首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Experiments were conducted to evaluate cadmium (Cd) stress-induced changes in growth, antioxidants and lipid composition of Solanum lycopersicum with and without arbuscular mycorrhizal fungi (AMF). Cadmium stress (50 μM) caused significant changes in the growth and physio-biochemical attributes studied. AMF mitigated the deleterious impact of Cd on the parameters studied. Cadmium stress increased malonaldehyde and hydrogen peroxide production but AMF reduced these parameters by mitigating oxidative stress. The activity of antioxidant enzymes enhanced under Cd treatment and AMF inoculation further enhanced their activity, thus strengthening the plant’s defense system. Proline and phenol content increased in Cd-treated as well as AMF-inoculated plants providing efficient protection against Cd stress. Cadmium treatment resulted in great alterations in the main lipid classes leading to a marked change in their composition. Cadmium stress caused a significant reduction in polyunsaturated fatty acids resulting in enhanced membrane leakage. The present study supports the use of AMF as a biological means to ameliorate Cd stress-induced changes in tomato.  相似文献   

2.
丛枝菌根真菌在生态系统和植物生长过程中发挥着重要作用,目前对其生理生态功能的研究备受关注,但主要集中在丛枝菌根真菌对植物促生作用方面。植物的菌根侵染特征是表征真菌与植物共生紧密程度的重要标志,也是评价植物生态适应性的关键指标,然而针对我国植物丛枝菌根发育特征及其分布特点的系统性研究尚属空白。【目的】探究我国植物丛枝菌根真菌的侵染特征,及其在不同生态系统和气候区域中的分布规律,为推动丛枝菌根研究的发展提供基础数据。【方法】利用全球植物菌根数据库“FungalRoot”和605篇中文文献的植物菌根侵染特征数据,并补充生态系统、气候区域、植物类型和植物生长年限等共47 700组数据,建立了中国植物丛枝菌根侵染信息数据库,并以此为基础进行研究。【结果】我国植物丛枝菌根真菌侵染率在0-55%占69.7%,55%-100%占30.3%,绝大多数植物丛枝菌根真菌侵染强度、菌丝丰度、泡囊丰度和丛枝丰度均分布在40.0%以下。丛枝菌根共生形态中,A型占比最大,为56.3%。农田、荒漠、草地生态系统的植物丛枝菌根真菌侵染率相近,分别为51.8%、51.6%、51.8%,而森林生态系统的侵染率较低,为40.4%。荒漠生态系统植物的丛枝菌根真菌侵染强度、菌丝丰度、泡囊丰度和丛枝丰度最高,分别达到46.0%、47.1%、37.2%和31.2%。根据气候区域,植物的侵染水平由高到低排序为暖温带(53.3%)>热带(50.0%)>中温带(45.2%)>亚热带(42.2%)。草本植物的侵染水平高于木本植物,多年生植物高于一年生植物。木本植物中,灌木的侵染率水平最高,为46.3%,其次是乔木和藤本植物,均为43.9%。草本植物在侵染强度和菌丝丰度上高于木本植物,分别为30.2%和32.5%,而木本植物在泡囊和丛枝丰度方面具有优势,分别为19.5%和23.4%。我国丛枝菌根植物中,被子植物占据绝大多数,共有110科,占比达到90.2%,蕨类、裸子、石松门植物较少。【结论】我国大部分植物丛枝菌根真菌侵染率在55%以下,侵染特征等指标分布在40.0%以下;同时,不同生态系统、气候区域、植物类型和生长年限均会对侵染特征产生不同程度的影响。  相似文献   

3.
Heat stress has been defined as the rise of temperature for a period of time higher than a threshold level, thereby permanently affecting the plant growth and development. Day or night temperature is considered as the major limiting factor for plant growth. Earlier studies reported that night temperature is an important factor in the heat reaction of the plants. Tomato cultivars capable of setting viable fruits under night temperatures above 21 °C are considered as heat-tolerant cultivars. The development of breeding objectives is generally summarized in four points: (a) cultivars with higher yield, (b) disease resistant varieties in the 1970s, (c) long shelf-life in 1980s, and (d) nutritive and taste quality during 1990s. Some unique varieties like the dwarf “Micro-Tom”, and the first transgenic tomato (FlavrSavr) were developed through breeding; they were distributed late in the 1980s.High temperature significantly affects seed, pollen viability and root expansion. Researchers have employed different parameters to evaluate the tolerance to heat stress, including membrane thermo stability, floral characteristics (Stigma exertion and antheridia cone splitting), flower number, and fruit yield per plant. Reports on pollen viability and fruit set/plant under heat stress by comparing the pollen growth and tube development in heat-treated and non-heat-stressed conditions are available in literature. The electrical conductivity (EC) have been used to evaluate the tolerance of some tomato cultivars in vitro under heat stress conditions as an indication of cell damage due to electrolyte leakage; they classified the cultivars into three groups: (a) heat tolerant, (b) moderately heat tolerant, and (c) heat sensitive.It is important to determine the range in genetic diversity for heat tolerance in tomatoes. Heat stress experiments under field conditions offer breeders information to identify the potentially heat tolerant germplasm.  相似文献   

4.
We studied the extent to which catechin applied as a soil drench modifies the effects of soil waterlogging on plant growth, the functioning of the free radical scavenging system and on oxidative stress levels. Forty-day-old tomato plants (Solanum lycopersicum L.) were treated with 0 and 2?mM catechin 48 h prior to 5 d waterlogging followed by a 4 d drainage period. Exogenous catechin increased total fresh and dry weight of flooded plants, reduced membrane damage, maintained chlorophyll concentrations, promoted photosynthesis and increased ATP concentration in the leaves, and raised sucrose synthase and alcohol dehydrogenase activities in the roots. Catechin pre-treatment also reduced hydrogen peroxide and superoxide radical concentration and increased various components of the antioxidative system in leaves. Catechin treatment affected superoxide dismutase and catalase activities in close coordination with ascorbate peroxidases and glutathione reductase. Exogenous catechin can markedly reduce the waterlogging injury in leaves and roots of tomato by enhancing free radical scavenging system sufficiently to lower hydrogen peroxide and superoxide concentrations.  相似文献   

5.
Members of the Brassicaceae are generally believed to be non-mycorrhizal. Pennycress (Thlaspi) species of this family from diverse locations in Slovenia, Austria, Italy and Germany were examined for their colonisation by arbuscular mycorrhizal fungi (AMF). Meadow species (T. praecox, T. caerulescens and T. montanum) were sparsely but distinctly colonised, as indicated by the occurrence of intraradical hyphae, vesicles, coils, and occasionally arbuscules. Species from other locations were poorly colonised, but arbuscules were not discernible. The genus Thlaspi comprises several heavy metal hyperaccumulating species (T. caerulescens, T. goesingense, T. calaminare, T. cepaeifolium). All samples collected from heavy metal soils were at best poorly colonized. Thus the chance is small to find a "hypersystem" in phytoremediation consisting of an AM fungus which prevents the uptake of the major part of the heavy metals and of a Thlaspi species which effectively deposits the residual heavy metals inevitably taken up into its vacuoles. In two different PCR approaches, fungal DNA was amplified from most of the Thlaspi roots examined, even from those with a very low incidence of AMF colonization. Sequencing of the 28S- and 18S-rDNA PCR-products revealed that different Thlaspi field samples were colonized by Glomus intraradices and thus by a common AM fungus. However, none of the sequences obtained was identical to any other found in the present study or deposited in the databanks, which might indicate that a species continuum exists in the G. intraradices clade. An effective colonization of Thlaspi by AMF could not be established in greenhouse experiments. Although the data show that Thlaspi can be colonized by AMF, it is doubtful whether an effective symbiosis with the mutual exchange of metabolites is formed by both partners.  相似文献   

6.
Salinity limits crop productivity, in part by decreasing shoot concentrations of the growth-promoting and senescence-delaying hormones cytokinins. Since constitutive cytokinin overproduction may have pleiotropic effects on plant development, two approaches assessed whether specific root-localized transgenic IPT (a key enzyme for cytokinin biosynthesis) gene expression could substantially improve tomato plant growth and yield under salinity: transient root IPT induction (HSP70::IPT) and grafting wild-type (WT) shoots onto a constitutive IPT-expressing rootstock (WT/35S::IPT). Transient root IPT induction increased root, xylem sap, and leaf bioactive cytokinin concentrations 2- to 3-fold without shoot IPT gene expression. Although IPT induction reduced root biomass (by 15%) in control (non-salinized) plants, in salinized plants (100?mM NaCl for 22?d), increased cytokinin concentrations delayed stomatal closure and leaf senescence and almost doubled shoot growth (compared with WT plants), with concomitant increases in the essential nutrient K(+) (20%) and decreases in the toxic ion Na(+) (by 30%) and abscisic acid (by 20-40%) concentrations in transpiring mature leaves. Similarly, WT/35S::IPT plants (scion/rootstock) grown with 75?mM NaCl for 90?d had higher fruit trans-zeatin concentrations (1.5- to 2-fold) and yielded 30% more than WT/non-transformed plants. Enhancing root cytokinin synthesis modified both shoot hormonal and ionic status, thus ameliorating salinity-induced decreases in growth and yield.  相似文献   

7.
8.
Leaf senescence is one of the most limiting factors to plant productivity under salinity. Both the accumulation of specific toxic ions (e.g. Na+) and changes in leaf hormone relations are involved in the regulation of this process. Tomato plants (Solanum lycopersicum L. cv Moneymaker) were cultivated for 3 weeks under high salinity (100 mM NaCl) and leaf senescence-related parameters were studied during leaf development in relation to Na+ and K+ contents and changes in abscisic acid (ABA), cytokinins, the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and the auxin indole-3-acetic acid (IAA). Na+ accumulated to a similar extent in both leaves 4 and 5 (numbering from the base of the plant) and more quickly during the third week, while concurrently K+ contents sharply decreased. However, photosystem II efficiency, measured as the F(v)/F(m) ratio, decreased from the second week of salinization in leaf 4 but only at the end of the third week in the younger leaf 5. In the prematurely senescent leaf 4, ABA content increased linearly while IAA strongly decreased with salinization time. Although zeatin (Z) levels were scarcely affected by salinity, zeatin-riboside (ZR) and the total cytokinin content (Z+ZR) progressively decreased by 50% from the imposition of the stress. ACC was the only hormonal compound that increased in leaf tissue coincident with the onset of oxidative damage and the decline in chlorophyll fluorescence, and prior to massive Na+ accumulation. Indeed, (Z+ZR) and ACC contents and their ratio (Z+ZR/ACC) were the hormonal parameters best correlated with the onset and progression of leaf senescence. The influence of different hormonal changes on salt-induced leaf senescence is discussed.  相似文献   

9.
10.
The present study assessed the effectiveness of gamma radiation in inducing favorable genetic variability in tomato (Solanum lycopersicum L.). An experiment was conducted in a randomized complete block design to produce M1 generation. Significant differences were observed among the genotypes as well as between the treatments at individual plant level based on observed traits (seed germination percentage, seedling survival, plant height, number of flower clusters plant?1, number of flowers and fruits plant?1). All observed characters in the mutagenized population were adversely affected with increasing radiation dose. Results identified 450 Gy as the most damaging radiation dose followed by 300 Gy and 150 Gy. Moreover, 300 Gy treatment was identified as lethal dose (LD50) as it caused a 50% germination inhibition in almost all the evaluated genotypes. The 150 Gy treatment showed the least damaging impact and induced maximum genetic variability in almost all the genotypes under study. Character association studies were also conducted which could be utilized in the selection of desirable mutants. Correlation studies revealed an altered association among the observed parameters from positive to negative direction in 300 Gy and 450 Gy treatments as compared to control. These deviations in correlation coefficients proved that mutagenesis can break the linkage among specific loci. Furthermore, path coefficient analysis identified the growth attributes with an effective direct and indirect contribution in yield.  相似文献   

11.
Sharma  Deepak  Koul  Archana  Kaul  Sanjana  Dhar  Manoj K. 《Protoplasma》2020,257(4):1093-1108
Protoplasma - Tomato is an excellent model for studying fruit development, ripening, and other secondary metabolic pathways such as carotenoid biosynthetic pathway, flavonoid pathway, and many...  相似文献   

12.
Abiotic stresses, especially salinity and drought, are major limiting factors for plant growth and crop productivity. In an attempt to develop salt and drought tolerant tomato, a DNA cassette containing tobacco osmotin gene driven by a cauliflower mosaic virus 35S promoter was transferred to tomato (Solanum lycopersicum) via Agrobacterium-mediated transformation. Putative T0 transgenic plants were screened by PCR analysis. The selected transformants were evaluated for salt and drought stress tolerance by physiological analysis at T1 and T2 generations. Integration of the osmotin gene in transgenic T1 plants was verified by Southern blot hybridization. Transgenic expression of the osmotin gene was verified by RT-PCR and northern blotting in T1 plants. T1 progenies from both transformed and untransformed plants were tested for salt and drought tolerance by subjecting them to different levels of NaCl stress and by withholding water supply, respectively. Results from different physiological tests demonstrated enhanced tolerance to salt and drought stresses in transgenic plants harboring the osmotin gene as compared to the wild-type plants. The transgenic lines showed significantly higher relative water content, chlorophyll content, proline content, and leaf expansion than the wild-type plants under stress conditions. The present investigation clearly shows that overexpression of osmotin gene enhances salt and drought stress tolerance in transgenic tomato plants.  相似文献   

13.
A field experiment was conducted to investigate the effect of seed presoaking of shikimic acid (30, 60 and 120 ppm) on growth parameters, fruit productivity and quality, transpiration rate, photosynthetic pigments and some mineral nutrition contents of tomato plants. Shikimic acid at all concentrations significantly increased fresh and dry weights, fruit number, average fresh and dry fruit yield, vitamin C, lycopene, carotenoid contents, total acidity and fruit total soluble sugars of tomato plants when compared to control plants. Seed pretreatment with shikimic acid at various doses induces a significant increase in total leaf conductivity, transpiration rate and photosynthetic pigments (Chl. a, chl. b and carotenoids) of tomato plants. Furthermore, shikimic acid at various doses applied significantly increased the concentration of nitrogen, phosphorus and potassium in tomato leaves as compared to control non-treated tomato plants. Among all doses of shikimic acid treatment, it was found that 60 ppm treatment caused a marked increase in growth, fruit productivity and quality and most studied parameters of tomato plants when compared to other treatments. On the other hand, no significant differences were observed in total photosynthetic pigments, concentrations of nitrogen and potassium in leaves of tomato plants treated with 30 ppm of shikimic acid and control plants. According to these results, it could be suggested that shikimic acid used for seed soaking could be used for increasing growth, fruit productivity and quality of tomato plants growing under field conditions.  相似文献   

14.
15.
植食性昆虫取食会给植物造成机械损伤并激活植物的防御反应,而与有益微生物共生是否可以增强植物对机械损伤的响应对植物抗虫有重要意义.本研究在番茄根系被丛枝菌根真菌摩西管柄囊霉侵染后,研究机械损伤对番茄防御反应的影响.结果表明: 预先接种菌根真菌的番茄叶片受到机械损伤处理(FD)后,叶片苯丙氨酸解氨酶(PAL)、超氧化物歧化酶(SOD)、过氧化物酶(POD)、多酚氧化酶(PPO)和过氧化氢酶(CAT)活性,以及叶片和根系苯丙氨酸解氨酶基因(PAL)和β-1,3-葡聚糖酶基因(PR2)的转录水平均显著高于只进行机械损伤的处理(D)、只接种摩西管柄囊霉的处理(F),以及既未接种菌根菌也未进行机械损伤的健康番茄植株(CK).虽然D和 F处理也可诱导部分酶活性及基因转录水平升高,但FD处理诱导的防御反应更迅速和强烈.表明丛枝菌根真菌侵染可以警备(prime)番茄对机械损伤做出更快速和强烈的响应.  相似文献   

16.
ABSTRACT: BACKGROUND: Many beneficial traits (e.g. disease or abiotic stress resistance) have been transferred into crops through crosses with their wild relatives. The 13 recognized species of tomato (Solanum section Lycopersicon) are closely related to each other and wild species genes have been extensively used for improvement of the crop, Solanum lycopersicum L. In addition, the lack of geographical barriers has permitted natural hybridization between S. lycopersicum and its closest wild relative Solanum pimpinellifolium in Ecuador, Peru and northern Chile. In order to better understand patterns of S. lycopersicum diversity, we sequenced 47 markers ranging in length from 130 to 1200 bp (total of 24 kb) in genotypes of S. lycopersicum and wild tomato species S. pimpinellifolium, Solanum arcanum, Solanum peruvianum, Solanum pennellii and Solanum habrochaites. Several of the markers had previously been hypothesized as carrying wild species alleles within S. lycopersicum, i.e., cryptic introgressions. RESULTS: Each marker was mapped with high confidence (e < 1 x 10-30) to a single genomic location using BLASTN against tomato whole genome shotgun chromosomes (SL2.40) database. Neighbor-joining trees showed high mean bootstrap support (86.8 plus or minus 2.34%) for distinguishing red-fruited from green-fruited taxa for 38 of the markers. Hybridization and parsimony splits networks, genomic map positions of markers relative to documented introgressions, and historical origins of accessions were used to interpret evolutionary patterns at nine markers with putatively introgressed alleles. CONCLUSION: Of the 47 genetic markers surveyed in this study, four were involved in linkage drag on chromosome 9 during introgression breeding, while alleles at five markers apparently originated from natural hybridization with S. pimpinellifolium and were associated with primitive genotypes of S. lycopersicum. The positive identification of introgressed genes within crop species such as S. lycopersicum will help inform conservation and utilization of crop germplasm diversity, for example, facilitating the purging of undesirable linkage drag or the exploitation of novel, favorable alleles.  相似文献   

17.
Seaweed extracts are used as nutrient supplements, biostimulants, or biofertilizers in agriculture and horticulture to increase plant growth and yield. In this study, we examined the effect of liquid seaweed extracts (LSEs) made from Ulva lactuca, Caulerpa sertularioides, Padina gymnospora, and Sargassum liebmannii as biostimulants on the germination and growth of tomato (Solanum lycopersicum) under laboratory and greenhouse conditions using foliar and soil drench applications of LSEs. We assessed LSEs at different concentrations (0.2, 0.4, and 1.0 %) on germination parameters (percentage, index, mean time, energy, and seedling vigor index) and growth parameters (plumule length, radical length, shoot length, root length, fresh weight, and dry weight) of tomato seedlings. Our results indicate that seeds treated with LSEs of U. lactuca and P. gymnospora at lower concentrations (0.2 %) showed enhanced germination (better response in germination rate associated with lower mean germination time, high germination index and germination energy, and consequently greater seedling vigor and greater plumule and radicle length). Application as a soil drench was found to be more effective in influencing the height of the plant (up to 79 cm) than the foliar spray application (75 cm). Plants receiving LSEs of U. lactuca and P. gymnospora showed increased shoot length, root length, and weight. Furthermore, U. lactuca and P. gymnospora were found to be more successful and better candidates for developing effective biostimulants to improve the growth of tomato plants. This study provides important information on the identification and utilization of Mexican seaweed resources for agriculture and is the first study to report on the uses of these seaweeds as a source of liquid extracts as biostimulants in agriculture.  相似文献   

18.
Elemental composition of arbuscular mycorrhizal fungi at high salinity   总被引:1,自引:0,他引:1  
We investigated the elemental composition of spores and hyphae of arbuscular mycorrhizal fungi (AMF) collected from two saline sites at the desert border in Tunisia, and of Glomus intraradices grown in vitro with or without addition of NaCl to the medium, by proton-induced X-ray emission. We compared the elemental composition of the field AMF to those of the soil and the associated plants. The spores and hyphae from the saline soils showed strongly elevated levels of Ca, Cl, Mg, Fe, Si, and K compared to their growth environment. In contrast, the spores of both the field-derived AMF and the in vitro grown G. intraradices contained lower or not elevated Na levels compared to their growth environment. This resulted in higher K:Na and Ca:Na ratios in spores than in soil, but lower than in the associated plants for the field AMF. The K:Na and Ca:Na ratios of G. intraradices grown in monoxenic cultures were also in the same range as those of the field AMF and did not change even when those ratios in the growth medium were lowered several orders of magnitude by adding NaCl. These results indicate that AMF can selectively take up elements such as K and Ca, which act as osmotic equivalents while they avoid uptake of toxic Na. This could make them important in the alleviation of salinity stress in their plant hosts.  相似文献   

19.
长期定位施肥土壤中AM真菌对寄主植物的侵染状况   总被引:3,自引:0,他引:3  
分别于2003年9月和2004年5月在莱阳农学院长期(26年)定位施肥试验田采集玉米和小麦根系,以测定不同施肥处理对丛枝菌根(AM)真菌侵染状况的影响。结果表明长期定位施氮(N)肥显著降低了AM真菌对寄主植物的侵染率(MCP)、丛枝着生率(ACP)、单位根长泡囊数(NV)和侵入点数(NE)。高N处理的小麦MCP低于低N处理,高N处理的玉米ACP低于低N处理。长期定位施有机肥,尤其是高有机肥处理显著降低了MCP、ACP和NE。有机肥和N肥配施也降低了MCP、ACP、NV和NE,以高有机肥和高N肥配施处理的降低效应最大。除小麦根系NV外,长期定位NPK配合施用降低了玉米和小麦的MCP、ACP、NV和NE。其中,以NP处理的玉米ACP、小麦的MCP和ACP最低。另外,低有机肥与N肥配施和NPK配施处理条件下玉米MCP高于小麦。结论认为不同施肥体制对作物菌根生长发育及其结构具有不同影响,而且有机肥和N肥在影响AM真菌侵染方面存在互作。  相似文献   

20.
Carbon dioxide (CO2) concentration in greenhouses is sub-optimal for vegetable production. Many techniques have been used to increase CO2 concentration in greenhouses but most of them are expensive with certain limitations and drawbacks. We adopted a new strategy to elevate CO2 concentration in the greenhouse throughout the day via crop residues and animal manure composting (CRAM). During the whole cultivation period, CRAM-treated greenhouse had doubled CO2 concentration which significantly increased the yield of cherry tomatoes (Solanum lycopersicum L.), i.e., up to 38%. The influence of CRAM procedure on cherry tomato quality was also investigated and the concentrations of total soluble solids (TSS) and soluble sugar were found to be significantly higher in cherry tomatoes grown under composting greenhouse than that of non-composting greenhouse. Additionally, CRAM-CO2 enrichment also resulted in increased concentrations of ascorbic acid (Vitamin C) and titrate acid as compared to control. In contrast, the concentration of nitrate was considerably decreased in cherry tomato grown under CO2 enriched condition than that of control. The increase in active oxygen metabolisms such as POD, CAT and SOD while a decrease in MDA, as well as APX was observed for cherry tomatoes grown under CO2 enriched condition. Hence, CO2 fertilization by using CRAM in greenhouse significantly improved quality and increased the yield of cherry tomatoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号