首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously demonstrated that miR399s control phosphate (Pi) homeostasis by regulating the expression of a ubiquitin-conjugating E2 enzyme (UBC24/PHO2) in Arabidopsis. Changes in miR399-dependent PHO2 gene expression modulate Pi uptake, allocation and remobilization. More recently, we provided evidence that miR399s are able to move in the phloem stream and across grafting junctions from the scions overexpressing miR399 to the wild-type rootstocks. Movement of miR399s serves as a long-distance signal to report and balance the Pi status between shoots and roots. Of note, results from grafting experiments indicate that miR399b is less efficient in cleaving the PHO2 mRNA than is miR399f, despite the similar mobility of the two miR399s. We propose that nucleotide 13 of miR399s, which gives rise to the sequence variation among different miR399 species, could be involved in regulating the abundance of PHO2 mRNA through sequence complementarity to the target sequences of PHO2 mRNA and mimicking target sequence of At4/IPS1 noncoding RNAs.Key words: phosphate, microRNA399, PHO2, UBC24, long-distance movement, At4/IPS1  相似文献   

2.
Regulatory network of microRNA399 and PHO2 by systemic signaling   总被引:9,自引:1,他引:8  
Recently, we showed that microRNA399s (miR399s) control inorganic phosphate (Pi) homeostasis by regulating the expression of PHO2 encoding a ubiquitin-conjugating E2 enzyme 24. Arabidopsis (Arabidopsis thaliana) plants overexpressing miR399 or the pho2 mutant overaccumulate Pi in shoots. The association of Pi translocation and coexpression of miR399s and PHO2 in vascular tissues suggests their involvement in long-distance signaling. In this study, we used reciprocal grafting between wild-type and miR399-overexpressing transgenic plants to dissect the systemic roles of miR399 and PHO2. Arabidopsis rootstocks overexpressing miR399 showed high accumulation of Pi in the wild-type scions because of reduced PHO2 expression in the rootstocks. Although miR399 precursors or expression was not detected, we found a small but substantial amount of mature miR399 in the wild-type rootstocks grafted with transgenic scions, which indicates the movement of miR399 from shoots to roots. Suppression of PHO2 with miR399b or c was less efficient than that with miR399f. Of note, findings in grafted Arabidopsis were also discovered in grafted tobacco (Nicotiana benthamiana) plants. The analysis of the pho1 mutant provides additional support for systemic suppression of PHO2 by the movement of miR399 from Pi-depleted shoots to Pi-sufficient roots. We propose that the long-distance movement of miR399s from shoots to roots is crucial to enhance Pi uptake and translocation during the onset of Pi deficiency. Moreover, PHO2 small interfering RNAs mediated by the cleavage of miR399s may function to refine the suppression of PHO2. The regulation of miR399 and PHO2 via long-distance communication in response to Pi deficiency is discussed.  相似文献   

3.
  • Plant microRNAs are small RNAs that are important for genetic regulation of processes such as plant development or environmental responses. Specific microRNAs accumulate in the phloem during phosphate starvation, and may act as long‐distance signalling molecules.
  • We performed quantitative PCR on Arabidopsis hypocotyl micrograft tissues of wild‐type and hen1‐6 mutants to assess the mobility of several phosphate starvation‐responsive microRNA species.
  • In addition to the previously confirmed mobile species miR399d, the corresponding microRNA* (miR399d*) was identified for the first time as mobile between shoots and roots. Translocation by phosphate‐responsive microRNAs miR827 and miR2111a between shoots and roots during phosphate starvation was evident, while their respective microRNA*s were not mobile.
  • The results suggest that long‐distance mobility of microRNA species is selective and can occur without the corresponding duplex strand. Movement of miR399d* and root‐localised accumulation of miR2111a* opens the potential for persisting microRNA*s to be mobile and functional in novel pathways during phosphate starvation responses.
  相似文献   

4.
Regulation of phosphate homeostasis by MicroRNA in Arabidopsis   总被引:31,自引:0,他引:31       下载免费PDF全文
Chiou TJ  Aung K  Lin SI  Wu CC  Chiang SF  Su CL 《The Plant cell》2006,18(2):412-421
  相似文献   

5.
MiR399f plays a crucial role in maintaining phosphate homeostasis in Arabidopsis thaliana. Under phosphate starvation conditions, AtMYB2, which plays a role in plant salt and drought stress responses, directly regulates the expression of miR399f. In this study, we found that miR399f also participates in plant responses to abscisic acid (ABA), and to abiotic stresses including salt and drought. Salt and ABA treatment induced the expression of miR399f, as confirmed by histochemical analysis of promoter-GUS fusions. Transgenic Arabidopsis plants overexpressing miR399f (miR399f-OE) exhibited enhanced tolerance to salt stress and exogenous ABA, but hypersensitivity to drought. Our in silico analysis identified ABF3 and CSP41b as putative target genes of miR399f, and expression analysis revealed that mRNA levels of ABF3 and CSP41b decreased remarkably in miR399f-OE plants under salt stress and in response to treatment with ABA. Moreover, we showed that activation of stress-responsive gene expression in response to salt stress and ABA treatment was impaired in miR399f-OE plants. Thus, these results suggested that in addition to phosphate starvation signaling, miR399f might also modulates plant responses to salt, ABA, and drought, by regulating the expression of newly discovered target genes such as ABF3 and CSP41b.  相似文献   

6.
7.
A plant expression vector was constructed by inserting the phosphate transporter gene, LePT1, which was cloned from the tomato genome, into pCAMBIA2300. An agrobacterium-mediated system was used to transform tobacco and acquire transgenic plants. Analyses of the transgenic plants by PCR and RT-PCR indicated that the exogenous gene was integrated into and expressed by transgenic plants. The growth characteristics of T1 generation transgenic plants were examined, and the phosphate content of transgenic plants in a low-phosphate environment was found to be significantly higher than in wild-type plants.  相似文献   

8.
9.
The effect of phosphate starvation on growth and acid phosphatases (APases) localization and activity in oat tissues was investigated. Oat cultivars (Avena sativa L.??Arab, Polar, Szakal) were grown for 1?C3?weeks in complete nutrient medium (+P) and without phosphate (?P). Pi concentration in plant tissues decreased strongly after culturing on ?P medium. Pi deficit reduced shoot growth, stimulated root elongation and increased ratio of root/shoot in all oat cultivars. Pi deficit had a greater impact on growth of oat cv. Polar than other varieties. A decrease in the internal Pi status led to an increase of acid phosphatase activities in extracts from shoots and roots, and in root exudates. The highest activity of secreted APases was observed for oat cv. Arab, during the third week of growth under Pi-deficient conditions. The activity of extracellular APase was high in young, growing zones of roots of ?P plants. Histochemical visualization indicated high activity of APases in the epidermis and vascular tissues of ?P plants. Pi deficiency increased intracellular APase activity in shoot mainly in oat cv. Polar, whereas APase activity in roots was the highest in oat cv. Szakal. Protein extracts from roots and shoots were run on native discontinuous PAGE to determine which isoform(s) may be affected by Pi deficiency. Three major APase isoforms were detected in all oat plants; one was strongly induced by Pi deficit. The studied oat cultivars differed in terms of acclimation to deficiency of phosphate??used various pools of APases to acquire Pi from external or internal sources.  相似文献   

10.
MicroRNAs (miRNAs) have been recognized as important regulators in plant response to nutrient deficiencies. Of particular interest is the discovery that miR399 functions systemically in the maintenance of phosphate (Pi) homeostasis in response to external Pi fluctuation. Recent studies have further implicated both miR399 and sugars (mainly sucrose) as potential signal molecules in the shoot-to-root communication of phosphorus (P) status. Given that both miR399 and sucrose are transported via the phloem, their potential interaction (or cross-talk) along the signaling pathway is especially appealing for further exploration. In this mini-review, we highlight recent progress in unraveling crucial roles of both sucrose and miR399 in P-deficiency signaling. In particular, we further discuss recent findings that photosynthetic carbon (C) assimilation and subsequent partitioning, by overriding signaling of low external Pi, act as checkpoints upstream of miR399 for the onset of a systemic P-deficiency status.Key words: sucrose, microRNA399, systemic signaling, P deficiencyPhosphorus (P) is an essential macronutrient for plant growth and development. Phosphate (Pi) availability is a limiting factor for crop productivity in many parts of the world''s arable land.1 Because P fertilizer is a non-renewable resource and its mining is becoming ever more expensive, P has been recently highlighted as “the disappearing nutrient” of strategic importance in a recent NEWS FEATURE in the Nature.2Plant acclimation to P deficiency is a highly coordinated process with an extensive re-programming of biochemical and metabolic pathways. Altered carbon allocation between shoots and roots is a hallmark of most P-deficient plants resulting in a higher root-to-shoot ratio. In this process, sucrose, the main form of carbon (C) source from shoots to roots, has also been implicated to act as a secondary messenger for shoot-to-root signaling of P status to regulate gene expression and Pi uptake in roots.3 Sucrose has been found to be either required for or to enhance P deficiency-regulated gene expression in several plant species.46 In recent years, microRNAs (miRNAs) have been recognized as crucial regulators in plant response to P deficiency. The mode of miRNA action is strictly based on the degree of sequence complementarity with target gene(s). It has been demonstrated that miR399 serves as a systemic signaling molecule in regulating systemic Pi homeostasis.79 Both sucrose and miR399 are phloemmobile.1014 Several excellent reviews have been published recently to elucidate the roles of sucrose, miR399 and other aspects of P signaling.3,1418 However, a paradox arises between the seemingly ubiquitous role of sucrose in signaling various nutrient deficiencies, including those of nitrogen (N) and P, and the stringent specificity of plant responses to a particular nutrient deficiency. Here, we summarize recent advances in understanding the roles of both sucrose and miR399, as modulated by light regime and phloem transport, and discuss how plants may adopt C as a “common currency”, primarily in the form of sucrose, to initiate specific responses to P deficiency by regulating miRNA399 expression.  相似文献   

11.
12.
13.
14.
15.
Plants have developed numerous strategies to cope with phosphorus (P) deficiency resulting from low availability in soils. Evolution of ethylene and up-regulation of root secreted acid phosphatase activity are common for plants in response to P deficiency. To determine the role of ethylene in response of plants to P deficiency, we investigated the effects of ethylene precursor (1-amino cyclopropane-1-carboxylic acid, ACC) and ethylene synthesis antagonists (aminoethoxyvinylglycine AVG, cobalt, Co2+) on P concentrations in roots and shoots of Medicago falcata seedlings grown in P-sufficient (500 μM H2PO4) and P-deficient (5 μM H2PO4) solution. After transferring M. falcata seedlings from P-sufficient to P-deficient solution for 2 days, root P concentration was significantly reduced. The reduction in root P concentration was reversed by AVG and Co2+, and a similar reduction in root P concentration of seedlings exposed to P-sufficient solution was observed by ACC. Expression of high-affinity phosphate transporters (MfPT1, MfPT5) was enhanced by P-deficiency and this process was reversed by AVG and Co2+. There was a marked increase in activity of root acid phosphatase (APase) and expression of gene encoding APase (MfPAP1) under P-deficient conditions, and the increase in APAse activity and expression of MfPAP1 was inhibited by AVG and Co2+. APase activity and expression of MfPAP1 expression in seedlings grown in P-sufficient solution were enhanced by ACC. Root and shoot P concentrations were increased when organic phosphorus was added to the P-deficient solution, and the increase in P concentration was significantly inhibited by AVG and Co2+. These results indicate that ethylene plays an important role in modulation of P acquisition by possibly mobilizing organic P via up-regulating root APase activity and high-affinity phosphate transporters.  相似文献   

16.
The mobilization of inorganic phosphate (Pi) in planta is a complex process regulated by a number of developmental and environmental cues. Plants possess many Pi transporters that acquire Pi from the rhizosphere and translocate it throughout the plant. A few members of the high-affinity Pht1 family of Pi transporters have been functionally characterized and, for the most part, have been shown to be involved in Pi acquisition. We recently demonstrated that the Arabidopsis Pi transporter, Pht1;5, plays a key role in translocating Pi between tissues. Loss-of-function pht1;5 mutant seedlings accumulated more P in shoots relative to wild type but less in roots. In contrast, overexpression of Pht1;5 resulted in a lower P shoot:root ratio compared with wild type. Also, the rosette leaves of Pht1;5-overexpression plants senesced early and contained less P, whereas reproductive organs accumulated more P than those of wild type. Herein we report the molecular response of disrupting Pht1;5 expression on other factors known to modulate P distribution. The results reveal reciprocal mis-regulation of PHO1, miR399d, and At4 in the pht1;5 mutant and Pht1;5-overexpressor, consistent with the corresponding changes in P distribution in these lines. Together our studies reveal a complex role for Pht1;5 in regulating Pi homeostasis.  相似文献   

17.
18.
19.
20.
Root and soil populations of Meloidogyne incognita were significantly fewer from marigold, castor bean, and chrysanthemum than from tomato roots and soil, but not from fallow soil. Root populations of Pratvlenchus alleni were significantly fewer from marigold, castor bean, and chrysanthemum than from tomato: marigold had the fewest. Root populations of M. incognita and P. alleni from tomato simultaneously cultivated with marigold, castor bean, and chrysanthemum were significantly fewer than from tomato cultivated alone. Aborted giant cells and dead M. incognita (larvae and females) were observed in roots of marigold and castor bean, but not in chrysanthemum or tomato. Significantly more males than females occurred in castor bean roots. lnfcction sites of P. alleni appeared normal in all hosts. Thin-layer and column chromatography of alcoholic extracts from castor bean revealed no nematicidal thiophenc derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号