首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Chemical fractions of soil Zn namely: water soluble (WS), exchangeable (EX), Pb displaceable (Pb-disp.), acid soluble (AS), Mn oxide occluded (MnOX), organically bound (OB), amorphous Fe oxide occluded (AFeOX), crystalline Fe oxide occluded (CFeOX), residual (RES) were determined in 20 surface (0–15 cm) samples of acidic soils from the provinces of Uttarakhand and Uttar Pradesh, India. The chemical fractions of soil Zn in acidic soils were found to be in the following descending order of Zn concentration: RES > CFeOX > Pb-Disp. > AFeOX > MnOX > AS > OB > EX > WS. These soil samples were also extracted by: DTPA (pH 7.3), DTPA (pH 5.3), AB-DTPA (pH 7.6), Mehlich 3 (pH 2.0), Modified Olsen, 0.01 N CaCl2, 1 M MgCl 2 and ion exchange resins. Chemical fractions and the soil extractable content of Zn estimated by different soil extractants were significantly correlated with some general soil properties. Maize (cv. Pragati) plants were grown in these soils for 35 days after emergence and Zn uptake by plants was compared with the amount of Zn extracted by different soil extractants and chemical fractions of Zn. Among chemical fractions of soil Zn, Pb-displaceable and acid soluble chemical fractions of soil Zn showed a significant and positive correlation with Zn uptake by maize. Path coefficient analysis also revealed that the acid soluble Zn fraction showed the highest positive and direct effect on Zn uptake (P=0.960). Among different multinutrient soil extractants evaluated for their suitability to assess Zn availability in acidic soils, DTPA (pH=5.3) was most suitable soil extractant, as the quantity of soil Zn extracted by this extractant showed a significant and positive correlation with the dry matter yield, Zn concentration and uptake by maize plants.  相似文献   

2.
It has been frequently suggested that root exudates play a role in trace metal mobilization and uptake by plants, but there is little in vivo evidence. We studied root exudation of dicotyledonous plants in relation to mobilization and uptake of Cu and Zn in nutrient solutions and in a calcareous soil at varying Cu and Zn supply. Spinach (Spinacia oleracea L.) and tomato (Lycopersicon esculentum L.) were grown on resin-buffered nutrient solutions at varying free ion activities of Cu (pCu 13.0–10.4) and Zn (pZn 10.1–6.6). The Cu and Zn concentrations in the nutrient solution increased with time, except in plant-free controls, indicating that the plant roots released organic ligands that mobilized Cu and Zn from the resin. At same pCu, soluble Cu increased more at low Zn supply, as long as Zn deficiency effects on growth were small. Zinc deficiency was observed in most treatment solutions with pZn ≥ 9.3, but not in nutrient solutions of a smaller volume/plant ratio in which higher Zn concentrations were observed at same pZn. Root exudates of Zn-deficient plants showed higher specific UV absorbance (SUVA, an indicator of aromaticity and metal affinity) than those of non-deficient plants. Measurement of the metal diffusion flux with the DGT technique showed that the Cu and Zn complexes in the nutrient solutions were highly labile. Diffusive transport (through the unstirred layer surrounding the roots) of the free ion only could not explain the observed plant uptake of Cu and of Zn at low Zn2+ activity. The Cu and Zn uptake by the plants was well explained if it was assumed that the complexes with root exudates contributed 0.4% (Cu) or 20% (Zn) relative to the free ion. In the soil experiment, metal concentrations and organic C concentrations were larger in the solution of planted soils than in unplanted controls. The SUVA of the soil solution after plant growth was higher for unamended soils, on which the plants were Zn-deficient, than for Zn-amended soils. In conclusion, root exudates of dicotyledonous plants are able to mobilize Cu and Zn, and plants appear to respond to Zn deficiency by exuding root exudates with higher metal affinity.  相似文献   

3.

Aims

The aim of this study was to compare the residual effects in soil and the influence on a flax crop (Linum usitatissimum L.) of applying Zn from different commercial synthetic chelates. The chelates used were: Zn-EDDHSA (Zn-ethylenediamine-N,N'-bis(2-hydroxyphenylacetate), Zn-EDTA (Zn-ethylenediaminetetraacetate), Zn-HEDTA (Zn-N-2-hydroxyethyl-ethylenediaminetriacetate), Zn-EDTA-HEDTA and Zn-DTPA-HEDTA-EDTA (Zn-DTPA, Zn-diethylenetriaminepentaacetate).

Methods

The experiment was conducted in a greenhouse using two different soils (Soilacid: a weakly acidic soil and Soilcalc: a calcareous soil). Each treatment was administered, in a single application, to a previous flax crop at different Zn application rates. The yield and some of the flax crop quality parameters were determined in the present flax crop. Soil Zn behavior was then evaluated by single and sequential extraction.

Results

In Soilacid, the Zn-HEDTA and Zn-EDDHSA fertilizers produced the highest plant parameters values (total Zn concentration, total uptake Zn), percentages of Zn utilization and values of the transfer factor, TF. In contrast, in Soilcalc these fertilizers produced the lowest in-plant values, with this soil producing the highest yield, quality, percentage of utilization and TF associated with the application of Zn-DTPA-HEDTA-EDTA and Zn-EDTA fertilizers. However, the Zn-EDTA in Soilacid and Zn-DTPA-HEDTA-EDTA in Soilcalc, were associated with the greatest amounts of bioavailable Zn in soil and also with the highest Zn concentrations associated with the sum of the most labile fractions (water soluble plus exchangeable fractions).

Conclusions

The residual Zn produced by the different fertilizer treatments estimated using the DTPA, Mehlich-3- and LMWOAs methods- was available in sufficient quantities that it not be necessary to add any further Zn (which could have resulted in over-fertilization) for the subsequent crop to either of the soils.  相似文献   

4.
Laboratory and greenhouse experiments were conducted with two soilsviz., laterite and alluvial to study the transformation of applied Zn in soil fractions under submerged condition in the presence and absence of added organic matter and its relationship with Zn nutrition of rice plants. The results showed that application of organic matter caused a decrease in the concentration of Zn in shoot and root of rice plants and helped in translocating the element from root to shoot. The per cent utilization of applied Zn by plants was also found to increase by the application of organic matter. The transformation of applied Zn in different fractions in soils showed that a major portion (53.6–72.6%) of it found its way to mineral fractions leaving only 1.0–3.3, 6.6–18.9, 11.0–21.6 and 2.3–8.8% of the applied amounts in water soluble plus exchangeable, organic complexed, amorphous sesquioxides and crystalline sesquioxides bound fractions respectively. Application of organic matter favoured such transformation of applied Zn into these fractions except the mineral and crystalline sesquioxides bound ones. Simple correlation and multiple regression analyses between applied Zn in different soil fractions and fertilizer Zn content in plants showed that organic matter application increased the predictability of fertilizer Zn content in plants which has been attributed to the higher per cent recovery of applied Zn in plant available fractions in soils in presence of added organic matter.  相似文献   

5.
A pot culture experiment was performed to study the effects of infection with different proportions of arbuscular mycorrhizal fungus (AMF) and phosphate-solubilizing fungus (PSF) on the rhizosphere soil property of castor bean (Ricinus communis L.). One AMF, Glomus mosseae, and one PSF, Mortierella sp. (Ms), were applied to non-sterilized coastal saline soil. The plant dry mass, leaf chlorophyll content, and P-uptake of castor bean were assessed. In coastal saline soil, the different proportions of both fungi-inoculated seedlings showed significantly greater shoot and root dry weight than the controls, which had lower root-to-shoot ratios than the inoculated seedlings. An increase in phosphorus (P) and chlorophyll contents was also observed in the inoculated seedlings compared with the controls. The appropriate Ms proportion seemed to be advantageous for AMF colonization. However, available P content of fungi-treated soil increased in proportion to the increase in Ms population and AMF colonization. By contrast, the pH of inoculated soil decreased because of the increased proportion of Mortierella, and electrical conductivity values showed a negative correlation with AMF colonization. Soil enzyme activities (i.e., urease, invertase, neutral phosphatase, and alkaline phosphatase) and soil organic matter were also stimulated by inoculation with different proportions of both fungi. However, the catalase activities of inoculated soil were inhibited compared with those of the control soil. Results from this study prove that castor bean planting associated with an appropriate proportion of AMF and PSF will benefit the amelioration of coastal saline soils of eastern China.  相似文献   

6.
A pot experiment was conducted to investigate the uptake of Zn from experimentally contaminated calcareous soil of low nutrient status by maize inoculated with the arbuscular mycorrhizal (AM) fungus Glomus caledonium. EDTA was applied to the soil to mobilize Zn and thus maximize plant Zn uptake. The highest plant dry matter (DM) yields were obtained with a moderate Zn addition level of 300 mg kg?1. Plant growth was enhanced by mycorrhizal colonization when no Zn was added and under the highest Zn addition level of 600 mg kg?1, while application of EDTA to the soil generally inhibited plant growth. EDTA application also increased plant Zn concentration, and Zn accumulation in the roots increased with increasing EDTA addition level. The effects of inoculation with Gcaledonium on plant Zn uptake varied with Zn addition level. When no Zn was added, Zn translocation from roots to shoots was enhanced by mycorrhizal colonization. In contrast, when Zn was added to the soil, mycorrhizal colonization resulted in lower shoot Zn concentrations in mycorrhizal plants. The P nutrition of the maize was greatly affected by AM inoculation, with mycorrhizal plants showing higher P concentrations and P uptake. The results indicate that application of EDTA mobilized soil Zn, leading to increased Zn accumulation by the roots and subsequent plant toxicity and growth inhibition. Mycorrhizal colonization alleviated both Zn deficiency and Zn contamination, and also increased host plant growth by influencing mineral nutrition. However, neither EDTA application nor arbuscular mycorrhiza stimulated Zn translocation from roots to shoots or metal phytoextraction under the experimental conditions. The results are discussed in relation to the environmental risk associated with chelate-enhanced phytoextraction and the potential role of arbuscular mycorrhiza in soil remediation.  相似文献   

7.
In tropical forest ecosystems, a paradoxical relationship is commonly observed between massive biomass production and low soil fertility (low pH). The loss and deficiency of soil phosphorus (P) and bases generally constrain biomass production; however, high productivity on nutrient-deficient soils of Bornean tropical forests is hypothesized to be maintained by plant and microorganism adaptation to an acidic soil environment. Proton budgets in the plant–soil system indicated that plants and microorganisms promote acidification to acquire bases, even in highly acidic tropical soils. The nitric and organic acids they produce contribute to the mobilization of basic cations and their uptake by plants. In response to soil P deficiency and the recalcitrance of lignin-rich organic matter, specific trees and fungi can release organic acids and enzymes for nutrient acquisition. Organic acids exuded by roots and rhizosphere microorganisms can promote the solubilization of P bonded to aluminum and iron oxides and its uptake by plants from P-poor soils. Lignin degradation, a rate-limiting step in organic matter decomposition, is specifically enhanced in acidic organic layers by lignin peroxidase, produced by white-rot fungi, which may solubilize recalcitrant lignin and release soluble aromatic substances into the soil solution. This dissolved organic matter functions in the transport of nitrogen, P, and basic cations in acidic soils without increasing leaching loss. In Bornean tropical forests, soil acidification is promoted by plants and microorganisms as a nutrient acquisition strategy, while plant roots and fungi can develop rhizosphere and enzymatic processes that promote tolerance of low pH.  相似文献   

8.
Summary Effects of soil application (0.01, 0.1 and 1%) and foliar sprays (0.001, 0.01 and 0.1%) of dimethyl sulfoxide (DMSO) and soil application of Zn (10 and 20 ppm) on growth, yield, photosynthetic pigments and some enzymatic activities of rice (Oryza sativa L. variety Jaya) were investigated in a Zn-deficient soil under pot culture trials. Control plants showed typical Zn deficiency symptoms, very low dry matter and chlorophyll contents and significantly lower activities of carbonic anhydrase and tryptophan synthetase. Application of 10 or 20 ppm Zn to the soil markedly improved plant growth, chlorophyll content, enzymatic activities, Zn availability (L-value), and grain yield. Application of 1% DMSO to the soil proved to be severly phytotoxic for plant growth and dry matter accumulation. Application of lower doses of DMSO to the soil (0.01 and 0.1%) or as foliar sprays (0.001 and 0.01%), however, slightly increased dry weights of all plant parts at 45 days after transplanting. Grain yield was significantly increased by all DMSO treatments, except 1% soil application which completely suppressed the grain formation.Enzymatic activities and chlorophyll and carotenoid accumulation showed concentration-dependent stimulation or inhibition by DMSO treatments. Carbonic anhydrase activity was significantly increased by most of the DMSO treatments whereas tryptophan synthetase activity was stimulated only by the lowest dose of soil (0.01%) and foliar (0.001%) applications. Chlorophyll content was stimulated by lower doses of foliar application of DMSO (0.001 and 0.01%) but the other DMSO treatments brought about a concentration-dependent decrease in chlorophyll accumulation. Carotenoid accumulation was inversely related to that of chlorophylls. Chlorophyll: carotenoid ratio was increased by all DMSO and Zn treatments except 1% soil application of DMSO. Zn availability (L-value) of the soil was increased by all DMSO treatments. Zn content of leaf blades was positively correlated with chlorophyll content (r=0.579), tryptophan synthetase (r=0.700) and carbonic anhydrase (r=0.537) activities but negatively correlated with that of carotenoid content (r=–0.896). The possible mechanisms of DMSO on plants are discussed in relation to its possible agricultural utility.Publication No. 811 under Journal Series of the Experiment Station, G.B. Pant of Agriculture & Technology, Pantnagar (Nainital), India.  相似文献   

9.
Khan  H. R.  McDonald  G. K.  Rengel  Z. 《Plant and Soil》2003,249(2):389-400
In a number of the major chickpea-growing areas in the world, rainfed crops of chickpeas are often grown on soils with low available zinc (Zn). Consequently, chickpea crops can be challenged by soil water deficits and Zn deficiency coincidentally during the growing season. The interaction between these stresses was examined in two glasshouse experiments using genotypes differing in Zn efficiency. Water stress was imposed during podding. Increasing the level of Zn resulted in large and significant increases in vegetative growth up to podding. Applying Zn increased grain yields when the plants were well watered, but not under water stress, except for the Zn-efficient and drought-resistant genotype ICC-4958. Harvest indices were generally reduced as the supply of Zn and water increased. Applying Zn increased water use and water use efficiency of chickpea. Yields were reduced by water stress, largely due to fewer pods set per plant. Losses from water stress were greatest at the highest level of Zn, which was attributed to the limited soil volume afforded by the pots and the rapid development of stress in the larger plants grown at adequate levels of Zn. However, at each level of Zn, the loss in yield from water stress tended to be less in a Zn-efficient genotype. The major factor determining the distribution of Zn in the plant was the supply of Zn, while differences due to water stress and genotype were relatively small. Two-thirds of the Zn present in the plant at maturity was accumulated after the start of podding and this was little affected by water stress. The proportion of Zn in the roots of Zn-deficient plants was less than that in Zn-adequate plants. As the Zn supply increased, Zn accumulation was higher in leaves than in the stem and reproductive parts, due to combined effect of both higher Zn concentration and higher dry matter. At maturity, senesced leaves and pod walls had relatively lower concentrations of Zn compared to leaves and pods at the start of podding in all Zn treatments. In contrast, the Zn content in the stem either increased or remained unchanged. At maturity, Zn accumulation in plant organs generally increased with increasing Zn supply, but the largest proportion of Zn was found in the seeds, which is a beneficial nutritional trait for human nutrition.  相似文献   

10.
The effect of concentration of zinc ions on chlorophyll (Chl) and dry matter contents in Senna occidentalis (L.) Link plants was studied under various availability of soil water. Diurnally, the internal Zn2+ content was predominantly affected by supplied Zn2+ and by daytime (Tm). Chl content, Chl a/b ratio, and Chl stability to heat were mainly affected by soil water content, and the dry matter content depended mostly on Tm. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Importance of seed Zn content for wheat growth on Zn-deficient soil   总被引:10,自引:2,他引:8  
Seed nutrient reserves may be important for an early establishment of crops on low-fertility soils. This glasshouse pot study evaluated effects of seed Zn content on vegetative growth of two wheat (Triticum aestivum L.) genotypes differing in Zn efficiency. Low-Zn (around 250 ng Zn per seed) and high-Zn seed (around 700 ng Zn per seed on average) of Excalibur (Zn efficient) and Gatcher (Zn inefficient) wheats were sown in a Zn-deficient siliceous sand fertilised with 0, 0.05, 0.2, 0.8 or 3.2 mg Zn kg-1 soil. After 3 weeks, plants derived from the high-Zn seed had better root and shoot growth; the cv. Excalibur accumulated more shoot dry matter than the cv. Gatcher. After 6 weeks, greater root and shoot growth of plants grown from the high-Zn seed compared to those from the low-Zn seed was obvious only at nil Zn fertilisation. A fertilisation rate of 0.2 mg Zn kg-1 soil was required for achieving 90% of the maximum yield for plants grown from the high-Zn seed compared to 0.8 mg Zn kg-1 soil for plants derived from the low Zn seed. The critical Zn level in youngest expanded leaves for 90% maximum yield was 16 mg Zn kg-1 dry matter for both genotypes. Zn-efficient Excalibur had greater net Zn uptake rates compared to Zn-inefficient Gatcher after 3 weeks but they were not different at the 6-week harvest. Zinc-deficient plants had greater net uptake rates of Cu, Mn, B, P, and K but a reduced uptake rate of Fe. It is concluded that higher seed Zn content acted similar to a starter-fertiliser effect by improving vegetative growth and dissipating differences in Zn efficiency of wheat genotypes.  相似文献   

12.
Abstract

Concentrations of surface soil Zn and Cd from agricultural areas of the Henan Province were measured. About 234 soil samples were collected. Total metal analyses, sequential chemical fractionation which were divided into seven fractions according to the method of the Geological Survey Technical Standard (DD2005-03) set by the China Geological Survey were carried out on the samples. Total Cd and Zn concentrations of the topsoil were 0.1909 (0.1–0.549) and 63.07 (33.3–344.3) mg kg?1 respectively. Compared with the values permitted in China’s control standards for soil (GB 15618–1995) and background value in Henan Province, the soil samples showed high levels of Cd. The soil organic carbon has a significantly positive correlation with Cd and Zn concentration in the soil. Significant positive correlation between pH and Cd, Zn concentration was observed. On average, the order of Cd in each fraction was exchangeable, (27.3%)>weakly bound to organic matter; (22.7%)>strongly bound to organic matter; (16.4%)>residual; (15.1%)>carbonate; (12.1%)>Fe/Mn oxide bound; (4.5%)>water soluble; (2.0%), Zn was residual; (66.3%)>Fe/Mn oxide bound; (10.9%)> weakly bound to organic matter; (9.4%)> exchangeable; (6.0%)> strongly bound to organic matter; (3.9%)> carbonate (2.9%)> water soluble (0.6%). The accuracy of the sequential extraction was judged by the relative error (RE). RE for Cd ranged from 0 to 45% with a mean of 16.3%. RE for Zn ranged from 0.1 to 11.4% with a mean of 3.4%. On average, bioavailability index (BI) for Cd and Zn was 39.1% and 9.0% respectively. The mobility of the elements in the order Cd> Zn corresponds with the plant-availability of individual elements. Comparisons between activities of Cd2+ and Zn2+ calculated by Sauve semi-mechanistic equations and that of the water soluble fractions were demonstrated. The activities of Cd2+ and Zn2+ calculated by the semi-empirical equation are lower than its water soluble fraction.  相似文献   

13.
Enhancement of Pb and Zn uptake by Indian mustard (Brassica juncea (L.) Czern.) and winter wheat (Triticum aestivumL.) grown for 50 days in pots of contaminated soil was studied with application of elemental sulphur (S) and EDTA. Sulphur was added to the soil at 5 rates (0–160 mmol kg?1) before planting, and EDTA was added in solution at 4 rates (0–8 mmol kg?1) after 40 days of plant growth. Additional pots were established with the same rates of S and EDTA but without plants to monitor soil pH and CaCl2-extractable heavy metals. The highest application rate of S acidified the soil from pH 7.1 to 6.0. Soil extractable Pb and Zn and shoot uptake of Pb and Zn increased as soil pH decreased. Both S and EDTA increased soil extractable Pb and Zn and shoot Pb and Zn uptake. EDTA was more effective than S in increasing soil extractable Pb and Zn, and the two amendments combined had a synergistic effect, raising extractable Pb to ¿1000 and Zn to ¿6 times their concentrations in unamended control soil. Wheat had higher shoot yields than Indian mustard and increasing application rates of both S and EDTA reduced the shoot dry matter yields of both plant species to as low as about half those of unamended controls. However, Indian mustard hyperaccumulated Pb in all EDTA treatments tested except the treatment with no S applied, and the maximum shoot Pb concentration was 7100 mg kg?1 under the highest application rates of S and EDTA combined. Wheat showed similar trends, but hyperaccumulation (1095 mg kg?1) occurred only at the highest rates of S and EDTA combined. Similar trends in shoot Zn were found, but with lower concentrations than Pb and far below hyperaccumulation, with maxima of 777 and 480 mg kg?1 in Indian mustard and wheat. Despite their lower yields, Indian mustard shoots extracted more Pb and Zn from the soil (up to 4.1 and 0.45 mg pot?1) than did winter wheat (up to 0.72 and 0.28 mg pot?1), indicating that the effects of S and EDTA on shoot metal concentration were more important than yield effects in determining rates of metal removal over the growth period of 50 days. Phytoextraction of Pb from this highly contaminated soil would require the growth of Indian mustard for nearly 100 years and is therefore impractical.  相似文献   

14.
Plant communities, soil organic matter and microbial communities are predicted to be interlinked and to exhibit concordant patterns along major environmental gradients. We investigated the relationships between plant functional type composition, soil organic matter quality and decomposer community composition, and how these are related to major environmental variation in non-acid and acid soils derived from calcareous versus siliceous bedrocks, respectively. We analysed vegetation, organic matter and microbial community compositions from five non-acidic and five acidic heath sites in alpine tundra in northern Europe. Sequential organic matter fractionation was used to characterize organic matter quality and phospholipid fatty acid analysis to detect major variation in decomposer communities. Non-acidic and acidic heaths differed substantially in vegetation composition, and these disparities were associated with congruent shifts in soil organic matter and microbial communities. A high proportion of forbs in the vegetation was positively associated with low C:N and high soluble N:phenolics ratios in soil organic matter, and a high proportion of bacteria in the microbial community. On the contrary, dwarf shrub-rich vegetation was associated with high C:N and low soluble N:phenolics ratios, and a high proportion of fungi in the microbial community. Our study demonstrates a strong link between the plant community composition, soil organic matter quality, and microbial community composition, and that differences in one compartment are paralleled by changes in others. Variation in the forb-shrub gradient of vegetation may largely dictate variations in the chemical quality of organic matter and decomposer communities in tundra ecosystems. Soil pH, through its direct and indirect effects on plant and microbial communities, seems to function as an ultimate environmental driver that gives rise to and amplifies the interactions between above- and belowground systems. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Summary The effects of soil acidification and micronutrient addition on levels of extractable Fe, Mn, Zn and Cu in a soil, and on the growth and micronutrient uptake of young highbush blueberry plants (Vaccinium corymbosum L. cv. Blueray) was investigated in a greenhouse study.Levels of 0.05M CaCl2-extractable Fe, Mn, Zn and Cu increased as the pH was lowered from 7.0 to 3.8. However, the solubility (CaCl2-extractability) of Fe and Cu was considerably less pH-dependent than that of Mn and Zn. With the exception of HCl-and DTPA-extractable Mn, micronutrients extractable with 0.1M HCl, 0.005M DTPA and 0.04M EDTA were unaffected or raised only slightly as the pH was lowered from 6.0 to 3.8. Quantities of Mn and Zn extractable with CaCl2 were similar in magnitude to those extractable with HCl, DTPA and EDTA whilst, in contrast, the latter reagents extracted considerably more Cu and Fe than did CaCl2. A fractionation of soil Zn and Cu revealed that soil acidification resulted in an increase in the CaCl2- and pyrophosphate-extractable fractions and a smaller decrease in the oxalate-extractable fraction.Plant dry matter production increased consistently when the soil pH was lowered from 7.0 to 4.6 but there was a slight decline in dry matter as the pH was lowered to 3.8. Micronutrient additions had no influence on plant biomass although plant uptake was increased. As the pH was lowered, concentrations of plant Fe first decreased and then increased whilst those of Mn, and to a lesser extent Zn and Cu, increased markedly.  相似文献   

16.
张丽苗  谭雪  董智  郑杰  袁中勋  李昌晓 《生态学报》2023,43(5):1892-1901
基于功能性状视角开展植物群落与环境关系的研究有助于揭示植物的适应策略。然而,目前关于城市河岸带植物群落功能性状的研究较少。为此选取10项植物功能性状指标和14项土壤理化性质指标,探究重庆主城3种生境类型河岸带(自然型河岸带(NRZ)、农耕主导型河岸带(FRZ)和开发建设主导型河岸带(BRZ))植物群落功能性状与土壤因子特征及互作机制。结果表明:(1)与NRZ生境相比,FRZ生境中的土壤速效磷、速效钾和氧化还原电位和BRZ生境中的土壤含水量显著偏高(P<0.05);FRZ和BRZ生境中的土壤pH值和全磷含量显著偏高,而土壤有机质、全钾和全氮含量显著偏低(P<0.05)。(2)与NRZ生境相比,FRZ生境中的比根长和比根表面积显著较高,茎干物质含量和叶干物质含量显著较低;BRZ生境中仅茎干物质含量显著较低(P<0.05)。(3)冗余分析结果表明,影响各生境类型河岸带植物群落功能性状的土壤因子不同,NRZ生境为土壤容重、含水量和硝态氮,FRZ生境为土壤铵态氮、全磷和有机质,BRZ生境则是土壤含水量、温度和速效磷。研究发现与自然状态相比,农业和建筑类型的人为干扰导致重庆主城河...  相似文献   

17.
Summary The role of soil Phosphorus (P) availability on the ecotypic differentiation of plants was investigated. Populations of Aegilops peregrina (Hack.) were collected from four habitats which differed in their soil P. The four soils were: Meron (a P-deficient montmorillonitic xerochrept on dolomite), Malkiya (a P-fertile kaolinitic xerochrept on hard limestone), Har-Hurshan and Bet-Guvrin (lithic xerorthents on soft limestone with appreciable amounts of P, mainly as carbonate-apatite).Plants of the four populations were grown in pots with Meron soil which were previously equilibrated with four different amounts of soluble phosphate to give 1.2, 3.1, 10.7 and 18.9 gP g-1 soil of sodium-bicarbonate extractable P. Plants originated from Malkiya population produced higher dry matter yields than the other three populations. Dry matter yields of the various populations were analyzed by means of a Mitcherlich's response function, versus sodium-bicarbonate extractable (available) soil P. The analysis revealed that Malkiya population plants had a significant advantage over Meron population plants in the response parameter c: this express the response rate of the plants to phosphate by means of dry matter production. With regard to the parameter Po, which represents the ability of plants to utilize barely-available fractions of soil P, the opposite was true. Har-Hurshan and Bet-Guvrin populations were intermediate in these two parameters. A version of the Mitcherlich response function is proposed, which expresses plant yield as a function of both soil available P and plant age.Meron plants contained the highest percentage of P in plant material, but compared to the other populations, they were the most inefficient in producing dry matter from the already absorbed P. Plants from the calcareous soils, Har-Hurshan and Bet-Guvrin, did not show any apparent trend.In soils which contain moderate amounts of lime, P may become a major limiting growth factor. Plant populations became adapted to low availability of P by (1) improving their ability to utilize barely-available soil P fractions and (2), by decreasing their productivity.  相似文献   

18.
We sought to explain rice (Oryza sativa) genotype differences in tolerance of zinc (Zn) deficiency in flooded paddy soils and the counter‐intuitive observation, made in earlier field experiments, that Zn uptake per plant increases with increasing planting density. We grew tolerant and intolerant genotypes in a Zn‐deficient flooded soil at high and low planting densities and found (a) plant Zn concentrations and growth increased with planting density and more so in the tolerant genotype, whereas the concentrations of other nutrients decreased, indicating a specific effect on Zn uptake; (b) the effects of planting density and genotype on Zn uptake could only be explained if the plants induced changes in the soil to make Zn more soluble; and (c) the genotype and planting density effects were both associated with decreases in dissolved CO2 in the rhizosphere soil solution and resulting increases in pH. We suggest that the increases in pH caused solubilization of soil Zn by dissolution of alkali‐soluble, Zn‐complexing organic ligands from soil organic matter. We conclude that differences in venting of soil CO2 through root aerenchyma were responsible for the genotype and planting density effects.  相似文献   

19.

Background and Aims

We tested the utility of some biological treatments to hasten degradation of waste tire rubber in soil and thus the release of zinc and sulfur for plant uptake.

Methods

Three rates of ground tire rubber (0, 150, and 300?mg?kg?1) were incorporated into a Zn-deficient calcareous soil. Before addition to the soil, ground rubber was given four microbial treatments including no inoculation, inoculation with Rhodococcus erythropolis, inoculation with R. erythropolis+Escherichia coli, and inoculation with R. erythropolis+E. coli+Acinobacter calcoaceticus. In the pot experiment, corn (Zea mays L. Hybrid Single Cross 500) and sunflower (Helianthus annuus L. cv. Record) plants were exposed to three rates of ground rubber (0, 150, and 300?mg?kg?1) or 3?mg zinc kg?1 as ZnSO4. Before addition to the soil, ground rubber and ZnSO4 were inoculated or non-inoculated with R. erythropolis+E. coli+A. calcoaceticus.

Results

Ground rubber and microbial inoculation treatments reduced soil pH and the magnitude of this reduction increased over time. Ground rubber in combination with microbial inoculation increased DTPA-extractable soil Zn and Fe. The amount of DTPA-extractable Zn and Fe of rubber-amended soils increased over time so that the highest concentration of available Zn and Fe was found at week 10. Application of microbial inoculated ground tire rubber significantly increased shoot Zn concentration of each plant species.

Conclusions

Bacterial inoculation of ground rubber was effective in hastening increase in DTPA-extractable Zn in the studied calcareous soil and in enhancing Zn uptake by plants.  相似文献   

20.
Metal mobility and the fractionation of elements and thus the biological uptake of Zn, Pb and Cd by plants were investigated using a simplified analytical procedure for soluble and bioavailable metals using a four-step sequential extraction procedure. Results showed that there was a low proportion of immediately soluble metals, as well as a high proportion of metals that could be released and would so be available for plant uptake. In the sequential extraction procedure, considering the total partition, there was a large proportion of Pb, Cd and Zn extracted in a readily mobile form. In acidic soils the content of metals in ready mobile form (exchangeable-bound to carbonates as well as to Fe and Mn oxides) and bound to organic matter constitutes an important source of potentially available elements. The same pattern was observed in alkaline soils, where almost 80% of the metals could be remobilized and be potentially available to plants. Knowing the metal partitioning and mobility of heavy metals it is very important for evaluating the phytoremediation efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号