首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chinese hickory (Carya cathayensis Sarg.) is a popular nut tree in China, but there is little information about the influences of fertilization on soil CO2 efflux and soil microbial biomass. This study evaluated the short-term effects of different fertilizer applications on soil CO2 efflux and soil microbial biomass in Chinese hickory stands. Four fertilizer treatments were established: control (CK, no fertilizer), inorganic fertilizer (IF), organic fertilizer (OF), and equal parts organic and inorganic N fertilizers (OIF). A field experiment was conducted to measure soil CO2 effluxes using closed chamber and gas chromatography techniques. Regardless of the fertilization practices, soil CO2 effluxes of all the treatments showed a similar temporal pattern, with the highest value in summer and the lowest in winter. The mean annual soil CO2 efflux in the IF treatment was significantly higher than that in the CK, OIF, and OF treatments. There was no significant difference in soil CO2 efflux between the OIF, OF, and CK treatments. Soil CO2 effluxes were significantly affected by soil temperature. Soil dissolved organic carbon (DOC) was positively correlated with soil CO2 efflux only in the CK treatment. Regression analysis, including soil temperature, moisture, and DOC, showed that soil temperature was the primary factor influencing soil CO2 effluxes. Both OF and OIF treatments increased concentrations of soil microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN), but decreased the ratio of MBC:MBN. These results reveal that applying organic fertilizer, either alone or combined with inorganic fertilizer, may be the optimal strategy for mitigating soil CO2 emission and improving soil quality in Chinese hickory stands.  相似文献   

2.
探讨外源养分的输入对土壤系统内碳、氮、磷化学计量特征的影响,对于深刻认识农田土壤有机碳(C)和养分循环及其相互作用过程具有重要意义。以26年的农田长期定位施肥试验为平台,分析长期不同施肥条件下土壤、有机态及微生物生物量碳、氮、磷含量及其化学计量学特征,并根据内稳性模型y=c x~(1/H)计算其化学计量内稳性指数H。结果表明:与长期撂荒处理(CK_0)相比,种植作物条件下26年化肥配施有机肥处理(MNPK和1.5MNPK)显著降低微生物生物量氮含量,但显著提高了微生物生物量磷的含量。相对于撂荒处理,即使长期配施化肥磷处理(NP、PK、NPK),其土壤有机磷降低显著。对于C∶N比而言,化肥配施有机物料处理(秸秆或有机肥)的土壤C∶N比、有机质C∶N及微生物生物量C∶N比均显著低于化肥处理(N、NP、PK和NPK)。对于C∶P比而言,相对于撂荒处理,26年施用磷肥(化肥磷或有机磷)显著降低了土壤C∶P比和微生物生物量C∶P比,而CK和偏施化肥处理(N、NP和PK)显著降低了土壤有机质C∶P比。对于土壤N∶P比而言,撂荒处理土壤N∶P比显著高于其他处理,而撂荒处理土壤有机质N∶P比显著高于CK和化肥处理,表明不施肥或化肥条件下作物种植加剧了土壤有机质中氮素的消耗。微生物生物量C∶N、C∶P、N∶P比的内稳性指数H分别为0.24、0.75、0.64,不具有内稳性特征。微生物生物量C∶N、C∶P、N∶P比分别与土壤C∶N、C∶P、N∶P比呈显著正相关关系,但与土壤有机质碳氮磷化学计量比之间无显著相关性。表明土壤碳、氮、磷元素的改变会直接导致微生物生物量碳、氮、磷化学计量比的改变,但微生物生物量碳氮磷化学计量比对土壤有机质碳氮磷化学计量比无显著影响,土壤有机质的碳氮磷计量比可能更多是受到作物和施肥等养分管理措施的影响。  相似文献   

3.
Soil microbial response in tallgrass prairie to elevated CO2   总被引:3,自引:0,他引:3  
Terrestrial responses to increasing atmospheric CO2 are important to the global carbon budget. Increased plant production under elevated CO2 is expected to increase soil C which may induce N limitations. The objectives of this study were to determine the effects of increased CO2 on 1) the amount of carbon and nitrogen stored in soil organic matter and microbial biomass and 2) soil microbial activity. A tallgrass prairie ecosystem was exposed to ambient and twice-ambient CO2 concentrations in open-top chambers in the field from 1989 to 1992 and compared to unchambered ambient CO2 during the entire growing season. During 1990 and 1991, N fertilizer was included as a treatment. The soil microbial response to CO2 was measured during 1991 and 1992. Soil organic C and N were not significantly affected by enriched atmospheric CO2. The response of microbial biomass to CO2 enrichment was dependent upon soil water conditions. In 1991, a dry year, CO2 enrichment significantly increased microbial biomass C and N. In 1992, a wet year, microbial biomass C and N were unaffected by the CO2 treatments. Added N increased microbial C and N under CO2 enrichment. Microbial activity was consistently greater under CO2 enrichment because of better soil water conditions. Added N stimulated microbial activity under CO2 enrichment. Increased microbial N with CO2 enrichment may indicate plant production could be limited by N availability. The soil system also could compensate for the limited N by increasing the labile pool to support increased plant production with elevated atmospheric CO2. Longer-term studies are needed to determine how tallgrass prairie will respond to increased C input.  相似文献   

4.
The relationship between microbial biomass, residues and their contribution to microbial turnover is important to understand ecosystem C storage. The effects of permanent grassland (100 % ryegrass—PG), conversion to modified grassland (mixture of grass and clover—MG) or maize monoculture (MM) on the dynamics of soil organic C (SOC), microbial biomass, fungal ergosterol and microbial residues (bacterial muramic acid and fungal glucosamine) were investigated. Cattle slurry was applied to quantify the effects of fertilisation on microbial residues and functional diversity of microbial community across land use types. Slurry application significantly increased the stocks of microbial biomass C and S and especially led to a shift in microbial residues towards bacterial tissue. The MM treatment decreased the stocks of SOC, microbial biomass C, N and S and microbial residues compared with the PG and MG treatments at 0–40 cm depth. The MM treatment led to a greater accumulation of saprotrophic fungi, as indicated by the higher ergosterol-to-microbial biomass C ratio and lower microbial biomass C/S ratio compared with the grassland treatments. The absence of a white clover population in the PG treatment caused a greater accumulation of fungal residues (presumably arbuscular mycorrhizal fungi (AMF), which do not contain ergosterol but glucosamine), as indicated by the significantly higher fungal C-to-bacterial C ratio and lower ergosterol-to-microbial biomass C ratio compared with the MG treatment. In addition to these microbial biomass and residual indices, the community level physiological profiles (CLPP) demonstrated distinct differences between the PG and MG treatments, suggesting the potential of these measurements to act as an integrative indicator of soil functioning.  相似文献   

5.
The main objective of the second Darmstadt trial was to investigate the effects of vegetal fertilizers on soil properties and crop yield in comparison with farmyard manure. The experiment consisted of seven treatments: (i) inorganic fertilizers, (ii) vegetal organic fertilizers, (iii) vegetal organic fertilizers equivalent to biodynamic preparations, (iv) cattle farmyard manure, (v) cattle farmyard manure with addition of biodynamic preparations, (vi) high level of cattle farmyard manure, and (vii) high level of cattle farmyard manure with biodynamic preparations. The soil properties analyzed were pH, soil organic C, N, P, and S, soil microbial biomass C, N, and P, basal respiration and fungal ergosterol. The application of vegetal fertilizers had slightly negative effects on soil organic C, no effects on crop yield (potato, winter rye) and microbial biomass, but positive effects on ergosterol in comparison with farmyard manure. The increase in ergosterol was caused by straw return in the vegetal, but also in the inorganic fertilizer treatments. The biodynamic preparations did not affect the contents of soil organic C and total N. The low effectiveness of vegetal fertiliser in maintaining soil organic C levels is of particular importance for organic cropping systems and should be examined further under different site conditions.  相似文献   

6.
Microbial responses to three years of CO2 enrichment (600 μL L–1) in the field were investigated in calcareous grassland. Microbial biomass carbon (C) and soil organic C and nitrogen (N) were not significantly influenced by elevated CO2. Microbial C:N ratios significantly decreased under elevated CO2 (– 15%, P = 0.01) and microbial N increased by + 18% (P = 0.04). Soil basal respiration was significantly increased on one out of 7 sampling dates (+ 14%, P = 0.03; December of the third year of treatment), whereas the metabolic quotient for CO2 (qCO2 = basal respiration/microbial C) did not exhibit any significant differences between CO2 treatments. Also no responses of microbial activity and biomass were found in a complementary greenhouse study where intact grassland turfs taken from the field site were factorially treated with elevated CO2 and phosphorus (P) fertilizer (1 g P m–2 y–1). Previously reported C balance calculations showed that in the ecosystem investigated growing season soil C inputs were strongly enhanced under elevated CO2. It is hypothesized that the absence of microbial responses to these enhanced soil C fluxes originated from mineral nutrient limitations of microbial processes. Laboratory incubations showed that short-term microbial growth (one week) was strongly limited by N availability, whereas P was not limiting in this soil. The absence of large effects of elevated CO2 on microbial activity or biomass in such nutrient-poor natural ecosystems is in marked contrast to previously published large and short-term microbial responses to CO2 enrichment which were found in fertilized or disturbed systems. It is speculated that the absence of such responses in undisturbed natural ecosystems in which mineral nutrient cycles have equilibrated over longer periods of time is caused by mineral nutrient limitations which are ineffective in disturbed or fertilized systems and that therefore microbial responses to elevated CO2 must be studied in natural, undisturbed systems.  相似文献   

7.

Aims

Litter, as afterlife of plants, plays an important role in driving belowground decomposition processes. Here we tested effects of litter species identity and diversity on carbon (C) and nitrogen (N) dynamics during litter decomposition in N-limited alpine meadow soil from the Qinghai–Tibet Plateau.

Methods

We incubated litters of four meadow species, a sedge (“S”, Kobresia humilis), a grass (“G”, Elymus nutans), a herb (“H”, Saussurea superba), and a legume (“L”, Oxytropis falcata), in monoculture and in mixture with meadow soil. CO2 release was measured 21 times during the incubation, and soil available N and microbial biomass C and N were measured before and after the experiment.

Results

The organic C decay rate did not differ much among soils amended with monocultures or mixtures of litter, except in the H, S, L, and S+H treatments, which had much higher decay rates. Potential decomposable C pools were lowest in the control, highest in the L treatment, and intermediate in the S treatment. Mineralized N was completely immobilized by soil microbes in all treatments except the control, S+L, and S+G+L treatments. Litter mixtures had both additive and non-additive effects on CO2-C emission (mainly antagonistic effects), net N mineralization (mainly synergistic), and microbial biomass C and N (both). Overall, these parameters were not significantly correlated with litter species richness. Similarly, microbial C or N was not significantly correlated with litter N content or C/N. However, cumulative CO2-C emission and net N mineralization were positively correlated with litter N content and negatively correlated with litter C/N.

Conclusions

Litter N content and C/N rather than litter species richness drove the release of CO2-C and net available N in this ecosystem. The antagonistic effects of litter mixtures contributed to a modest release of CO2-C, but their synergistic effects enhanced net available N. We suggest that in alpine meadow communities, balancing species with high and low N contents will benefit soil carbon sequestration and plant competition for available N with soil microbes.  相似文献   

8.
长期施肥对土壤微生物量及土壤酶活性的影响   总被引:80,自引:0,他引:80       下载免费PDF全文
 该文以北京国家褐潮土土壤肥力与肥料效益长期监测基地的长期肥料定位试验为平台,研究了长期不同施肥制度对土壤的生物学特性及其土壤酶的影响。主要研究结果:长期撂荒土壤(15年)的有机质和全氮(TN)的含量、微生物量碳(SMB-C)和氮(SMB-N)、土壤的蔗糖酶、磷酸酶和脲酶活性以及SMB-C/SOC(土壤有机碳)和SMB-N/TN比值都高于种植作物的农田土壤;而其代谢商和容重值低于农田土壤。长期施肥的农田(NPK、NPKM 、NPKS和NPKF),其土壤养分含量、微生物量碳和氮以及土壤蔗糖酶、磷酸酶和脲酶活性均高于不施肥的农田(CK);而小麦(Triticum aestivum)-玉米(Zea mays)→小麦-大豆(Glycine max)复种轮作(NPKF)的农田又高于长期复种连作(NPK)的农田;在施肥处理中(NPK、NPKM、NPKS和NPKF),长期化肥与有机肥配合施用的处理(NPKM )的土壤上述指标高于其它施肥处理(NPK、NPKS和NPKF),但其土壤的代谢商、pH值和容重值较低。  相似文献   

9.
Jensen  L.S.  Christensen  L.  Mueller  T.  Nielsen  N.E. 《Plant and Soil》1997,190(2):193-202
We studied the fate of 15N-labelled fertilizer nitrogen in a sandy loam soil after harvest of winter oilseed rape (Brassica napus L. cv. Ceres) given 100 or 200 kg N ha-1 in spring, with or without irrigation. Our main objective was to quantify the temporal variations of the soil mineral N, the extractable soil organic N and soil microbial biomass N, and fertilizer derived N in these pools during autumn and winter. Nitrogen use efficiency of the oilseed rape crop varied from 47% of applied N in the 100N, irrigated treatment to 34% in the 200N, non-irrigated treatment. However, only in the latter treatment did we find significantly higher fertilizer derived soil mineral N than in the three other treatments which all had low soil mineral N contents at the first sampling after harvest (8 days after stubble tillage). Between 31% and 42% of the applied N could not be accounted for in the harvested plants or 0-15 cm soil layer at this first sampling. Over the following autumn and winter none of the remaining fertilizer derived soil N was lost from the 0–5 cm depth, but from the 5–15 cm depth a marked proportion of N derived from fertilizer was lost, probably by leaching. Negligible amounts of fertilizer derived extractable soil organic and mineral N (<1 kg N ha-1, 0-15 cm) were found in all treatments after the first sampling.Soil microbial biomass N was not significantly affected by treatments and showed only small temporal variability (±11% of the mean 76 kg N ha-1, 0- 15 cm depth). Surprisingly, the average amount of soil microbial biomass N derived from fertilizer was significantly affected by the treatments, with the extremes being 5.5 and 3.1 kg N ha-1 in the 200N, non-irrigated and 100N, irrigated treatments, respectively. Also, the estimated exponential decay rate of microbial biomass N derived from fertilizer, differed greatly (2 fold) between these two treatments, indicating highly different microbial turnover rates in spite of the similar total microbial biomass N values. In studies utilising 15N labelling to estimate turnover rates of different soil organic matter pools this finding is of great importance, because it may question the assumption that turnover rates are not affected by the insertion of the label.  相似文献   

10.
Soil solarization, alone or combined with organic amendment, is an increasingly attractive approach for managing soil-borne plant pathogens in agricultural soils. Even though it consists in a relatively mild heating treatment, the increased soil temperature may strongly affect soil microbial processes and nutrients dynamics. This study aimed to investigate the impact of solarization, either with or without addition of farmyard manure, in soil dynamics of various C, N and P pools. Changes in total C, N and P contents and in some functionally-related labile pools (soil microbial biomass C and N, K2SO4-extractable C and N, basal respiration, KCl-exchangeable ammonium and nitrate, and water-soluble P) were followed across a 72-day field soil solarization experiment carried out during a summer period on a clay loam soil in Southern Italy. Soil physico-chemical properties (temperature, moisture content and pH) were also monitored. The average soil temperature at 8-cm depth in solarized soils approached 55 °C as compared to 35 °C found in nonsolarized soil. Two-way ANOVA (solarization×organic amendment) showed that both factors significantly affected most of the above variables, being the highest influence exerted by the organic amendment. With no manure addition, solarization did not significantly affect soil total C, N and P pools. Whereas soil pH, microbial biomass and, at a greater extent, K2SO4-extractable N and KCl-exchangeable ammonium were greatly affected. An increased release of water-soluble P was also found in solarized soils. Yet, solarization altered the quality of soluble organic residues released in soil as it lowered the C-to-N ratio of both soil microbial biomass and K2SO4-extractable organic substrates. Additionally, in solarized soils the metabolic quotient (qCO2) significantly increased while the microbial biomass C-to-total organic C ratio (microbial quotient) decreased over the whole time course. We argued that soil solarization promoted the mineralization of readily decomposable pools of the native soil organic matter (e.g. the microbial biomass) thus rendering larger, at least over a short-term, the available fraction of some soil mineral nutrients, namely N and P forms. However, over a longer prospective solarization may lead to an over-exploitation of labile organic resources in agricultural soils. Manure addition greatly increased the levels of both total and labile C, N and P pools. Thus, addition of organic amendments could represent an important strategy to protect agricultural lands from excessive soil resources exploitation and to maintain soil fertility while enhancing pest control.  相似文献   

11.
Elevation of atmospheric CO2 concentration is predicted to increase net primary production, which could lead to additional C sequestration in terrestrial ecosystems. Soil C input was determined under ambient and Free Atmospheric Carbon dioxide Enrichment (FACE) conditions for Lolium perenne L. and Trifolium repens L. grown for four years in a sandy‐loam soil. The 13C content of the soil organic matter C had been increased by 5‰ compared to the native soil by prior cropping to corn (Zea mays) for > 20 years. Both species received low or high amounts of N fertilizer in separate plots. The total accumulated above‐ground biomass produced by L. perenne during the 4‐year period was strongly dependent on the amount of N fertilizer applied but did not respond to increased CO2. In contrast, the total accumulated above‐ground biomass of T. repens doubled under elevated CO2 but remained independent of N fertilizer rate. The C:N ratio of above‐ground biomass for both species increased under elevated CO2 whereas only the C:N ratio of L. perenne roots increased under elevated CO2. Root biomass of L. perenne doubled under elevated CO2 and again under high N fertilization. Total soil C was unaffected by CO2 treatment but dependent on species. After 4 years and for both crops, the fraction of new C (F‐value) under ambient conditions was higher (P= 0.076) than under FACE conditions: 0.43 vs. 0.38. Soil under L. perenne showed an increase in total soil organic matter whereas N fertilization or elevated CO2 had no effect on total soil organic matter content for both systems. The net amount of C sequestered in 4 years was unaffected by the CO2 concentration (overall average of 8.5 g C kg?1 soil). There was a significant species effect and more new C was sequestered under highly fertilized L. perenne. The amount of new C sequestered in the soil was primarily dependent on plant species and the response of root biomass to CO2 and N fertilization. Therefore, in this FACE study net soil C sequestration was largely depended on how the species responded to N rather than to elevated CO2.  相似文献   

12.
Y. L. Hu  S. L. Wang  D. H. Zeng 《Plant and Soil》2006,282(1-2):379-386
The quality of leaf litter can control decomposition processes and affect the nutrient availability for plant uptake. In this study, we investigated the effect of single leaf litter (Chinese fir – Cunninghamia lamcealata (Lamb.) Hook) and mixed leaf litters (C. lamcealata, Liquidamba formosana Hance and Alnus cremastogyne Burk) on soil chemical properties, soil microbial properties and soil enzyme activities during 2 years decomposition. The results showed that soil microbial biomass C, the ratio of soil microbial biomass C to total soil organic C (soil microbial quotient, Cmic/Corg) and soil enzymes (urease, invertase, dehydrogenase) activities increased significantly in mixed leaf litters treatments whereas soil chemical properties remained unchanged. However, soil microbial metabolic quotient (qCO2) values and soil polyphenol oxidase activity were higher in the single Chinese fir leaf litter treatment that had a higher C:N (carbon:nitrogen) ratio (79.53) compared with the mixed leaf litter (C:N ratios of 76.32, 56.90, 61.20, respectively). Our results demonstrated that the mixed leaf litter can improve forest soil quality, and that soil microbial properties and soil enzyme activities are more sensitive in response to litter quality change than soil chemical properties.  相似文献   

13.
Biogas slurry, the secondary product of the anaerobic digestion process, is increasingly being used as fertilizer. Information is available on its chemical and physical properties and their effects on plant growth. However, there is a demand to characterize the microbial quality of slurries, which may control further mineralization processes after application to soil. In this study, biogas and raw slurries obtained from six farms were analyzed for their ergosterol and amino sugar concentrations as indices for microbial biomass. A reliable, precise method for determining ergosterol in slurries is presented. Biogas slurries contained significantly less ergosterol (?34%), muramic acid (MurN; ?42%), galactosamine (GalN; ?32%), and fungal glucosamine (GlcN; ?40%) than raw slurries. The mean fungal GlcN to ergosterol ratio (50) and also the mean fungal carbon (C) to bacterial C ratio (0.29) did not significantly differ between the slurry types. The mean microbial C concentration in the biogas slurries was significantly lower than in the raw slurries. Consequently, the contribution of microbial C to slurry organic C was 3.6% in the biogas slurries and 5.7% in the raw slurries. Microbial C revealed significant nonlinear relationships with the fiber and ash concentration, pH, as well as the C/N ratio of the slurries.  相似文献   

14.
Studies on soil quality of mangrove forests would be of immense use in minimizing soil degradation and in adopting strategies for soil management at degraded sites. Among the various parameters of soil quality, biological and biochemical soil properties are very sensitive to environmental stress and provide rapid and accurate estimates on changes in quality of soils subjected to degradation. In this study, we determined the general and specific biochemical characteristics of soils (0-30 cm) of inter-tidal areas of 10 undisturbed mangrove forest sites of S. Andaman, India. In order to determine the effects of disturbance, soils from the inter-tidal areas of 10 disturbed mangrove forest sites were also included in the study. The general biochemical properties included all the variables directly related to microbial activity and the specific biochemical parameters included the activities of extracellular hydrolytic enzymes that are involved in the carbon, nitrogen, sulfur and phosphorus cycles in soil. The pH, clay, cation exchange capacity, Al2O3 and Fe2O3 levels exhibited minimum variation between the disturbed and undisturbed sites. In contrast, organic C, total N, Bray P and K levels exhibited marked variation between the sites and were considerably lower at the disturbed sites. The study also revealed marked reductions in microbial biomass and activity at the disturbed sites. In comparison to the undisturbed sites, the levels of all the general biochemical parameters viz., microbial biomass C, microbial biomass N, N flush, basal respiration, metabolic quotient (qCO2), ATP, N mineralization rates and the activities of dehydrogenase and catalase were considerably lower at the disturbed sites. Similarly, drastic reductions in the activities of phosphomonoesterase, phosphodiesterase, ß-g1ucosidase, urease, BAA-protease, casein-protease, arylsulfatase, invertase and carboxymethylcellulase occurred at the disturbed sites due mainly to significant reductions in organic matter/substrate levels. The data on CO2 evolution, qCO2 and ATP indicated the dominance of active individuals in the microbial communities of undisturbed soils and the ratios of biomass C:N, ATP:biomass C and ergosterol:biomass C ratios indicated low N availability and the possibility of fungi dominating over bacteria at both the mangrove sites. Significant and positive correlations between soil variables and biochemical properties suggested that the number and activity of soil microorganisms depend mainly on the quantity of mineralizable substrate and the availability of nutrients in these mangrove soils.  相似文献   

15.
Climate change factors such as elevated atmospheric carbon dioxide (CO2) and ozone (O3) can exert significant impacts on soil microbes and the ecosystem level processes they mediate. However, the underlying mechanisms by which soil microbes respond to these environmental changes remain poorly understood. The prevailing hypothesis, which states that CO2- or O3-induced changes in carbon (C) availability dominate microbial responses, is primarily based on results from nitrogen (N)-limiting forests and grasslands. It remains largely unexplored how soil microbes respond to elevated CO2 and O3 in N-rich or N-aggrading systems, which severely hinders our ability to predict the long-term soil C dynamics in agroecosystems. Using a long-term field study conducted in a no-till wheat-soybean rotation system with open-top chambers, we showed that elevated CO2 but not O3 had a potent influence on soil microbes. Elevated CO2 (1.5×ambient) significantly increased, while O3 (1.4×ambient) reduced, aboveground (and presumably belowground) plant residue C and N inputs to soil. However, only elevated CO2 significantly affected soil microbial biomass, activities (namely heterotrophic respiration) and community composition. The enhancement of microbial biomass and activities by elevated CO2 largely occurred in the third and fourth years of the experiment and coincided with increased soil N availability, likely due to CO2-stimulation of symbiotic N2 fixation in soybean. Fungal biomass and the fungi∶bacteria ratio decreased under both ambient and elevated CO2 by the third year and also coincided with increased soil N availability; but they were significantly higher under elevated than ambient CO2. These results suggest that more attention should be directed towards assessing the impact of N availability on microbial activities and decomposition in projections of soil organic C balance in N-rich systems under future CO2 scenarios.  相似文献   

16.
Williams  Mark A.  Rice  Charles W.  Owensby  Clenton E. 《Plant and Soil》2000,227(1-2):127-137
Alterations in microbial mineralization and nutrient cycling may control the long-term response of ecosystems to elevated CO2. Because micro-organisms constitute a labile fraction of potentially available N and are regulators of decomposition, an understanding of microbial activity and microbial biomass is crucial. Tallgrass prairie was exposed to twice ambient CO2 for 8 years beginning in 1989. Starting in 1991 and ending in 1996, soil samples from 0 to 5 and 5 to 15 cm depths were taken for measurement of microbial biomass C and N, total C and N, microbial activity, inorganic N and soil water content. Because of increased water-use-efficiency by plants, soil water content was consistently and significantly greater in elevated CO2 compared to ambient treatments. Soil microbial biomass C and N tended to be greater under elevated CO2 than ambient CO2 in the 5–15 cm depth during most years, and in the month of October, when analyzed over the entire study period. Microbial activity was significantly greater at both depths in elevated CO2 than ambient conditions for most years. During dry periods, the greater water content of the surface 5 cm soil in the elevated CO2 treatments increased microbial activity relative to the ambient CO2 conditions. The increase in microbial activity under elevated CO2 in the 5–15 cm layer was not correlated with differences in soil water contents, but may have been related to increases in soil C inputs from enhanced root growth and possibly greater root exudation. Total soil C and N in the surface 15 cm were, after 8 years, significantly greater under elevated CO2 than ambient CO2. Our results suggest that decomposition is enhanced under elevated CO2 compared with ambient CO2, but that inputs of C are greater than the decomposition rates. Soil C sequestration in tallgrass prairie and other drought-prone grassland systems is, therefore, considered plausible as atmospheric CO2 increases. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
This study reports the effects of long-term elevated atmospheric CO2 on root production and microbial activity, biomass, and diversity in a chaparral ecosystem in southern California. The free air CO2 enrichment (FACE) ring was located in a stand dominated by the woody shrub Adenostoma fasciculatum. Between 1995 and 2003, the FACE ring maintained an average daytime atmospheric CO2 concentration of 550 ppm. During the last two years of operation, observations were made on soil cores collected from the FACE ring and adjacent areas of chaparral with ambient CO2 levels. Root biomass roughly doubled in the FACE plot. Microbial biomass and activity were related to soil organic matter (OM) content, and so analysis of covariance was used to detect CO2 effects while controlling for variation across the landscape. Extracellular enzymatic activity (cellulase and amylase) and microbial biomass C (chloroform fumigation-extraction) increased more rapidly with OM in the FACE plot than in controls, but glucose substrate-induced respiration (SIR) rates did not. The metabolic quotient (field respiration over potential respiration) was significantly higher in FACE samples, possibly indicating that microbial respiration was less C limited under high CO2. The treatments also differed in the ratio of SIR to microbial biomass C, indicating a metabolic difference between the microbial communities. Bacterial diversity, described by 16S rRNA clone libraries, was unaffected by the CO2 treatment, but fungal biomass was stimulated. Furthermore, fungal biomass was correlated with cellulase and amylase activities, indicating that fungi were responsible for the stimulation of enzymatic activity in the FACE treatment.  相似文献   

18.
Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles   总被引:13,自引:1,他引:12  
We tested a conceptual model describing the influence of elevated atmospheric CO2 on plant production, soil microorganisms, and the cycling of C and N in the plant-soil system. Our model is based on the observation that in nutrient-poor soils, plants (C3) grown in an elevated CO2 atmosphere often increase production and allocation to belowground structures. We predicted that greater belowground C inputs at elevated CO2 should elicit an increase in soil microbial biomass and increased rates of organic matter turnover and nitrogen availability. We measured photosynthesis, biomass production, and C allocation of Populus grandidentata Michx. grown in nutrient-poor soil for one field season at ambient and twice-ambient (i.e., elevated) atmospheric CO2 concentrations. Plants were grown in a sandy subsurface soil i) at ambient CO2 with no open top chamber, ii) at ambient CO2 in an open top chamber, and iii) at twice-ambient CO2 in an open top chamber. Plants were fertilized with 4.5 g N m−2 over a 47 d period midway through the growing season. Following 152 d of growth, we quantified microbial biomass and the availabilities of C and N in rhizosphere and bulk soil. We tested for a significant CO2 effect on plant growth and soil C and N dynamics by comparing the means of the chambered ambient and chambered elevated CO2 treatments. Rates of photosynthesis in plants grown at elevated CO2 were significantly greater than those measured under ambient conditions. The number of roots, root length, and root length increment were also substantially greater at elevated CO2. Total and belowground biomass were significantly greater at elevated CO2. Under N-limited conditions, plants allocated 50–70% of their biomass to roots. Labile C in the rhizosphere of elevated-grown plants was significantly greater than that measured in the ambient treatments; there were no significant differences between labile C pools in the bulk soil of ambient and elevated-grown plants. Microbial biomass C was significantly greater in the rhizosphere and bulk soil of plants grown at elevated CO2 compared to that in the ambient treatment. Moreover, a short-term laboratory assay of N mineralization indicated that N availability was significantly greater in the bulk soil of the elevated-grown plants. Our results suggest that elevated atmospheric CO2 concentrations can have a positive feedback effect on soil C and N dynamics producing greater N availability. Experiments conducted for longer periods of time will be necessary to test the potential for negative feedback due to altered leaf litter chemistry. ei]{gnH}{fnLambers} ei]{gnA C}{fnBorstlap}  相似文献   

19.
The sudangrass (Sorghum sudanense) and ryegrass (Lolium multiflorum L.) rotation is an intensive and new cropping system in Central China. Nutrient management practices in this rotation system may influence soil fertility, the important aspects of which are soil biological properties and quality. As sensitive soil biological properties and quality indicators, soil microbial community activity, microbial biomass, enzyme activities, soil organic matter (SOM) and total N resulting from different fertilization regimes in this rotation system were studied through a four-year field experiment from April 2005 to May 2009. Treatments included control (CK), fertilizer phosphorus and potassium (PK), fertilizer nitrogen and potassium (NK), fertilizer nitrogen and phosphorus (NP) and a fertilizer nitrogen, phosphorus and potassium combination (NPK). Soil microbial community activities in the NK, NP and NPK treatments were significantly lower than those in the CK and PK treatments after the sudangrass and ryegrass trial. The highest microbial biomass C, microbial biomass N, SOM, total N, sucrase and urease activities were found in the NPK treatment, and these soil quality indicators were significantly higher in the NK, NP and NPK treatments than in the PK and CK treatments. Soil microbial biomass and enzyme activities were positively associated with SOM in the sudangrass and ryegrass rotation system, indicating that fertilization regimes, especially N application, reduced microbial community activity in the soil. Proper fertilization regimes will increase microbial biomass, enzyme activity and SOM and improve soil fertility.  相似文献   

20.
The aims of this study were to determine whether elevated atmospheric CO2 concentration modifies plant organic matter (OM) fluxes to the soil and whether any change in the fluxes can modify soil OM accumulation. Measurements were made in a grazed temperate grassland after almost 4 years exposure to elevated atmospheric CO2 (475 μl l-1) using a Free Air CO2 Enrichment (FACE) facility located in the North Island of New Zealand. Aboveground herbage biomass and leaf litter production were not altered by elevated CO2 but root growth rate, as measured with the ingrowth core method, and root turnover were strongly stimulated by elevated CO2 particularly at low soil moisture contents during summer. Consequently, significantly more plant material was returned to the soil under elevated CO2 leading to an accumulation of coarse (> 1 mm) particulate organic matter (POM) but not of finer POM fractions. The accumulating POM exhibited a lower C/N ratio, which was attributed to the higher proportion of legumes in the pasture under elevated CO2. Only small changes were detected in the size and activity of the soil microbial biomass in response to the POM accumulation, suggesting that higher organic substrate availability did not stimulate microbial growth and activity despite the apparent lower C/N ratio of accumulating POM. As a result, elevated CO2 may well lead to an accumulation of OM in grazed grassland soil in the long term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号