermes falciger and surrounding soils of sub-tropical savanna, northeast Zimbabwe. We also addressed whether termite mounds altered the plant community and if effects were similar across functional groups i.e. grasses, forbs or woody plants. Mound soils had significantly higher silt and clay content, pH and concentrations of calcium (Ca), magnesium (Mg), potassium (K), organic carbon (C), ammonium (NH4+) and nitrate (NO3) than surrounding soils, with marginal differences in phosphorus (P) and sodium (Na) between mounds and matrix soils. Nutrient enrichment increased by a factor ranging from 1.5 for C, 4.9 for Mg up to 10.3 for Ca. Although C mineralization, nitrification and nitrification fraction were similar between mounds and matrix soils, nitrogen mineralization was elevated on mounds relative to surrounding matrix soils. As a result, termite mounds supported unique plant communities rich and abundant in woody species but less diverse in grasses and forbs than the surrounding savanna matrix in response to mound-induced shifts in soil parameters specifically increased clay content, drainage and water availability, nutrient status and base cation (mainly Ca, Mg and Na) concentration. In conclusion, by altering soil properties such as texture, moisture content and nutrient status, termite mounds can alter the structure and composition of sub-tropical savanna plant communities, and these results are consistent with findings in other savanna systems suggesting that increase in soil clay content, nutrient status and associated changes in the plant community assemblage may be a general property of mound building termites.  相似文献   

17.
Summary Salicornia europaea, Puccinellia maritima, Triglochin maritima, Aster tripolium, Plantago maritima, Armeria maritima, Juncus gerardii andFestuca rubra, collected as seed from a salt marsh at Portaferry, County Down, were grown on saline (340 mM NaCl) and non saline nutrient solutions at five concentrations of manganese sulphate (0.025–10.0 mM). After an eight week growing period, shoot and root yields and the concentrations of sodium, potassium, calcium and manganese in the shoots were determined.Except forS. europaea the saline treatments had a strongly limiting effect on plant growth. Each of the species investigated showed a degree of tolerance to high concentrations of manganese which was similar to that of calcifuge species and plants characteristic of waterlogged sand dune slack communities, but which was very much greater than that ofArrhenatherum elatius a species usually excluded from acidic soils. There was little evidence to support the hypothesis that tolerance of high manganese concentrations was correlated with the position of the experimental plants in the salt marsh ecotone or that the manganese nutrition of halophytic and glycophytic marsh species differs. Whilst manganese uptake increased proportionally with solution manganese concentration, there were few other major effects of manganese on the balance of shoot cation concentrations in the plants investigated. Both antagonistic and synergistic effects of sodium on manganese uptake were recorded for different species.  相似文献   

18.
Barraclough  P. B.  Leigh  R. A. 《Plant and Soil》1993,155(1):219-222
Ryegrass was grown in a glasshouse in pots of soil at a range of available K, either with or without added Na. Critical plant K concentrations for growth were related to different functions of K in plants. Critical K concentrations were 126 mM (1.9% in DM) for biophysical functions in low-Na soils 82 mM (1.3% in DM), for biophysical functions in high-Na soils, and 46 mM (0.8% in DM) for biochemical functions. The implications of the findings for plant testing and the benefits of expressing plant K concentrations on a tissue water basis are discussed.  相似文献   

19.
A pot experiment was conducted to examine the effect of arbuscular mycorrhizal fungus, Glomus fasciculatum, and salinity on the growth of Acacia nilotica. Plants were grown in soil under different salinity levels (1.2, 4.0, 6.5, and 9.5 dS m−1). In saline soil, mycorrhizal colonization was higher at 1.2, 4.0, and 6.5 dS m−1 salinity levels in AM-inoculated plants, which decreased as salinity levels further increased (9.5 dS m−1). Mycorrhizal plants maintained greater root and shoot biomass at all salinity levels compared to nonmycorrhizal plants. AM-inoculated plants had higher P, Zn, and Cu concentrations than uninoculated plants. In mycorrhizal plants, nutrient concentrations decreased with the increasing levels of salinity, but were higher than those of the nonmycorrhizal plants. Mycorrhizal plants had greater Na concentration at low salinity levels (1.2, 4.0 dS m−1), which lowered as salinity levels increased (6.5, 9.5 dS m−1), whereas Na concentration increased in control plants. Mycorrhizal plants accumulated a higher concentration of K at all salinity levels. Unlike Na, the uptake of K increased in shoot tissues of mycorrhizal plants with the increasing levels of salinity. Our results indicate that mycorrhizal fungus alleviates deleterious effects of saline soils on plant growth that could be primarily related to improved P nutrition. The improved K/Na ratios in root and shoot tissues of mycorrhizal plants may help in protecting disruption of K-mediated enzymatic processes under salt stress conditions.  相似文献   

20.
Macronutrient concentrations of soybean infected with soybean cyst nematode   总被引:3,自引:0,他引:3  
Smith  G. J.  Wiebold  W. J.  Niblack  T. L.  Scharf  P. C.  Blevins  D. G. 《Plant and Soil》2001,235(1):21-26
Soybean cultivars (Glycine max(L.) Merr.) infected with soybean cyst nematode (SCN; Heterodera glycinesIchinohe) often show symptoms similar to K deficiency. The objectives of this experiment were to determine if SCN infection affected macronutrient concentrations in soybean seedling vegetative tissues, determine whether increased K fertility can overcome these possible effects, and to determine if these possible effects are localized at the site of infection or expressed systemically throughout the root system. Soybean plants were grown with root systems split into two halves. This allowed differential K (0.2, 2.4 and 6.0 mM K nutrient solutions) and SCN (0 and 15 000 eggs/plant) treatments to be applied to opposite root-halves of the same plant. Thirty days after plants were inoculated with SCN, macronutrient concentrations of shoot and root tissues were determined. Potassium concentration in leaf blades was not affected; but K concentrations in leaf-petiole and stem tissues were increased with SCN infection. Roots infected with SCN contained lower K concentrations than uninfected roots, but only for the 2.4 mM K treatment. Thus, at the medium level of K fertility, SCN reduced K concentration in soybean roots, and increasing K fertility to the high level overcame the effect. Because K concentrations in the shoot tissues were not reduced by SCN infection, above ground portions of the plant may be able to overcome limitations that occur in roots during the first 30 days of infection. Increasing K fertility level in soybean fields may not benefit vegetative growth of soybean infected with SCN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号