首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increasing global temperatures have been reported to accelerate soil carbon (C) cycling, but also to promote nitrogen (N) and phosphorus (P) dynamics in terrestrial ecosystems. However, warming can differentially affect ecosystem C, N and P dynamics, potentially intensifying elemental imbalances between soil resources, plants and soil microorganisms. Here, we investigated the effect of long-term soil warming on microbial resource limitation, based on measurements of microbial growth (18O incorporation into DNA) and respiration after C, N and P amendments. Soil samples were taken from two soil depths (0–10, 10–20 cm) in control and warmed (>14 years warming, +4°C) plots in the Achenkirch soil warming experiment. Soils were amended with combinations of glucose-C, inorganic/organic N and inorganic/organic P in a full factorial design, followed by incubation at their respective mean field temperatures for 24 h. Soil microbes were generally C-limited, exhibiting 1.8-fold to 8.8-fold increases in microbial growth upon C addition. Warming consistently caused soil microorganisms to shift from being predominately C limited to become C-P co-limited. This P limitation possibly was due to increased abiotic P immobilization in warmed soils. Microbes further showed stronger growth stimulation under combined glucose and inorganic nutrient amendments compared to organic nutrient additions. This may be related to a prolonged lag phase in organic N (glucosamine) mineralization and utilization compared to glucose. Soil respiration strongly positively responded to all kinds of glucose-C amendments, while responses of microbial growth were less pronounced in many of these treatments. This highlights that respiration–though easy and cheap to measure—is not a good substitute of growth when assessing microbial element limitation. Overall, we demonstrate a significant shift in microbial element limitation in warmed soils, from C to C-P co-limitation, with strong repercussions on the linkage between soil C, N and P cycles under long-term warming.  相似文献   

2.
We tested whether levels of soil available nitrogen (N) and phosphorus (P) control the composition and function of the soil microbial community in a Brown Chernozemic soil on the Canadian Prairie. Soil dissolved organic carbon, N and P, and microbial communities structure (phospholipid fatty acid profile) and function (enzyme activity) were evaluated in the fallow and first wheat (Triticum aestivum L. cv. AC Eatonia) phases of fallow-wheat-wheat rotations where the wheat received soil test recommended rates of mineral N and P fertilizers (+N+P), or where N (?N+P) or P (+N?P) fertilizer use was withheld for 37 years. Differential fertilization modified soil N and P availability, and microbial community structure. Low N level was a major constraint when a rapidly growing wheat crop (heading stage) was drawing on the resource, reducing both plant N uptake and soil microbial biomass-C in ?N+P soils. Available P level in +N?P soils was about half that measured in P-fertilized soils, but P did not limit plant productivity or microbial development at that time. Changes in the microbial community structure seemingly buffered the impact of lower P availability in +N?P soils. Phosphatase activity was not involved, but increased abundance of arbuscular mycorrhizal fungi might be associated with this effect. Low soil N availability explained lower specific denitrification and higher specific nitrogenase activities in ?N+P soil growing wheat. Higher denitrification activity in +N+P soil could be attributed to higher soil C level and fertilization-induced shifts observed in the structure of the soil microbial community. Irrespective of the fertility level of the soil, all microbial communities grew at the relative growth rate of 17% day?1 in a nutrient limitation assay that revealed no C, N or P limitation in these communities. We conclude that mineral fertilization, which modifies soil available N and P fertility, can be a selective force causing structural and functional shifts in the soil microbial community with a resulting impact on soil quality and nutrient fluxes.  相似文献   

3.
Aims Understanding the effects of soil microorganism at different elevations on plant C:N:P stoichiometry can help us to understand the plant-soil interactions in the context of climate change. Our aim was to quantify the independent and interactive effects of soil microbial communities and temperatures on the C, N, and P in the leaves of Dodonaea viscosa-a global widespread species. Methods Rhizosphere soils of D. viscosa were collected from two elevation zones in Yuanmou County, Yunnan Province. A 2 × 3 factorial experiment with six replications was conducted using climate chambers. The leaf C, N and P contents and the soil properties were measured after three months of the treatments. Important findings Compared with the autoclaved treatment, inoculated rhizosphere soils from both high and low elevations had higher nutrient absorption, especially P uptake. Temperature produced no significant effect on leaf C:N:P stoichiometry, but the interactive effect of temperature and microbial treatment appeared significant. For inoculated rhizosphere soils from high elevation, temperature had no significant effect on leaf C:N:P stoichiometry. For inoculated rhizosphere soils from low elevation, leaf N and P contents under low temperature were significantly lower than those with warmer soils. The promoting effect of soil microorganisms on nutrient uptake may be due to the direct effect of beneficial microorganisms (e.g., mycorrhizal fungi), but not through the alteration of nutrient cycling process. Because D. viscosa in the inoculated rhizosphere soils absorbed more N and P from the soil than those in autoclaved soil, the available N and P in inoculated rhizosphere soils were lower than those in autoclaved soils. As predicted future temperature will be lower in the studied region, the growth of D. viscosa may be negatively affected through plant-microbe feedbacks.  相似文献   

4.
In Mediterranean ecosystems the effect of aboveground and belowground environmental factors on soil microbial biomass and nutrient immobilization-release cycles may be conditioned by the distinctive seasonal pattern of the Mediterranean-type climates. We studied the effects of season, canopy cover and soil depth on microbial C, N and P in soils of two Mediterranean forests using the fumigation-extraction procedure. Average microbial values recorded were 820 μg C g?1, 115 μg N g?1 and 19 μg P g?1, which accounted for 2.7, 4.7 and 8.8% of the total pools in the surface soil, respectively. Microbial N and P pools were about 10 times higher than the inorganic N and P fractions available for plants. Microbial C values differed between forest sites but in each site they were similar across seasons. Both microbial and inorganic N and P showed maximum values in spring and minimum values in summer, which were positively correlated with soil moisture. Significant differences in soil microbial properties among canopy cover types were observed in the surface soil but only under favourable environmental conditions (spring) and not during summer. Soil depth affected microbial contents which decreased twofold from surface to subsurface soil. Microbial nutrient ratios (C/N, C/P and N/P) varied with seasons and soil depth. Soil moisture regime, which was intimately related to seasonality, emerged as a potential key factor for microbial biomass growth in the studied forests. Our research shows that under a Mediterranean-type climate the interaction among season, vegetation type and structure and soil properties affect microbial nutrient immobilization and thus could influence the biogeochemical cycles of C, N and P in Mediterranean forest ecosystems.  相似文献   

5.
We examined the 10-day response of soil microbial biomass-N to additions of carbon (dextrose) and nitrogen (NH4NO3) to water-amended soils in a factorial experiment in four plant communities of the Chihuahuan desert of New Mexico (U.S.A.). In each site, microbial biomass-N and soil carbohydrates increased and extractable soil N decreased in response to watering alone. Fertilization with N increased microbial biomass-N in grassland soils; whereas, fertilization with C increased microbial biomass-N and decreased extractable N and P in all communities dominated by shrubs, which have invaded large areas of grassland in the Chihuahuan desert during the last 100 years. Our results support the hypothesis that the control of soil microbial biomass shifts from N to C when the ratio of C to N decreases during desertification.  相似文献   

6.
In many tropical and volcanic soils, phosphorus (P) availability is strongly influenced by geochemical sorption, which binds P to soil minerals. The aim of this study was to determine whether biological demand or soil sorption strength was the primary control over phosphate availability and retention in a wet tropical soil with high sorption capacity and low P availability. We added 32PO4 to soil from the upper two horizons and assessed the ability of soil microbes to immobilize the added phosphate in the presence of strong sorption. We added phosphate at two concentrations, one representing background turnover that adds low concentrations of P to the soil solution, and the other representing nutrient pulses that can add fairly high fluxes of P to the soil solution. Sorption and microbial immobilization were rapid for both concentrations, consuming most added P within 30 min. Thus, little P remained in the soil solution or extractable pools, which are considered more available to plants. Although soil sorption strength was almost identical for the two horizons, immobilization of tracer P was approximately three times greater in the upper horizon, where most microbial activity was located. This result suggests that microbial demand controlled how P was partitioned into biological versus geochemical sinks. Further evidence for microbial control is suggested by the movement of tracer P from the sorbed pool into the microbial pool when demand was stimulated by the addition of carbon (C). We also explored how increased nitrogen (N) and P availability changed P dynamics in this nutrient poor soil. In contrast to the unfertilized soil, long-term N and P fertilization substantially reduced biological control over inorganic P. P fertilization saturated the soils, overwhelming biological P demand, whereas N fertilization appeared to increase available P through reduced P sorption. Where biological demand for P is high and P becomes available in the soil solution, microbes may play an important role in controlling P partitioning into biological versus geochemical sinks even in soils that have high sorption capacity.  相似文献   

7.
Grasslands are globally widespread and capable of storing large amounts of carbon (C) in soils, and are generally experiencing increasing atmospheric CO2, nitrogen (N) deposition, and biodiversity losses. To better understand whether grasslands will act as C sources or sinks in the future we measured microbial respiration in long-term laboratory incubations of soils collected from a grassland field experiment after 9 years of factorial treatment of atmospheric CO2, N deposition, and plant species richness on a deep and uniformly sandy soil. We fit microbial soil respiration rates to three-pool models of soil C cycling to separate treatment effects on decomposition and pool sizes of fast, slow, and resistant C pools. Elevated CO2 decreased the mean residence time (MRT) of slow C pools without affecting their pool size. Decreasing diversity reduced the size and MRT of fast C pools (comparing monocultures to plots planted with 16 species), but increased the slow pool MRT. N additions increased the size of the resistant pool. These effects of CO2, N, and species-richness treatments were largely due to plant biomass differences between the treatments. We found no significant interactions among treatments. These results suggest that C sequestration in sandy grassland soils may not be strongly influenced by elevated CO2 or species losses. However, high N deposition may increase the amount of resistant C in these grasslands, which could contribute to increased C sequestration.  相似文献   

8.
Soil solarization, alone or combined with organic amendment, is an increasingly attractive approach for managing soil-borne plant pathogens in agricultural soils. Even though it consists in a relatively mild heating treatment, the increased soil temperature may strongly affect soil microbial processes and nutrients dynamics. This study aimed to investigate the impact of solarization, either with or without addition of farmyard manure, in soil dynamics of various C, N and P pools. Changes in total C, N and P contents and in some functionally-related labile pools (soil microbial biomass C and N, K2SO4-extractable C and N, basal respiration, KCl-exchangeable ammonium and nitrate, and water-soluble P) were followed across a 72-day field soil solarization experiment carried out during a summer period on a clay loam soil in Southern Italy. Soil physico-chemical properties (temperature, moisture content and pH) were also monitored. The average soil temperature at 8-cm depth in solarized soils approached 55 °C as compared to 35 °C found in nonsolarized soil. Two-way ANOVA (solarization×organic amendment) showed that both factors significantly affected most of the above variables, being the highest influence exerted by the organic amendment. With no manure addition, solarization did not significantly affect soil total C, N and P pools. Whereas soil pH, microbial biomass and, at a greater extent, K2SO4-extractable N and KCl-exchangeable ammonium were greatly affected. An increased release of water-soluble P was also found in solarized soils. Yet, solarization altered the quality of soluble organic residues released in soil as it lowered the C-to-N ratio of both soil microbial biomass and K2SO4-extractable organic substrates. Additionally, in solarized soils the metabolic quotient (qCO2) significantly increased while the microbial biomass C-to-total organic C ratio (microbial quotient) decreased over the whole time course. We argued that soil solarization promoted the mineralization of readily decomposable pools of the native soil organic matter (e.g. the microbial biomass) thus rendering larger, at least over a short-term, the available fraction of some soil mineral nutrients, namely N and P forms. However, over a longer prospective solarization may lead to an over-exploitation of labile organic resources in agricultural soils. Manure addition greatly increased the levels of both total and labile C, N and P pools. Thus, addition of organic amendments could represent an important strategy to protect agricultural lands from excessive soil resources exploitation and to maintain soil fertility while enhancing pest control.  相似文献   

9.
《植物生态学报》2017,41(3):311
Aims Understanding the effects of soil microorganism at different elevations on plant C:N:P stoichiometry can help us to understand the plant-soil interactions in the context of climate change. Our aim was to quantify the independent and interactive effects of soil microbial communities and temperatures on the C, N, and P in the leaves of Dodonaea viscosa—a global widespread species. Methods Rhizosphere soils of D. viscosa were collected from two elevation zones in Yuanmou County, Yunnan Province. A 2 × 3 factorial experiment with six replications was conducted using climate chambers. The leaf C, N and P contents and the soil properties were measured after three months of the treatments. Important findings Compared with the autoclaved treatment, inoculated rhizosphere soils from both high and low elevations had higher nutrient absorption, especially P uptake. Temperature produced no significant effect on leaf C:N:P stoichiometry, but the interactive effect of temperature and microbial treatment appeared significant. For inoculated rhizosphere soils from high elevation, temperature had no significant effect on leaf C:N:P stoichiometry. For inoculated rhizosphere soils from low elevation, leaf N and P contents under low temperature were significantly lower than those with warmer soils. The promoting effect of soil microorganisms on nutrient uptake may be due to the direct effect of beneficial microorganisms (e.g., mycorrhizal fungi), but not through the alteration of nutrient cycling process. Because D. viscosa in the inoculated rhizosphere soils absorbed more N and P from the soil than those in autoclaved soil, the available N and P in inoculated rhizosphere soils were lower than those in autoclaved soils. As predicted future temperature will be lower in the studied region, the growth of D. viscosa may be negatively affected through plant-microbe feedbacks.  相似文献   

10.
王攀  余海龙  许艺馨  李春环  黄菊莹 《生态学报》2021,41(16):6513-6524
大气酸沉降增加对陆地生态系统的影响已得到了广泛证实,但有关酸沉降累积下工业排放源周边植被-土壤系统元素平衡特征及其影响机制的研究较少。燃煤电厂是主要的工业酸排放源之一。因此,以宁东能源化工基地3个燃煤电厂为观测点,研究了电厂周边土壤-植物叶片-微生物生态化学计量特征,分析了叶片和微生物生物量生态化学计量特征与降水降尘S、N沉降量及土壤性质的关系。结果表明:土壤和微生物生物量C : N : P生态化学计量特征变异系数较大,叶片各指标的变异系数较小。与受人类活动影响较少的其他同类型区相比,研究区具有较高的土壤有机C水平和N、P供给,且P相对于N丰富。植物可能主要受N限制,而微生物主要受P限制;土壤及微生物元素间均存在极显著的线性关系(P<0.001)。叶片全C与全N、全P均无显著的关系(P>0.05)。叶片全N、全P和N : P具有高的内稳性。微生物生物量N : P内稳性较强,但生物量N和P内稳性较弱,对土壤环境的变化反应敏感;SO42-沉降有助于促进叶片对P的摄取和微生物对C、N、P的固持。少量NO3-沉降有利于叶片N摄取,但持续增加的NO3-沉降可能会使土壤P受限性增强,进而抑制叶片P摄取和微生物生物量积累。土壤酶活性、Ca2+和含水量亦显著影响着植物和微生物元素生态化学计量关系(P<0.05)。因此,今后还需结合多个电厂的土壤性质和植被状况,从较长时间尺度上深入揭示酸沉降增加对工业排放源周边植被-土壤系统元素平衡特征的影响机制。  相似文献   

11.
Studies on soil quality of mangrove forests would be of immense use in minimizing soil degradation and in adopting strategies for soil management at degraded sites. Among the various parameters of soil quality, biological and biochemical soil properties are very sensitive to environmental stress and provide rapid and accurate estimates on changes in quality of soils subjected to degradation. In this study, we determined the general and specific biochemical characteristics of soils (0-30 cm) of inter-tidal areas of 10 undisturbed mangrove forest sites of S. Andaman, India. In order to determine the effects of disturbance, soils from the inter-tidal areas of 10 disturbed mangrove forest sites were also included in the study. The general biochemical properties included all the variables directly related to microbial activity and the specific biochemical parameters included the activities of extracellular hydrolytic enzymes that are involved in the carbon, nitrogen, sulfur and phosphorus cycles in soil. The pH, clay, cation exchange capacity, Al2O3 and Fe2O3 levels exhibited minimum variation between the disturbed and undisturbed sites. In contrast, organic C, total N, Bray P and K levels exhibited marked variation between the sites and were considerably lower at the disturbed sites. The study also revealed marked reductions in microbial biomass and activity at the disturbed sites. In comparison to the undisturbed sites, the levels of all the general biochemical parameters viz., microbial biomass C, microbial biomass N, N flush, basal respiration, metabolic quotient (qCO2), ATP, N mineralization rates and the activities of dehydrogenase and catalase were considerably lower at the disturbed sites. Similarly, drastic reductions in the activities of phosphomonoesterase, phosphodiesterase, ß-g1ucosidase, urease, BAA-protease, casein-protease, arylsulfatase, invertase and carboxymethylcellulase occurred at the disturbed sites due mainly to significant reductions in organic matter/substrate levels. The data on CO2 evolution, qCO2 and ATP indicated the dominance of active individuals in the microbial communities of undisturbed soils and the ratios of biomass C:N, ATP:biomass C and ergosterol:biomass C ratios indicated low N availability and the possibility of fungi dominating over bacteria at both the mangrove sites. Significant and positive correlations between soil variables and biochemical properties suggested that the number and activity of soil microorganisms depend mainly on the quantity of mineralizable substrate and the availability of nutrients in these mangrove soils.  相似文献   

12.
Microbial characteristics of soils on a latitudinal transect in Siberia   总被引:2,自引:0,他引:2  
Soil microbial properties were studied from localities on a transect along the Yenisei River, Central Siberia. The 1000 km‐long transect, from 56°N to 68°N, passed through tundra, taiga and pine forest characteristic of Northern Russia. Soil microbial properties were characterized by dehydrogenase activity, microbial biomass, composition of microbial community (PLFAs), respiration rates, denitrification and N mineralization rates. Relationships between vegetation, latitude, soil quality (pH, texture), soil organic carbon (SOC) and the microbial properties were examined using multivariate analysis. In addition, the temperature responses of microbial growth (net growth rate) and activity (soil respiration rate) were tested by laboratory experiments. The major conclusions of the study are as follows: 1. Multivariate analysis of the data revealed significant differences in microbial activity. SOC clay content was positively related to clay content. Soil texture and SOC exhibited the dominant effect on soil microbial parameters, while the vegetation and climatic effects (expressed as a function of latitude) were weaker but still significant. The effect of vegetation cover is linked to SOC quality, which can control soil microbial activity. 2. When compared to fine‐textured soils, coarse‐textured soils have (i) proportionally more SOC bound in microbial biomass, which might result in higher susceptibility of SOC transformation to fluctuation of environmental factors, and (ii) low mineralization potential, but with a substantial part of the consumed C being transformed to microbial products. 3. The soil microbial community from the northernmost study region located within the permafrost zone appears to be adapted to cold conditions. As a result, microbial net growth rate became negative when temperature rose above 5 °C and C mineralization then exceeded C accumulation.  相似文献   

13.
Giesler  Reiner  Satoh  Fuyuki  Ilstedt  Ulrik  Nordgren  Anders 《Ecosystems》2004,7(2):208-217
Soil microorganisms play an important role in the mobilization of phosphorus (P), and these activities may be beneficial for plant P utilization. We investigated the effects on microbial P availability of different combinations of aluminum and iron (Al + Fe) concentrations and different P pools in humus soils from boreal forest ecosystems. We measured respiration rates in laboratory incubations before and after additions of glucose plus (NH4)2SO4 (Glu+N), with or without a small dose of KH2PO4. Glu+N was added in excess so that the availability of the inherent soil P would be growth-limiting for the microorganisms. The exponential increases observed in microbial growth after substrate additions (Glu+N) was slower for humus soils with high Al+Fe concentrations than for humus soils with low Al+Fe concentrations. Adding a small dose of KH2PO4 to humus soils with high Al+Fe concentrations did, however, increase the exponential growth, measured as the slope of the log-transformed respiration rates, by more than 200%. By contrast, the average increase in exponential growth was only 6% in humus soils with low Al+Fe concentrations. Almost eight times more carbon dioxide (CO2) was evolved between the substrate additions and the point at which the respiration rate reached 1 mg CO2 h–1 for soils with high Al+Fe concentrations compared to humus soils with low Al+Fe concentrations. The amount of CO2 evolved was positively related to the Al+Fe concentration of the humus soils (r 2 = 0.86, P < 0.001), whereas the slope was negatively related to Al+Fe concentration (r 2 = 0.70, P < 0.001). Easily available P forms were negatively related to the Al+Fe concentration, whereas organic P showed a strong positive relationship to Al+Fe (r 2 = 0.85, P < 0.001), suggesting that other forms of P, as well as inorganic P, are affected by the increased sorption capacity. The results indicate that P mobilization by microorganisms is affected by the presence of sorption sites in the humus layer, and that this capacity for sorption may relate not only to phosphate but also to organic P compounds.  相似文献   

14.
Hu  S.  van Bruggen  A.H.C.  Wakeman  R.J.  Grünwald  N.J. 《Plant and Soil》1997,195(1):43-52
Experiments were designed to examine effects of the soil microbial community, C and N availability on in vitro growth of Pythium ultimum and its infection of cotton seedlings by manipulating the stage of cellulose decomposition, size and activity of microbial populations, and N availability. In comparison to the untreated control (CONT), cellulose addition alone (CELL) reduced soil nitrate by 35–80 fold, but had no significant effect on soil ammonium. Soil microbial biomass C (SMBC) increased over 2 fold in 14 days following cellulose addition, but significantly decreased in the following 10 days due to N limitation. Addition of both cellulose and N (NCELL) resulted in sustained SMBC for 24 days and significantly reduced in vitro P. ultimum growth and disease incidence. In vitro growth of P. ultimum and disease severity were consistently reduced in the order: CONT > CELL > NCELL. In vitro growth of P. ultimum was lower in soils previously incubated for 24 days than in those incubated for 14 days, and was most closely correlated to cumulative soil CO2 evolution (CO2T). Correlations between P. ultimum growth rates and NO3-N or total available N were substantial (p < 0.05), but much less significant than those between the growth rates and SMBC, microbial activity measured as CO2 evolution rates or CO2T (p<0.0001). Addition of available N (NH4NO3) and C (glucose) just before the assays did not increase the in vitro growth of P. ultimum or disease severity on cotton seedlings, suggesting that time-dependent microbial processes or microbial metabolites significantly contributed to suppression of P. ultimum growth.  相似文献   

15.
大气氮(N)沉降增加加速了土壤N循环, 引起微生物生物量碳(C):N:磷(P)生态化学计量关系失衡、植物种丧失和生态系统服务功能降低等问题。开展N添加下植物群落组成与微生物生物量生态化学计量特征关系的研究, 可为深入了解N沉降增加引起植物多样性降低的机理提供新思路。该文以宁夏荒漠草原为研究对象, 探讨了N添加下植物生物量和群落多样性的变化趋势, 分析了微生物生物量C:N:P生态化学计量特征独立及其与其他土壤因子共同对植物群落组成的影响。结果表明: N添加下猪毛菜(Salsola collina)生物量呈显著增加趋势, 牛枝子(Lespedeza potaninii)生物量呈逐渐降低趋势, 其他植物种生物量亦呈降低趋势但未达到显著水平; 沿N添加梯度, Shannon-Wiener多样性指数、Simpson优势度指数和Patrick丰富度指数均呈先略有增加后逐渐降低的趋势; N添加提高了微生物生物量N含量和N:P, 降低了微生物生物量C:N; 植物群落组成与微生物生物量N含量、微生物生物量C:N、微生物生物量N:P、土壤NO3 --N浓度、土壤NH4 +-N浓度以及土壤全P含量有较强的相关关系; 微生物生物量C:N:P生态化学计量特征对植物种群生物量和群落多样性变化的独立解释力较弱, 但却与其他土壤因子共同解释了较大变差, 意味着N添加下微生物生物量C:N:P生态化学计量特征对植物群落组成的影响与其他土壤因子高度相关。  相似文献   

16.
The relative activities of soil enzymes involved in mineralizing organic carbon (C), nitrogen (N), and phosphorus (P) reveal stoichiometric and energetic constraints on microbial biomass growth. Although tropical forests and grasslands are a major component of the global C cycle, the effects of soil nutrient availability on microbial activity and C dynamics in these ecosystems are poorly understood. To explore potential microbial nutrient limitation in relation to enzyme allocation in low latitude ecosystems, we performed a meta-analysis of acid/alkaline phosphatase (AP), β-1,4-glucosidase (BG), and β-1,4-N-acetyl-glucosaminidase (NAG) activities in tropical soils. We found that BG:AP and NAG:AP ratios in tropical soils are significantly lower than those of temperate ecosystems overall. The lowest BG:AP and NAG:AP ratios were associated with old or acid soils, consistent with greater biological phosphorus demand relative to P availability. Additionally, correlations between enzyme activities and mean annual temperature and precipitation suggest some climatic regulation of microbial enzyme allocation in tropical soils. We used the results of our analysis in conjunction with previously published data on soil and biomass C:N:P stoichiometry to parameterize a biogeochemical equilibrium model that relates microbial growth efficiency to extracellular enzyme activity. The model predicts low microbial growth efficiencies in P-limited soils, indicating that P availability may influence C cycling in the highly weathered soils that underlie many tropical ecosystems. Therefore, we suggest that P availability be included in models that simulate microbial enzyme allocation, biomass growth, and C mineralization.  相似文献   

17.
Dilly  Oliver 《Plant and Soil》1999,212(2):173-181
Estimating in situ N and P status of the soil microbiota is complicated because microbiological features reflect potentials rather than field conditions. Complementary microbiological assays were, therefore, combined to evaluate the N and P requirement of the microbiota in seven agricultural, grassland and forest topsoils of the Bornhöved Lake district as follows: (i) the sensitivity of the substrate-induced respiration (SIR) to supplemental addition of N and P was monitored during microbial growth and (ii) soil protease and phosphatase activities were analysed and related to soil mass and microbial biomass content. Nitrogen addition increased the maximal SIR rate in all except one soil indicating that the growth of organisms is restricted by this element when easily degradable C source is present. Supplemental N (and in some cases also P) retarded the respiratory response within the first 24 h which suggests microbial sensitivity and/or greater anabolic efficiency. With additional N the maximal SIR rate was most strongly enhanced in topsoils of the beech forest and the dystric alder forest. Thus, the microbial growth in these soils that were below litter horizons seems to be mostly restricted by N. Supplemental P positively affected respiratory response of soils under monoculture, wet grassland and dystric alder forest. In the dystric alder forest soil, high rates of alkaline and unbuffered phosphatase activity were observed when activity was related to either soil mass or microbial biomass content. The data of proteolytic and phospholytic enzymes are discussed with reference to nutrient deficiency and microbial strategy for N and P adsorption.  相似文献   

18.
We compared carbon (C), nitrogen (N), and phosphorus (P) concentrations in atmospheric deposition, runoff, and soils with microbial respiration [dehydrogenase (DHA)] and ecoenzyme activity (EEA) in an ombrotrophic bog and a minerotrophic fen to investigate the environmental drivers of biogeochemical cycling in peatlands at the Marcell Experimental Forest in northern Minnesota, USA. Ecoenzymatic stoichiometry was used to construct models for C use efficiency (CUE) and decomposition (M), and these were used to model respiration (Rm). Our goals were to determine the relative C, N, and P limitations on microbial processes and organic matter decomposition, and to identify environmental constraints on ecoenzymatic processes. Mean annual water, C, and P yields were greater in the fen, while N yields were similar in both the bog and fen. Soil chemistry differed between the bog and fen, and both watersheds exhibited significant differences among soil horizons. DHA and EEA differed by watersheds and soil horizons, CUE, M, and Rm differed only by soil horizons. C, N, or P limitations indicated by EEA stoichiometry were confirmed with orthogonal regressions of ecoenzyme pairs and enzyme vector analyses, and indicated greater N and P limitation in the bog than in the fen, with an overall tendency toward P-limitation in both the bog and fen. Ecoenzymatic stoichiometry, microbial respiration, and organic matter decomposition were responsive to resource availability and the environmental drivers of microbial metabolism, including those related to global climate changes.  相似文献   

19.
The soil microbial carbon (C), nitrogen (N) and phosphorus (P) pools were quantified in the organic horizon of soils from an arctic/alpine low-altitude heath and a high-altitude fellfield by the fumigation-extraction method before and after factorial addition of sugar, NPK fertilizer and benomyl, a fungicide. In unamended soil, microbial C, N and P made up 3.3–3.6%, 6.1–7.3% and 34.7% of the total soil C, N and P content, respectively. The inorganic extractable N pool was below 0.1% and the inorganic extractable P content slightly less than 1% of the total soil pool sizes. Benomyl addition in spring and summer did not affect microbial C or nutrient content analysed in the autumn. Sugar amendments increased microbial C by 15 and 37% in the two soils, respectively, but did not affect the microbial nutrient content, whereas inorganic N and P either declined significantly or tended to decline. The increased microbial C indicates that the microbial biomass also increased but without a proportional enhancement of N and P uptake. NPK addition did not affect the amount of microbial C but almost doubled the microbial N pool and more than doubled the P pool. A separate study has shown that CO2 evolution increased by more than 50% after sugar amendment and by about 30% after NPK and NK additions to one of the soils. Hence, the microbial biomass did not increase in response to NPK addition, but the microbes immobilized large amounts of the added nutrients and, judging by the increased CO2 evolution, their activity increased. We conclude: (1) that microbial biomass production in these soils is stimulated by labile carbon and that the microbial activity is stimulated by both labile C and by nutrients (N); (2) that the microbial biomass is a strong sink for nutrients and that the microbial community probably can withdraw substantial amounts of nutrients from the inorganic, plant-available pool, at least periodically; (3) that temporary declines in microbial populations are likely to release a flush of inorganic nutrients to the soil, particularly P of which the microbial biomass contained more than one third of the total soil pool; and (4) that the mobilization-immobilization cycles of nutrients coupled to the population dynamics of soil organisms can be a significant regulating factor for the nutrient supply to the primary producers, which are usually strongly nutrient-limited in arctic ecosystems.  相似文献   

20.
We measured DOM fluxes from the O horizon of Hawaiiansoils that varied in nutrient availability and mineralcontent to examine what regulates the flux ofdissolved organic carbon (DOC), nitrogen (DON) andphosphorus (DOP) from the surface layer of tropicalsoils. We examined DOM fluxes in a laboratory study from N, P and N+Pfertilized and unfertilized sites on soils that rangedin age from 300 to 4 million years old. The fluxesof DOC and DON were generally related to the % Cand % N content of the soils across the sites. Ingeneral, CO2 and DOC fluxes were not correlatedsuggesting that physical desorption, dissolution andsorption reactions primarily control DOM release fromthese surface horizons. The one exception to thispattern was at the oldest site where there was asignificant relationship between DOC and CO2flux. The oldest site also contained the lowestmineral and allophane content of the three sites andthe DOC-respiration correlation indicates arelationship between microbial activity and DOC fluxat this site. N Fertilization increased DON fluxes by50% and decreased DOC:DON ratios in the youngest,most N poor site. In the older, more N rich sites, Nfertilization neither increased DON fluxes nordecreased DOM C:N ratios. Similarly, short termchanges in N availability in laboratory-based soil Nand P fertilization experiments did not affect the DOMC:N ratios of leachate. DOM C:N ratios were similar tosoil organic matter C:N ratios, and changes in DOM C:Nratios with fertilization appeared to have beenmediated through long term effects on SOM C:N ratiosrather than through changes in microbial demand for Cand N. There was no relationship between DON andinorganic N flux during these incubations suggestingthat the organic and inorganic components of N fluxfrom soils are regulated by different factors and thatDON fluxes are not coupled to immediate microbialdemand for N. In contrast to the behavior of DON, thenet flux of dissolved organic phosphorus (DOP) and DOMC:P ratios responded to both long-term P fertilizationand natural variation in reactive P availability. There was lower DOP flux and higher DOM C:P ratiosfrom soils characterized by low P availability andhigh DOP flux and narrow DOM C:P ratios in sites withhigh P availability. DOP fluxes were also closelycorrelated with dissolved inorganic P fluxes. PFertilization increased DOP fluxes by 73% in theyoungest site, 31% in the P rich intermediate agesite and 444% in the old, P poor site indicating thatDOP fluxes closely track P availability in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号